
Sampling Signals

Overview:

� We use the Fourier transform to understand the discrete sampling

and re-sampling of signals.

� One key question is when does sampling or re-sampling provide an

adequate representation of the original signal?

Terminology:

� sampling – creating a discrete signal from a continuous process.

� downsampling (decimation) – subsampling a discrete signal

� upsampling – introducing zeros between samples to create a longer

signal

� aliasing – when sampling or downsampling, two signals have same

sampled representation but differ between sample locations.

Matlab Tutorials: samplingTutorial.m, upSample.m
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Sampling Signals
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Up-Sampling

Consider up-sampling a signalI [n] of lengthN :

� Increase number of samplesN by a factor ofns.

� Step 1.Placens� 1 zeros after every sample ofI [n], to formf0[n]

of lengthnsN , namely

f0[n] =

(
I [n=ns] for n mod ns = 0;

0 otherwise.
(1)
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Up-Sampling (Cont.)

� Step 2.Interpolate signalf0:

f = S � f0; for some smoothing kernelS[n]: (2)

Here, in order forf [n] to interpolatef0[n], we require thatS[0] = 1

andS[jns] = 0 for nonzero integersj.

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5
Sinc Filtered Upsampled Signal (b)

n

f[n
]

� Many smoothing kernels can be used (see upSample.m).
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Frequency Analysis of Up-Sampling

Step 1.Fourier transform of the raw up-sampled signalf0[n]:

F(f0[n])[k] �

Nns�1X
n=0

f0[n]e
i!s
k
n =

N�1X
j=0

f0[jns]e
i!s
k
jns

=

N�1X
j=0

I [j]ei!
s
k
jns

Here!s
k = 2�

Nns
k, so the last line above becomes

F(f0)[k] =
N�1X
j=0

I [j]ei
2�

N
kj � F(I)[k]; for �

Nns

2
� k <

Nns

2
: (3)

SinceF(I) is N -periodic, equation (3) implies thatF(f0) consists of

ns copies ofF(I) concatenated together.
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Fourier Analysis of Up-Sampling Step 2

Recall Step 2 is to formf [n] = S � f0, for some interpolation filterS.

However, notice from the inverse Fourier transform that (forN even)

I [j] =
1

N

N=2�1X
k=�N=2

Î [k]ei
2�

N
kj

=
ns

Nns

N=2�1X
k=�N=2

f̂0[k]e
i 2�

Nns
kjns = f [jns]: (4)

Here we usedf(jns) = I(j) in the last line. Notice the left term in the

last line above isns times the inverse Fourier transform ofB[k]f̂0[k]

whereB is the box function,B[k] = 1 for �N=2 � k < N=2 and

B[k] = 0 otherwise. We can therefore evaluate this inverse Fourier

transform at every pixeln, and not just at the interpolation valuesjns,

to construct a possible interpolating functionf [n]

f [n] = nsF
�1(B(k)f̂0[k]): (5)
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Down-Sampling

Consider down-sampling a signalI [n] of lengthN :

� Reduce number of samplesN by a factor ofns, wherens is a divi-

sor ofN .

� Define the comb function:

C(n;ns) =

(N=ns)�1X
m=0

Æn;mns

n

I [n]
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ns
ns = 4

� Step 1.Introduce zeros inI [n] at unwanted samples.

g0[n] = C[n;ns]I [n]: (6)

� Step 2.Downsample signalg0:

g[m] = g0[mns]; for 0 � m < N=ns: (7)
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Frequency Domain Analysis of Down-Sampling

Proposition 1. The Fourier transform of the comb function is another

comb function:

F(C[n;ns]) =
N

ns
C[k;N=ns]: (8)

π

C(ω)
∧

−π ω0

ns
2π

ns = 4

Recall the frequency! and wave numberk are related by! = 2�
N k. So

the spacing in the plot above is!s =
2�
N

N
ns

= 2�
ns

.

Proposition 2. Pointwise product and convolution of Fourier trans-

forms. Supposef [n] andg[n] are two signals of lengthN (extended to

beN -periodic). Then

F(f [n]g[n]) =
1

N
F(f) � F(g)

�
1

N

N=2�1X
j=�N=2

f̂ [j] ĝ[k � j]: (9)

wheref̂ andĝ denote the Fourier transforms off andg, respectively.

The proofs of these two propositions are straight forward applications

of the definition of the Fourier transform given in the preceeding notes,

and are left as exercises.
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Fourier Analysis of Down-Sampling Step 1

Recall Step 1 is to formg0[n] = C[n;ns]I [n]. By Prop. 1 and 2 above,

we have

F(g0) = F(C[n;ns]I [n])

=
N

ns

1

N
C[�;N=ns] � Î [�]

�
1

ns

N=2X
j=�N=2+1

C[j;N=ns]Î [k � j]

=
1

ns

ns�r0X
r=�r0+1

Î [k � r
N

ns
]; (10)

where, due to the periodicity of̂I [k], we can use any integerr0 (eg.

r0 = ns=2 for evenns).

