
CSC 121: Computer Science for Statistics

Radford M. Neal, University of Toronto, 2017

http://www.cs.utoronto.ca/∼radford/csc121/

Week 11

Another Use for Classes — Factors

Recall that how R handles an object can be changed by giving it a “class”

attribute. That’s how lists become data frames. Another example is the “factor”

class, which is used to represent a vector of strings as a vector of integers, along

with a vector of just the distinct string values.

Here’s an illustration:

> a <- as.factor(c("red","green","yellow","red","green","blue","red"))

> a

[1] red green yellow red green blue red

Levels: blue green red yellow

> class(a) # We can see that this object has the class "factor"

[1] "factor"

> unclass(a) # Here’s what it is without its class attribute

[1] 3 2 4 3 2 1 3

attr(,"levels")

[1] "blue" "green" "red" "yellow"

The main reason factors exist is that an integer previously used less memory than

a string, though this is less true in recent versions of R. Strings are converted to

factors in read.table, unless you use the stringsAsFactors=FALSE option.

Operations on Factors

Factors look like strings for many purposes:

> a <- as.factor(c("red","green","yellow","red","green","blue","red"))

> a == "red"

[1] TRUE FALSE FALSE TRUE FALSE FALSE TRUE

Even though factors are represented as integers, mathematical operations on

them are not allowed:

> sqrt(a)

Error in Math.factor(a) : sqrt not meaningful for factors

This is because the integers representing the “levels” of the factor are arbitrary,

so treating them like numbers would be misleading. (Unfortunately, R isn’t

completely consistent in this, and will sometimes use a factor as a number

without a warning.)

Another Use of Classes — Dates and Time Differences

R also defines classes for dates, and for differences in dates. Some of what you

can do with these is illustrated below:

> d1 <- as.Date("2015-03-24") # d1 will be an object of class "Date"

> d1

[1] "2015-03-24" # Adding an integer to a date gives a new date

> d1+2

[1] "2015-03-26"

> d1+10 # Addition will automatically change the month

[1] "2015-04-03"

>

> d2 <- as.Date("2015-02-24")

> d1-d2 # The difference has class "difftime"

Time difference of 28 days

> as.numeric(d1-d2) # We can convert a "difftime" object to a number

[1] 28

Defining Your Own Classes
You can attach a class attribute of your choice to any object. If that’s all you do,

the object gets handled just as before, except the class attribute is carried along:

> x <- 9

> class(x) <- "mod17"

> x + 10

[1] 19

attr(,"class")

[1] "mod17"

But you can now redefine some operations (ones that are “generic”) to operate

specially on your class:

> ‘+.mod17‘ <- function (a,b) {

+ r <- (unclass(a) + unclass(b)) %% 17

+ class(r) <- "mod17"

+ r

+ }

> x + 10

[1] 2

attr(,"class")

[1] "mod17"

Defining Your Own Generic Functions

You can also create new generic functions, that you can define “methods” for,

that are used when they are called with objects of particular classes. For example:

> picture <- function (x) UseMethod("picture")

> picture.default <- function (x) cat(x,"\n")

> picture.mod17 <- function (x) cat(rep("-",x),"X",rep("-",16-x),"\n")

> picture(9)

9

> picture(x)

- - - - - - - - - X - - - - - - -

> picture(x+3)

- - - - - - - - - - - - X - - - -

The definition of picture just says it’s generic. If no special method is defined

for a class, picture.default is used. By defining picture.mod17, we create a

special method for class mod17. R finds the method to use based on the class of

the first argument to the generic function.

The Object-Oriented Approach to Programming

R’s classes are designed to support what is called “object-oriented” programming.

This approach to programming has several goals:

• Allow manipulation of “objects” without having to know exactly what kind of

object you’re manipulating — as long as the object can do the things that

you need to do (it has the right “methods”).

Benefit: We can write one just function for all objects, not many functions,

that all do the same thing but in somewhat different ways.

• Separate what the methods for an object do from how they do it (including

how the object is represented).

Benefit: We can change how objects work without having to change all the

functions that use them.

• Permit the things that can be done with objects (“methods”) and the kinds

of objects (“classes”) to be extended without changing existing functions.

Benefit: We can more easily add new facilities, without having to rewrite

existing programs.

Generic Functions for Drawing, Rescaling, and Translating

Let’s see how we can define a set of generic functions for drawing and

transforming objects like circles and boxes.

We start by setting up the generic functions we want:

draw <- function (w) UseMethod("draw")

rescale <- function (w,s) UseMethod("rescale")

translate <- function (w,tx,ty) UseMethod("translate")

Then we need to define methods for these generic functions for all the classes of

objects we want. We also need functions for creating such objects.

