CSC320- Visual Computing, Winter 2005

Assignment 2: Image Morphs

Solutions

See the Matlab files in a2_05soln.zip for the solution source code.

1. Fourier Transform of Comb Functions [10pts]: Let $f(n)=\operatorname{Comb}\left(n ; n_{s}\right)$. Define $\omega_{k}=\frac{2 \pi}{N} k$ and $m=N / n_{s}$, which is assumed to be an integer. Then, by the definition of the DFT,

$$
\begin{align*}
\hat{f}(k) & \equiv \sum_{n=0}^{N-1} f(n) e^{-i \omega_{k} n}=\sum_{n=0}^{N-1} \operatorname{Comb}\left(n ; n_{s}\right) e^{-i \omega_{k} n} \\
& =\sum_{j=0}^{N / n_{s}-1} e^{-i \omega_{k} n_{s} j} \operatorname{since} \operatorname{Comb}\left(n ; n_{s}\right) \text { is } 1 \text { only for } n=j n_{s} \\
& =\sum_{j=0}^{m-1} e^{-i \frac{2 \pi}{N} n_{s} j k} \\
& =\sum_{j=0}^{m-1} e^{-i 2 \pi \frac{k}{m} j} . \tag{1}
\end{align*}
$$

A similar argument to the one given in section 1.3 of the Fourier notes shows that the last sum above is equal to $m \operatorname{Comb}(k ; m)$. To show this, there are two cases to consider, depending on whether k / m is an integer or not.
First, suppose k / m is an integer. Then every term in the sum in equation (1) is $e^{-i 2 \pi \frac{k}{m} j}=1$. So the sum is the number of terms, namely $m=N / n_{s}$.
Alternatively, suppose k / m is not an integer. Let z be the sum in (1). Then,

$$
\begin{aligned}
z e^{-i 2 \pi \frac{k}{m}} & =\sum_{j=0}^{m-1} e^{-i 2 \pi \frac{k}{m} j} e^{-i 2 \pi \frac{k}{m}}=\sum_{j=0}^{m-1} e^{-i 2 \pi \frac{k}{m}(j+1)}=\sum_{j=1}^{m} e^{-i 2 \pi \frac{k}{m} j} \\
& =e^{-i 2 \pi \frac{k}{m} m}+\sum_{j=1}^{m-1} e^{-i 2 \pi \frac{k}{m} j}=e^{-i 2 \pi k}+\sum_{j=1}^{m-1} e^{-i 2 \pi \frac{k}{m} j} \\
& =1+\sum_{j=1}^{m-1} e^{-i 2 \pi \frac{k}{m} j}=\sum_{j=0}^{m-1} e^{-i 2 \pi \frac{k}{m} j}=z, \text { by equation } 1 .
\end{aligned}
$$

Therefore we have shown that $z e^{-i 2 \pi \frac{k}{m}}=z$. That is, $z\left(e^{-i 2 \pi \frac{k}{m}}-1\right)=0$. Since we are assuming that $\frac{k}{m}$ is not an integer, $e^{-i 2 \pi \frac{k}{m}} \neq 1$, and therefore it follows that z must be zero.
Therefore, we have shown that

$$
\hat{f}(k)= \begin{cases}m & \text { for } k / m \text { an integer, } \tag{2}\\ 0 & \text { otherwise. }\end{cases}
$$

That is, $\hat{f}(k)=m \operatorname{Comb}(k ; m)=\frac{N}{n_{s}} \operatorname{Comb}\left(k ; N / n_{s}\right)$.
2. Convolutions of Fourier Transforms [10pts]: Let $s(n)=f(n) g(n)$. Then

$$
\begin{equation*}
\mathcal{F}(s)=\hat{s}(k)=\sum_{n=0}^{N-1} f(n) g(n) e^{-i \omega_{k} n}, \tag{3}
\end{equation*}
$$

for $\omega_{k}=\frac{2 \pi}{N} k$.
On the other hand, let $\hat{f}(k)$ and $\hat{g}(k)$ be the Fourier transforms of $f(n)$ and $g(n)$, respectively. By the definition of convolution of N-periodic functions we have

$$
\begin{align*}
(\hat{f} * \hat{g})(k) & =\sum_{j=0}^{N-1} \hat{f}(j) \hat{g}(k-j) \\
& =\sum_{j=0}^{N-1} \sum_{n=0}^{N-1} f(n) e^{-i \frac{2 \pi}{N} j n} \sum_{m=0}^{N-1} g(m) e^{-i \frac{2 \pi}{N}(k-j) m} \text { by the definition of the DFT, } \\
& =\sum_{n=0}^{N-1} \sum_{m=0}^{N-1} f(n) g(m) \sum_{j=0}^{N-1} e^{-i \frac{2 \pi}{N}(j n+(k-j) m)} \\
& =\sum_{n=0}^{N-1} \sum_{m=0}^{N-1} f(n) g(m) e^{-i \frac{2 \pi}{N} k m} \sum_{j=0}^{N-1} e^{-i \frac{2 \pi}{N} j(n-m)} \tag{4}
\end{align*}
$$

Notice that since $0 \leq n, m \leq N-1$ it must be the case that $(n-m) / N$ is not an integer unless $n=m$. When $n=m$ it follows that the last sum in (4) is equal to N (since each term is simply 1 and there are N terms). Alternatively, when $n \neq m$ a similar argument to the one in Question 1 shows that this sum is 0 . Therefore, equation (4) simiplifies to

$$
\begin{equation*}
(\hat{f} * \hat{g})(k)=N \sum_{n=0}^{N-1} f(n) g(n) e^{-i \frac{2 \pi}{N} k n}=N \hat{s}(k) \quad \text { from eqn (3) } \tag{5}
\end{equation*}
$$

which is what we were asked to show.
3. Warp for Image Morphing [10pts]: See morphSoln.zip.
4. Perform the Warp by Looping Over Pixels [10pts]: Aliasing will occur in situations where the output image involves a significant shrinkage of a textured region in one of the original images. In such a case this textured region will be downsampled (but not blurred) in the warped image. An example of such a region is Reagan's upper lip, which is shrunk significantly for small values of s. [2pts] (Remaining [8pts] for the implementation.)
5. Perform the Warps Using Interp2 [10pts]: See morphSoln.zip.

