CSC 121, Spring 2017 — Large Assignment #1

Worth 10% of the course grade. Due at 1:10pm March 24, to be handed in using MarkUs. This
assignment may be handed in late, with a 20% penalty, by 1:10pm on March 28. Assignments
will not usually be accepted after that. Contact the instructor as soon as possible if you have
a legitimate excuse (such as documented illness) for handing in the assignment late (without

penalty).

This assignment s to be done by each student individually. You may discuss it in general terms
with other students, but the work you hand in should be your own. In particular, you shouldn’t
leave a discussion with someone else with any written notes (either paper or electronic).

In this assignment, you will write an R function for simulating a queue of people waiting to be
served, record the results of multiple simulation runs in a data frame, and produce some plots
of the results. The output (text and plots) will be submitted as a single HTML file produced
using the knitr: :spin function. (You will also submit your file of function definitions and your
script file.)

You will write an R function called simulate_queue that simulates the operation of some
establishment, such as a bank, in which customers arrive, may have to wait in line (a queue)
until the server (eg, the bank teller) is available, and then have their task done by the server.
There is only one server, and only one queue of customers. The establishment opens at what
we will call time zero, and closes after a period of time that is specified by an argument of
simulate_queue. No customers can arrive after the closing time, but all customers already in
the queue at closing time are served, regardless of how long this takes.

We will assume that customers arrive independently of each other, and that the probability of
one arriving is the same for any time before closing time. The rate at which customers arrive is
specified by an argument of simulate_queue. The distribution of the time to the next arrival
(or the first arrival, after the establishment opens) is given by an exponential distribution with
this rate. In R, you can generate a random number from such an exponential distribution with
rexp(1l,rate). Note that the average time between arrivals is the reciprocal of the arrival rate.

We will assume that the time it takes to serve a customer is independent of the time for other
customers (and of other things like arrival times), and that this service time has a uniform
distribution over a range whose low and high limits are given as arguments of simulate_queue.

The definition of your simulate_queue function should start as follows:
simulate_queue <- function (open_time, rate, low, high)

where the four arguments are as described above (in order).

The simulate_queue function should return a list with three elements, named arrival_times,
departure_times, and queue_lengths. These three elements will all be numeric vectors of the
same length, which is equal to the number of customers served. They contain the arrival times
of the customers (which will be between zero and open_time, and will be in increasing order),
the departure times of these customers (ie, when they are finished being served), and the length
of the queue when they arrived (an integer greater than or equal to zero, always zero for the
first customer). Note that the number of customers served is not fixed, but will vary from one
run to another (if a different random number seed is used).

Here is an example of a call of simulate_queue and the value it returns:

> simulate_queue(10,0.7,1,2)
$arrival _times
[1] 2.169126 3.339699 3.487038 4.517528 4.926867 6.148282 9.019936

$queue_lengths
[11] 0122332

$departure_times
[1] 3.995346 5.588048 7.162949 8.498747 10.189931 11.814393 13.164477

For this example, I have deliberately not shown what I set the random number seed to before
calling simulate_queue. Your results will not be the same, since you will use a different random
number seed. (Even if you used the same random number seed, they might differ depending on
exactly how you wrote your program.) However, if you try several random number seeds, you
should see results that are somewhat similar to those above, at least some of the time.

You should also write a function called run_simulations, whose definition starts as follows:
run_simulations <- function (seeds, open_time, rate, low, high)

The seeds argument should be a vector of numbers to use as random number seeds. The other
arguments correspond to those of simulate_queue. This function should call simulate_queue
once for every element of seeds, after setting the random number seed to that element of seeds
with set.seed. The arguments passed to simulate_queue should correspond to those passed
to run_simulations.

