CSC 121, Spring 2017 — Small Assignment #2

Worth 5% of the course grade. Due by the start of class on February 14, to be handed in using
MarkUs. This assignment may be handed in late, with a 20% penalty, by start of class on February
17. Assignments will not usually be accepted after that. Contact the instructor as soon as possible if
you have a legitimate excuse (such as documented illness) for handing in the assignment late (without

penalty).

This assignment is to be done by each student individually. You may discuss it in general terms with
other students, but the work you hand in should be your own. In particular, you shouldn’t leave a
discussion with someone else with any written notes (either paper or electronic).

In this assignment, you will write and test an R function for finding the distances to a “target”
location on a grid from all locations on this grid, measuring distance along the shortest path that
avoids obstacles.

Something like this function (but probably more complicated) might, for example, be needed if you
wanted to examine whether death rates from home accidents are related to how far the home is from
the nearest hospital, or if you wanted to analyse whether the number of squirrels at different points
in a wooded area is related to how far that point is from a pond where water is available.

We will consider locations on a rectangular grid, with obstacles indicated on a map, which is repre-
sented in R by a matrix of strings, which are either " ", meaning the location can be moved through
freely, or "X", meaning that the location is an obstacle, and movement into or out of this location is
not possible. Locations will be identified by a vector of two integers, giving the row and column of
the location in this map matrix.

The distance between two locations will be defined to be the smallest number of vertical or horizontal
moves needed to get from one of these locations to the other, without ever being in a location that is
marked "X" on the map. Diagonal moves are not considered. If their is no way of moving between
the locations without passing through an obstacle, or if either location is itself located at an obstacle,
the distance is infinite, written Inf in R.

To find all distances from a target location, you will write an R function call find_distances, whose
definition should start as follows:

find_distances <- function (map, target)

The map argument should be a matrix of strings that both defines the extent of the grid and indicates
where obstacles are, as described above. The target argument should be a vector of two numbers,
giving the row and column coordinates for the “target” location. The value returned by this function
should be a numeric matrix with the same number of rows and columns as map, giving the distance
of each point on the grid from the target location. The target location itself will have distance zero.
Some locations may have infinite distances, if it’s not possible to get to the target from there.

Here are some tests showing what the find_distances function should do:

> map <- matrix (c (

+ n n s lell s n n s n n s
+ llxll B n n s IleI s n n s
+ IIXII s n n s IIXII s n n s
+ n n B n n s n n s n n s
+ n n B n n , n n s n ll) s
+ nrow=5, ncol=4, byrow=TRUE)



> map

(.11 [,2]1 [,3] [,4]

[1,] » v wxe wow owow
[2,] "x" "ovovxronow
[3,] "X o owxe o wow
[4,] m v momomow
[5,] mm mow o mowwow

> find_distances(map,c(1,4))

[1,] Inf Inf 1 0
[2,] Inf 7 Inf 1
[3,] 1Inf 6 Inf 2
(4,] 6 5 4 3
[5,] 7 6 5 4

> find_distances(map,c(3,2))

[1,] Inf Inf 7 6
[2,] 1Inf 1 Inf 5
[3,] Inf 0 Inf 4
[4,] 2 1 2 3
[5,] 3 2 3 4
> find_distances(map,c(2,3))
[,11 [,2] [,3] [,4]
[1,] Inf Inf Inf Inf
[2,] Inf Inf 0 1Inf
[3,] Inf Inf Inf Inf
[4,] Inf Inf Inf Inf
[65,]1] Inf Inf Inf Inf

(,11 (.21 [,3] [,4]

(.11 [,2]1 [,3] [,4]

Whe writing your function, you may assume without checking that the map and location arguments
are valid.

You must indent your function definitions properly, as illustrated by the examples in the lecture slides.
You should include any comments that are helpful in explaining what your code is doing, but you do
not need to document what the function does, since that is documented already in this assignment
handout.

You should hand in two script files, one with only the definition of your function, and the other with
tests of this function, starting with the tests above (for which the script is available from the course
web page), to which you should add some tests of your own. You should also hand in the output of
your test script, as a text file.

Here is a suggested method for solving this problem. Start by creating a matrix of distances in which
all distances are Inf, except that the distance for the target location is 0. Then go around a loop that
each iteration scans all locations to see if the distance at that location can now be seen to be less than
what it is currently recorded as, based on the distances for locations that are adjacent to it (vertically
or horizontally). Stop this loop when the last iteration did not change the distance at any location.



