
2D Fourier Transforms

In 2D, for signalsh(n;m) with N columns andM rows, the idea is

exactly the same:

ĥ(k; l) =

N�1X
n=0

M�1X
m=0

e�i(!k n+!lm) h(n;m)

h(n;m) =
1

NM

N�1X
k=0

M�1X
l=0

ei(!k n+!lm) ĥ(k; l)

Often it is convenient to express frequency in vector notation with
~k = (k; l)t, ~n = (n;m)t, ~!kl = (!k; !l)

t and ~!t~n = !k n + !lm.

2D Fourier Basis Functions: Sinusoidal waveforms of different

wavelengths (scales) and orientations. Sinusoids onN�M images

with 2D frequency~!kl = (!k; !l) = 2�(k=N; l=M) are given by:

ei (~!
t~n) = ei !kn ei !lm = cos(~!t~n) + i sin(~!t~n)

Separability: If h(~n) is separable, e.g.,h(n;m) = f(n) g(m), then,

because complex exponentials are also separable, so is the Fourier

spectrum,̂h(k; l) = f̂(k) ĝ(l).
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2D Fourier Basis Functions

ImagReal

Grating for (k,l) = (1,-3)

Real

Grating for (k,l) = (7,1)

Blocks image and its amplitude spectrum
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Properties of the Fourier Transform

Some key properties of the Fourier transform,f̂(~!) = F [f(~x)].

Symmetries:

Fors(x) 2 R, the Fourier transform is symmetric, i.e.,ŝ(!) = ŝ�(�!).

Fors(x) = s(�x) the transform is real-valued, i.e.,ŝ(!) 2 R.

Fors(x) = �s(�x) the transform is imaginary, i.e.,i ŝ(!) 2 R.

Shift Property:

F [f(~x� ~x0)] = exp(�i ~!t~x0) f̂(~!) (1)

The amplitude spectrum is invariant to translation. The phase spec-

trum is not. In particular, note thatF [Æ(~x� ~x0)] = exp(�i ~!t~x0).

Proof: substitution and change of variables.

Differentiation:

F

�
@nf(~x)

@xj
n

�
= (i !j)

n f̂(~!) (2)

For intuition, remember that@e
i !x

dx
= i !ei !x and@ sin(!x)

@x
= ! cos(!x).

Linear Scaling: Scaling the signal domain causes scaling of the

Fourier domain; i.e., givena2R , F [s(ax)] = 1
a
ŝ(!=a).

Parseval’s Theorem: Sum of squared Fourier coefficients is a con-

stant multiple of the sum of squared signal values.
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Convolution Theorem

The Fourier transform of the convolution of two signals is equal to

the product of their Fourier transforms:

F [f � g] = F [f ] F [g] � f̂(!) ĝ(!) : (3)

Proof in the discrete 1D case:

F [f � g] =
X
n

f � g e�i!n =
X
n

X
m

f(m) g(n�m) e�i!n

=
X
m

f(m)
X
n

g(n�m)e�i!n

=
X
m

f(m) ĝ(!) e�i!m (shift property)

= ĝ(!) f̂ (!) :

Remarks:

� This theorem means that one can apply filters efficiently in the

Fourier domain, with multiplication instead of convolution.

� Fourier spectra help characterize how different filters behave, by

expressing both the impulse response and the signal in the Fourier

domain (e.g, with the DTFT). The filter’s amplitude spectrum

tells us how each signal frequency will be attentuated. The fil-

ter’s phase spectrum tells us how each sinusoidal signal compo-

nent will be phase shifted in the response.

� Convolution theorem also helps prove properties. E.g. prove:
@

@x
(h � g) =

@h

@x
� g = h �

@g

@x
320: Linear Filters, Sampling, & Fourier Analysis Page: 4



Common Filters and their Spectra

Top Row: Image of Al and alow-pass(blurred) version of it. The
low-pass kernel was separable, composed of 5-tap 1D impulse re-
sponses1

16(1; 4; 6; 4; 1) in thex andy directions.