The value returned by run_simulations should be a data frame with one row for every simu-
lation done, and with columns as follows:

seed random number seed used for this simulation
open_time length of time the establishment is open
rate rate at which customers arrive

low low limit on service time

high high limit on service time

served number of customers served

maxqueue maximum size of the queue when someone arrives

avewait average time customer waits until finished being served

overtime time after closing when last customer finishes being served, zero if last
customer served before closing

Note that open_time, rate, low, and high will be the same for all simulations done by one
call of run_simulations. However, you can combine the data frames produced by several calls
of run_simulations using rbind, to get a data frame with results of simulations done with
different values for these arguments. The served, maxqueue, avewait, and overtime columns
will vary from one simulation to the next. They will be computed from the results of each run
of simulate_queue.

You should put your definitions of simulate_queue and run_simulations in an R script file
called 1gal-defs.R. If you wish, you may implement these functions using additional functions
that you write, whose definitions should also go in this script file.

You should create a separate script file, called 1gal-runs.R, that runs various simulations, using
the functions defined in 1gal-defs.R. This script file should be run using the knitr::spin
function, as described in the March 8 lab handout. It should start by setting knitr options as
specified in the handout, using the options.r file from the course web page, or a local copy of this
if you prefer. It should then read in your function definitions using source("lgal-defs.R").

You should then show the result of simulate_queue(10,0.7,1,2), which is the example shown
above, after setting the random number seed with set.seed(1). Following this, you should
show the results of some other simple tests of simulate_queue and run_simulations, which
you devise yourself.

The remainder of the script file should call run_simulations four times, to do four groups of
fifty simulations. For all groups, open_time should be set to 100. The other arguments for
simulate_queue should be as follows:

Group 1: rate = 0.5, low = 1.0, high = 2.0
Group 2: rate = 0.8, low = 1.0, high = 2.0
Group 3: rate = 0.5, low = 1.4, high = 1.6
Group 4: rate = 0.8, low = 1.4, high = 1.6

For all groups, run_simulations should be given a vector of fifty random number seeds, all
different (both within and between groups).

You should combine the results of all these simulations into one data frame, using rbind, and
show the entire contents of this data frame (which will have 200 rows).

You should also produce two scatterplots from these results, with both plots showing the rela-
tionship between served (on the horizontal axis) and avewait (on the vertical axis), with one
point shown for each simulation run. The first plot should show the results with rate = 0.5;
the second plot should show the results with rate = 0.8. In both plots, points for simulations
in which low = 1.0 and high = 2.0 should be shown in red, and those for simulations in which
low = 1.4 and high = 1.6 should be shown in green. Both plots should have suitable titles and
axis labels.

Your function definitions should be properly indented. The script files of definitions and runs
should contain suitable, but not excessive, comments. For the script file run using knitr, you
can use the special knitr format of comments (starting with #’) to get nicely formatted text,
where this is appropriate. In particular, at the end of the script you should comment briefly on
what you might conclude from the plots you show. (Of course, you will not be able to write this
comment until you have run an earlier version of the script, and examined the plots.)

You should hand in (using MarkUs) your lgal-defs.R and lgal-runs.R script files, and the
knitr output, which will be called 1gal-runs.html.

Your simulate_queue function should be written in what is called an “event-based” manner.
This is fairly easy to do for this problem because only two kinds of events occur — a customer
may arrive, or a customer may leave after they have been served. Your function can therefore
keep track of pending events using two variables, one set to the time of the next arrival, the other
to the time when the customer currently being served will be finished (and hence leave). Both
of these variables can be set to Inf to indicate that no arrival or departure event is currently
pending.

The main loop in this function should continue as long there is the possibility of another event.
Within this loop, you should see which kind of event will occur next, and update a variable
recording the current time to the time of this event. If the next event will be an arrival, you
will need to determine when the arrival after that will occur. Also, if the new customer can be
served immediately, you will also need to determine when they will finish being served. If the
next event will be a departure, you will need to see if another customer is waiting, and if so
determine when they will finish being served. You will also need to keep track of the number of
customers in the queue, and record the information that simulate_queue is supposed to return.

The features we have covered so far are sufficient to do this assignment, but you may also use
other features of R that you happen to know, as long as their use does not bypass the point
of the assignment. (For example, you may not use an R package that does queuing or other
event-based simulations, since that would let you avoid writing a simulation program yourself.)