Note: We might not have done things in this order. For example, we might have

first defined only draw and translate methods, and then later added the

rescale method. We would then need to implement a rescale method for a

class only if we actually will use rescale for objects of that class.

Implementing a Circle Object

We’ll represent a circle by the x and y coordinates of its centre and its radius.

new_circle <- function (x, y, r) {

w <- list (centre_x=x, centre_y=y, radius=r)

class(w) <- "circle"

w

}

draw.circle <- function (w) {

angles <- seq (0, 2*pi, length=100)

lines (w$centre_x + w$radius*cos(angles),

w$centre_y + w$radius*sin(angles))

}

rescale.circle <- function (w,s) {

w$radius <- w$radius * s;

w

}

translate.circle <- function (w,tx,ty) {

w$centre_x <- w$centre_x + tx; w$centre_y <- w$centre_y + ty

w

}

Implementing a Box Object
We’ll represent a box by the x and y coordinates at its left/right top/bottom.
But to create a box we’ll give coordinates for its centre and offsets to the corners.

new_box <- function (x, y, sx, sy) {

w <- list (x1=x-sx, x2=x+sx, y1=y-sy, y2=y+sy)

class(w) <- "box"

w

}

draw.box <- function (w) {

lines (c(w$x1,w$x1,w$x2,w$x2,w$x1), c(w$y1,w$y2,w$y2,w$y1,w$y1))

}

rescale.box <- function (w,s) {

xm <- (w$x1+w$x2) / 2

w$x1 <- xm + s*(w$x1-xm); w$x2 <- xm + s*(w$x2-xm)

ym <- (w$y1+w$y2) / 2

w$y1 <- ym + s*(w$y1-ym); w$y2 <- ym + s*(w$y2-ym)

w

}

translate.box <- function (w,tx,ty) {

w$x1 <- w$x1 + tx; w$x2 <- w$x2 + tx

w$y1 <- w$y1 + ty; w$y2 <- w$y2 + ty

w

}

An Example of Drawing Objects This Way

> plot(NULL,xlim=c(-7,7),ylim=c(-7,7),xlab="",ylab="",asp=1)

> c <- new_circle(3,4,2.5)

> draw(c); draw(rescale(c,0.7)); draw(translate(rescale(c,0.3),1,-5))

> b <- new_box(-3,-3,2,3)

> b2 <- translate(b,-1.3,2.2)

> draw(b); draw(b2); draw(rescale(b2,1.1))

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

Defining a Function That Works On Both Circles and Boxes

Here is a function that should work for circles, boxes, or any other class of object

that has draw, rescale, and translate methods:

smaller <- function (w, n)

for (i in 1:n) { draw (w); w <- rescale(translate(w,1,0),0.9) }

Here are two uses of it:

> plot(NULL,xlim=c(-7,7),ylim=c(-7,7), xlab="",ylab="",asp=1)

> smaller (new_circle(-3,3.1,3),10)

> smaller (new_box(-3,-3,3.1,3),10)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

Statistical Facilities in R

In this course, we’ve mostly looked at R as a programming language, and at

general programming concepts.

But R is most popular as a language for statistical applications. So it has many

special facilities for doing statistics. I’ll talk about some now.

Don’t worry if you don’t understand some of the statistical concepts — that’s OK

for this course. Though learning about R’s statistical facilities is one good way to

learn statistics in a hands-on way!

Creating Tables of Counts

R can count how many times a value or combination of values occurs in a data

set, with the table function. It returns an object of class table, which looks like

a vector or matrix of integer counts.

For a vector, table counts how many times each unique value occurs:

> colours <- c("red","blue","red","red","green","blue")

> print (tcol <- table(colours))

colours

blue green red

2 1 3

> names(tcol)

[1] "blue" "green" "red"

> ages <- c(4,9,12,2,4,9,10)

> print (tage <- table(ages))

ages

2 4 9 10 12

1 2 2 1 1

> names(tage)

[1] "2" "4" "9" "10" "12"

Tables of Joint Counts

When used with two vectors, or a data frame with two columns, table creates a

two-dimensional table of how often each combination of values occurs. Examples:

> colours <- c("red","blue","red","red","green","blue")

> shapes <- c("round","round","square","square","square","round")

> table(colours,shapes)

shapes

colours round square

blue 2 0

green 0 1

red 1 2

> df <- data.frame(col=colours,shape=shapes)

> table(df)

shape

col round square

blue 2 0

green 0 1

red 1 2

Statistical Modeling in R

One big part of statistics is fitting a model to data. R has many functions for

doing this, but I’ll mention only lm, which fits a linear model.