π

I(ω)
∧

−π ω0 π−π ω0

ns
2πg (ω)

∧

0
ns = 4

Thereforeĝ0[k] consists of the sum of replicaŝI [k � rN=ns] of the

Fourier transform of the original signalI, spaced by wavenumberN=ns

or, equivalently, by frequency!s =
2�
ns

.

Note the Fourier transform̂g0 has period2�, so the contribution sketched

above for! � � can be shifted2� to the left.
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Fourier Analysis of Down-Sampling Step 2

In Step 2 we simply drop the samples fromg0[n] which were set to zero

by the comb functionC[n;ns]. That is

g[m] = g0[mns]; for 0 � m < N=ns:

In terms of the Fourier transform, it is easy to show

F(g)[k] = ĝ[k] = ĝ0[k]; for �N=(2ns) � k < N=(2ns): (11)

Rewriting this in terms of the frequency!s;k = 2�
(N=ns)

k (noteg[m] is

a signal of lengthN=ns), and the corresponding frequency!k = 2�
N k

= !s;kns of the longer signalg0[n], we have

ĝ[!s;k] = ĝ0[!k] = ĝ0[!s;k=ns]; for � � � !s;k < �: (12)
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Nyquist Sampling Theorem

Sampling Theorem: Let f [n] be a band-limited signal such that

f̂ [!] = 0 for all j!j > !0

for some!0. Thenf [n] is uniquely determined by its samplesg[m] =

f [mns] when

!s=2 =
�

ns
> !0 or equivalently ns <

�0
2

where�0 = 2�=!0. In words, the distance between samples must be

smaller than half a wavelength of the highest frequency in the signal.

In terms of the previous figure, note that the maximum frequency!0

must be smaller than one-half of the spacing,!s, between the replicas

introduced by the sampling. This ensures the replicasdo not overlap.

When the replicas do not overlap, we can up-sample the signalg[m]

and interpolate it to recover the signalf [n], as discussed above.

Otherwise, when the replicas overlap, the Fourier transformĝ[k] con-

tains contributions from more than one replica off̂ [k]. Due to these

aliased contributions, we cannot then recover the original signalf [n].
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Sampling Continuous Signals

A similar theorem holds for sampling signalsf(x) for x 2 [0; L). We

can representf as the Fourier series

f(x) =a:e:

1X
k=�1

f̂ [k]ei!kx;

where!k = 2�
L k and=a:e: denotes equals almost everywhere. Suppose

f(x) is band-limited so that for some!0 > 0

f̂ [k] = 0 for all j!kj > !0:

Thenf(x) is uniquely determined by its samplesI [m] = f(m� ) when

� <
�0
2

(13)

where�0 = 2�=!0. In words, the distance between samples must be

smaller than half the wavelength of the highest frequency in the signal.

The link with the preceeding analysis is that samplingf(x) with a sam-

ple spacing of� causes replicas in the Fourier transform to appear with

spacing!s = 2�=� . As before, the condition that these replicas do not

overlap is!0 < !s=2, which is equivalent to condition (13).
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Aliasing

Aliasing occurs when replicas overlap:

Consider a perspective image of an infinite checkerboard. The signal is
dominated by high frequencies in the image near the horizon. Properly
designed cameras blur the signal before sampling, using

� the point spread function due to diffraction,

� imperfect focus,

� averaging the signal over each CCD element.

These operations attenuate high frequency components in the signal.
Without this (physical) preprocessing, the sampled image can be severely
aliased (corrupted):
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Dimensionality

A guiding principal throughout signal transforms, sampling, and alias-
ing is the underlying dimension of the signal, that is, the number of
linearly independent degress of freedom (dof). This helps clarify many
issues that might otherwise appear mysterious.

� Real-valued signals withN samples haveN dof. We need a basis
of dimensionN to represent them uniquely.

� Why did the DFT of a signal of lengthN useN sinusoids? Be-
causeN sinusoids are linearly independent, providing a minimal
spanning set for signals of lengthN . We need no more thanN .

� But wait: Fourier coefficients are complex-valued, and therefore
have2N dofs. This matches the dof needed for complex signals of
lengthN but not real-valued signals. For real signals the Fourier
spectra are symmetric, so we keep half of the coefficients.

� When we down-sample a signal by a factor of two we are moving
to a basis withN=2 dimensions. The Nyquist theorem says that
the original signal should lie in anN=2 dimensional space before
you down-sample. Otherwise information is corrupted (i.e. signal
structure in multiple dimensions of the originalN -D space appear
the same in theN=2-D space).

� The Nyquist theorem is not primarily about highest frequencies
and bandwidth. The issue is really one of having a model for the
signal; that is, how many non-zero frequency components are in
the signal (i.e., the dofs), and which frequencies are they.
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