CSC 120 (R Section)— Lab Exercise 9

This is a non-credit exercise, which you do not hand in.
You may work on your own or together with another student, as you please.

This lab will give you practice in various of the R features we’ve covered recently, as well
as general practice in programming. Remember that you might want to use the debugger,
as described in last week’s lab.

Counting how many NAs are in a vector or in a data frame.

Write a function called how_many_NA that takes a vector as its argument and returns the
number of NA values in this vector.

Recall that you can’t check whether x is NA with x==NA, since that always gives NA, not
TRUE or FALSE. Instead, you can use is.na(x).

Recall also that if you use a logical value in a context where a number is needed, R will
automatically convert the logical value to 0 or 1, with 1 for TRUE and 0 for FALSE.

You could write this function two ways, once using a loop, and once using vector opera-
tions — with no loop (at least none that you see, there will be a loop done inside the R
interpreter).

Once you have written (and tested) how_many_NA, you should write a function called
how_many_NA_in_df, which takes a data frame as its argument, and returns a numeric
vector that gives the count of how many NA values there are in each column of the data
frame. This result vector should have names for its elements that correspond to the names
of the columns in the data frame.

Recall that you can get/set the names for a vector using names(v), and that you can
get/set the row/column names for a data frame using rownames (df) or colnames (df).

You can write this function in two ways, once with a loop, and once using sapply. In both
cases, you should use the how_many_NA function you have already written.

You can test your function on the built-in airquality data frame, and compare to the
results displayed with summary(airquality).

Swap years born and died entered incorrectly.

Suppose we have a data frame containing data on people, that has columns born and died
that are supposed to be the years that each person was born and died. However, it seems
that for some people, these were mistakenly swapped. Write a function swap_born_died
that swaps these dates for all people for which the year they are said to have been born is
later than the year they are said to have died.



For example:

> dl1 <- data.frame (list(sex=c("M","F" 6 "F",6"M","M"),
+ born=c(1897,1941,1902,1910,1923),
+ died=c(1977,1902,1988,1931,1888))
+ )
> dil
sex born died
1897 1977
1941 1902
1902 1988
1910 1931
M 1923 1888
swap_born_died(d1l)
sex born died
M 1897 1977
F 1902 1941
F 1902 1988
M
M

v OO0 S WO N -
= m o=

1910 1931
1888 1923

g N -

You can try solving this using a loop, and without a loop (using vector operations).

Once you have this version working, you can try modifying your function so that it doesn’t
try to swap born and died if either of these is NA. You’ll need to come up with a data
frame with some NA values to test it on.

Create a matrix from two string vectors.

Write a function called string_matrix_from_string_vectors, which takes two vectors
of strings as arguments, and returns a matrix of strings with number of rows equal to
the length of the first argument and number of columns equal to the length of the second
argument. The element in row ¢ and column j should be a string of two characters — the
first character of element i of the first argument and the first character of element j of the
second argument. The row names of the matrix should be set to the first argument and
the column names to the second argument.

For example:

> string matrix_from_string_vectors(c("apple","orange","peach"),c("joe","mary"))
joe mary

apple llaj n |lamll

Orange lloj n llomll

peach llpj n |lpmll



Recall that you can use paste to put strings together and substring to extract part of a
string. Use help for the details if you don’t remember them.

Find the length of the longest run in a vector.

Write a function find_longest_run that takes one argument that is a vector, and returns
the length of the longest “run” in this vector. A “run” is a sequence of consecutive values
that are all the same. You can assume that none of the elements of the vector are NA.

For example:

> longest_run(c(5,1,1,3,2,2,2,7))
[1] 3

> longest_run(c(5,1,3,3,2,7))

[1] 2

> longest_run(c(8,3,1,3,8))

(1] 1

> longest_run(1:1000)

(1] 1

> longest_run(7)

(1] 1