Bottom Row: From left to right are the amplitude spectrum of Al,
the amplitude spectrum of the impulse response, and the product of
the two amplitude spectra, which is the amplitude spectrum of the
blurred version of Al. (Brightness in the left and right images is pro-
portional to log amplitude.)
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Common Filters and their Spectra (cont)

From left to right is the original Al, ahigh-passfiltered version of
Al, and the amplitude spectrum of the filter. This impulse response
is defined byÆ(n) � h(n;m) whereh[n;m] is the separable blurring
kernel used in the previous figure.

From left to right is the original Al, aband-passfiltered version of
Al, and the amplitude spectrum of the filter. This impulse response is
defined by the difference of two low-pass filters.
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Common Filters and their Spectra (cont)

Top Row: Convolution of Al with a horizontal derivative filter, along
with the filter’s Fourier spectrum. The 2D separable filter is composed
of a vertical smoothing filter (i.e.,14 (1; 2; 1)) and a first-order central
difference (i.e.,12 (�1; 0; 1)) horizontally.

Bottom Row: Convolution of Al with a vertical derivative filter, and
the filter’s Fourier spectrum. The filter is composed of a horizontal
smoothing filter and a vertical first-order central difference.
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Nyquist Sampling Theorem

Theorem: Let f(x) be a band-limited signal such that

f̂ (!) = 0 for j!j > !0

for some!0. Thenf(x) is uniquely determined by its samplesg(m) =

f(mns) when

2�

ns
> 2!0 or equivalently ns <

�0

2

where�0 = 2�=!0. In words, the distance between samples must be

smaller than half a wavelength of the highest frequency in the signal.

original signal

spectrum

down-sampled

spectrum for

up-sampled and

low-pass filtered

original signal

spectrum

original signal

spectrum

down-sampled

spectrum for

down-sampled

spectrum for

down-sampled

spectrum for

up-sampled and

low-pass filtered

up-sampled and

low-pass filtered

Here the replicas can be isolated by an ideal low-pass filter (the dotted

pass-band), so the original signal can be perfectly reconstructed.

Corollary: Let f(x) be a single-sided band-pass signal with band-

width 2!0. Thenf(x) is uniquely determined if sampled at a rate such

thatns <
�0
2 .
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Aliasing

Aliasing occurs when replicas overlap:

Consider a perspective image of an infinite checkerboard. The sig-
nal is dominated by high frequencies in the image near the horizon.
Properly designed cameras blur the signal before sampling, using

� the point spread function due to diffraction,

� imperfect focus,

� averaging the signal over each CCD element.

These operations attenuate high frequency components in the sig-
nal. Without this (physical) preprocessing, the sampled image can
be severely aliased (corrupted):

320: Linear Filters, Sampling, & Fourier Analysis Page: 15



Dimensionality

A guiding principal throughout signal transforms, sampling, and alias-
ing is the underlying dimension of the signal, that is, the number
of linearly independent degress of freedom (dof). This helps clarify
many issues that might otherwise appear mysterious.

� Real-valued signals withN samples haveN dof. We need a basis
of dimensionN to represent them uniquely.

� Why did the DFT of a signal of lengthN useN sinusoids? Be-
causeN sinusoids are linearly independent, providing a minimal
spanning set for signals of lengthN . We need no more thanN .

� But wait: Fourier coefficients are complex-valued, and therefore
have2N dofs. This matches the dof needed for complex sig-
nals of lengthN but not real-valued signals. For real signals the
Fourier spectra are symmetric, so we keep half of the coefficients.

� When we down-sample a signal by a factor of two we are moving
to a basis withN=2 dimensions. The Nyquist theorem says that
the original signal should lie in anN=2 dimensional space before
you down-sample. Otherwise information is corrupted (i.e. sig-
nal structure in multiple dimensions of the originalN -D space
appear the same in theN=2-D space).

� The Nyquist theorem is not primarily about highest frequencies
and bandwidth. The issue is really one of having a model for the
signal; that is, how many non-zero frequency components are in
the signal (i.e., the dofs), and which frequencies are they.
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