Models in R are often specified using formulas, that say how one thing is

modelled in terms of other things.

For lm, we want to specify that some response variable is modelled as a linear

combination (plus noise) of some explanatory variables. This is done using a

formula such as

growth ~ ave_temp + fertilizer + variety

This might express that the amount by which some plant grows is linearly related

to the average temperature, the amount of fertilizer used, and a set of indicator

variables indicating the variety of the plant.

A Simple Example of a Linear Model

Here, I’ll show the results of a very simple linear model, relating the volume of

wood in a cherry tree to its girth (diameter of trunk). The data is in the data

frame trees that comes with R.

Here’s a plot of the data:

8 10 12 14 16 18 20

1
0

2
0

3
0

4
0

5
0

6
0

7
0

trees$Girth

tr
e

e
s
$

V
o

lu
m

e

Fitting the Model with lm

We can fit a linear model for volume given girth as follows:

> lm (trees$Volume ~ trees$Girth)

Call:

lm(formula = trees$Volume ~ trees$Girth)

Coefficients:

(Intercept) trees$Girth

-36.943 5.066

The result says that best fit model for the volume is

Volume = −36.943 + 5.066Girth + noise

We can get the same result with an abbreviated formula by saying the data comes

from the data frame trees:

lm (Volume ~ Girth, data=trees)

Using the Result of lm

The value returned by lm is an object of class "lm", which has special methods

for printing and other operations.

We can save the result, and then get the regression coefficients with coef.

> m <- lm (Volume ~ Girth, data=trees)

> coef(m)

(Intercept) Girth

-36.943459 5.065856

We could use these coefficients to predict the volume for a new tree, with girth

of 11.6:

> coef(m) %*% c(1,11.6) # %*% will compute the dot product

[,1]

[1,] 21.82048

Getting More Details on the Model Fitted

We can also ask for more statistical details with summary:

> summary(m)

Call:

lm(formula = Volume ~ Girth, data = trees)

Residuals:

Min 1Q Median 3Q Max

-8.065 -3.107 0.152 3.495 9.587

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***

Girth 5.0659 0.2474 20.48 < 2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 4.252 on 29 degrees of freedom

Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331

F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16

Plotting the Regression Line

We can also plot the regression line from the fitted model on top of a scatterplot

of the data, using abline(m):

8 10 12 14 16 18 20

1
0

2
0

3
0

4
0

5
0

6
0

7
0

trees$Girth

tr
e

e
s
$

V
o

lu
m

e

The plot shows some indication that the relationship is actually curved.

Trying a Quadratic Model

Let’s try fitting volume to both girth and the square of girth:

> Girth_squared <- trees$Girth^2

> summary (lm (trees$Volume ~ trees$Girth + Girth_squared))

Call:

lm(formula = trees$Volume ~ trees$Girth + Girth_squared)

Residuals:

Min 1Q Median 3Q Max

-5.4889 -2.4293 -0.3718 2.0764 7.6447

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.78627 11.22282 0.961 0.344728

trees$Girth -2.09214 1.64734 -1.270 0.214534

Girth_squared 0.25454 0.05817 4.376 0.000152 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 3.335 on 28 degrees of freedom

Multiple R-squared: 0.9616, Adjusted R-squared: 0.9588

F-statistic: 350.5 on 2 and 28 DF, p-value: < 2.2e-16

Some Useful Functions of Vectors

The unique function returns a vector of unique values:

> colours <- c("red","blue","red","red","green","blue")

> unique(colours)

[1] "red" "blue" "green"

The sort function sorts a vector in increasing order (or decreasing order if you

use decreasing=TRUE):

> ages <- c(4,9,12,2,4,9,10)

> sort(ages)

[1] 2 4 4 9 9 10 12

> sort(unique(ages),decreasing=TRUE)

[1] 12 10 9 4 2

The which.min and which.max functions give the index of the smallest and

largest elements in a vector (first occurrence if they occur more than once):

> which.min(ages)

[1] 4

> which.max(ages)

[1] 3

Checking if Things are in a Set

The %in% operator checks whether values are in some set of values (represented

by a vector of values in the set):

> colours <- c("red","blue","red","red","green","blue")

> "black" %in% colours

[1] FALSE

> colours %in% c("red","green")

[1] TRUE FALSE TRUE TRUE TRUE FALSE

You can use the results to find the elements of a vector that are in some set:

> colours [colours %in% c("red","green")]

[1] "red" "red" "red" "green"

With which, which returns indexes of TRUE in a logical vector, you can also find

the indexes of the elements that are in the set:

> which (colours %in% c("red","green"))

[1] 1 3 4 5

