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Recurrent neural networks (RNN)



Recurrent neural networks

• Use the same computational function and parameters across different 
time steps of the sequence

• Each time step: takes the input entry and the previous hidden state to 
compute the output entry

• Loss: typically computed every time step



Recurrent neural networks

Figure from Deep Learning, by Goodfellow, Bengio and Courville
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Recurrent neural networks

Figure from Deep Learning, 
Goodfellow, Bengio and Courville

Math formula:



Advantage

• Hidden state: a lossy summary of the past

• Shared functions and parameters: greatly reduce the capacity and 
good for generalization in learning

• Explicitly use the prior knowledge that the sequential data can be 
processed by in the same way at different time step (e.g., NLP)



Advantage

• Hidden state: a lossy summary of the past

• Shared functions and parameters: greatly reduce the capacity and 
good for generalization in learning

• Explicitly use the prior knowledge that the sequential data can be 
processed by in the same way at different time step (e.g., NLP)

• Yet still powerful (actually universal): any function computable by a 
Turing machine can be computed by such a recurrent network of a 
finite size (see, e.g., Siegelmann and Sontag (1995))



5 Recurrent Neural Networks 



Supertagging with a RNN

• Using only dense features

– word embedding
– su�x embedding
– capitalization

• The input layer is a concatenation of all embeddings of all words in
a context window



Supertagging with a RNN
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1-best Supertagging Results: dev

Model Accuracy Time
c&c (gold pos) 92.60 -
c&c (auto pos) 91.50 0.57
NN 91.10 21.00
RNN 92.63 -
RNN+dropout 93.07 2.02

Table 1 : 1-best tagging accuracy and speed comparison on CCGBank Section
00 with a single CPU core (1,913 sentences), tagging time in secs.



1-best Supertagging Results: test

Model Section 23 Wiki Bio
c&c (gold pos) 93.32 88.80 91.85
c&c (auto pos) 92.02 88.80 89.08
NN 91.57 89.00 88.16
RNN 93.00 90.00 88.27

Table 2 : 1-best tagging accuracy comparison on CCGBank Section 23 (2,407
sentences), Wikipedia (200 sentences) and Bio-GENIA (1,000 sentences).



Multi-tagging Results: dev

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0  2  4  6  8  10  12  14  16

m
u
lti

-t
a

g
g
in

g
 a

cc
u
ra

cy

ambiguity level

RNN + dropout
RNN

NN
C&C



Multi-tagging Results: test

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0  10  20  30  40  50  60  70  80  90

m
u
lti

-t
a

g
g
in

g
 a

cc
u
ra

cy

ambiguity level

RNN + dropout
NN

C&C



Final Parsing Results

CCGBank Section 23 Wikipedia
LP LR LF cov. LP LR LF

c&c 86.24 84.85 85.54 99.42 81.58 80.08 80.83 99.50
(NN) 86.71 85.56 86.13 99.92 82.65 81.36 82.00 100

(RNN) 87.68 86.47 87.07 99.96 83.22 81.78 82.49 100

c&c 86.24 84.17 85.19 100 81.58 79.48 80.52 100
(NN) 86.71 85.40 86.05 100 - - - -
(RNN) 87.68 86.41 87.04 100 - - - -

Table 3 : Parsing test results (auto pos). We evaluate on all sentences (100%
coverage) as well as on only those sentences that returned spanning analyses
(% cov.). RNN and NN both have 100% coverage on the Wikipedia data.



Training & Experiments

• Mini-batched BPTT [Rumelhart et al., 1988; Mikolov, 2012]

• A context window-size of 7, a BPTT step size of 9

• 50-dim scaled Turian embeddings [Turian et al., 2010]

• Other two look-up tables randomly initialized

• Embedding fine-tuning during training

• Dropout regularization

• Parsing experiments: use the same supertagger prob. cuto↵ values
as c&c

, avg ambig 1.4




