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Introduction

We need to get a lot of things right to successfully infer 
3D pose and motion from monocular video:

body size and shape
pose and motion
appearance (foreground and background)
lighting and occlusion
image measurement
search and detection
…



Introduction 

articulated modelmotion capture

Human pose and motion data are high-dimensional, and difficult to obtain.

Sparseness of data, over-fitting and generalization are significant issues.
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Introduction
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Gaussian process latent variable models (GPLVM) 

Nonlinear generalization 
of probabilistic PCA 
[Lawrence `05].



Gaussian processes
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Model averaging (marginalization of the parameters) helps to avoid  
problems due to over-fitting and under-fitting with small data sets.
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Gaussian processes 

If                         , then          is zero-mean Gaussian with 
covariance

Output     is modelled as a function of input    :

A Gaussian process is fully specified by a covariance function
and its hyper-parameters

Linear:

RBF:



Gaussian process latent variable models

Learning:Learning: Maximize log likelihood (or MAP) to find latent positions and 
kernel hyper-parameters, given an initial guess (e.g., using PCA).

Joint likelihood of vector-valued data                                                   , 
given the latent positions                                 :

where        denotes the  th dimension of the training data, and the 
kernel matrix has elements                                  , and is shared by 
all data dimensions.

GPDM:GPDM: For time-series data one can include a Gaussian process 
prior on latent state sequences             [Wang et al ’06].



Conditional (predictive) distribution

Given a model                         , the distribution over the data 
conditioned on a latent position,      , is Gaussian: 

where 



Conditional (predictive) distribution

mean 
pose

log 
variance



3D B-GPDM for walking

GPDM: sample trajectoriesGPDM: log reconstruction 
variance    

6 walking subjects,1 gait cycle each, on treadmill at same speed 
with a 20 DOF joint parameterization.

[Urtasun et al, `06]



People tracking with GPDM

global 
pose

joint 
angles

latent 
coordinates

Image Measurements:  trajectories of 2D patches, estimated with the 
WSL tracker [Jepson et al. `03]

likelihood predictionposterior

Inference: MAP estimation by hill climbing on the negative log 
posterior over windowed state sequences

Image Observations:

GPDM:

State:

[Urtasun et al, `06]



Occlusion

3D model 
overlaid 
on video

3D animated characters



Exaggerated gait

3D model 
overlaid 
on video

3D animated characters



… but wait …

you’re thinking …

these models won’t scale

they won’t handle different styles of motion

efficiency is a major issue

the amount of data required for training is daunting



Multiple motions often produce poor models

GPDM with MAP learning

4 walking subjects,  2 gait cycles each, 50 DOFs



Multiple motions often produce poor models

Marginalize latent positions, and solve with HMC-EM  [Wang et al, ‘06]

4 walking subjects,  2 gait cycles each, 50 DOFs



Multiple motions often produce poor models

But there is more valuable information in the training data, and prior 
knowledge about human motion that can be used to influence the 
structure of the model.

GPLVMs do not ensure that the map from pose to the latent space 
is smooth, i.e., that nearby poses map to nearby latent positions.

With sparse mocap data, different motions may be modeled as 
arising from different distributions.



Topological constraints

[Urtasun et al. ’07]

Topological constraints and smoothness can be encouraged with 
back-constraints (parameterized latent coordinates):

Exploit prior knowledge to control the topology of the latent space, 
and promote smoothness.

Smoothness “priors” in terms of latent positions of “similar” poses:

where weights are chosen (or optimized) to represent likely latent 
positions in terms of neighboring positions (or desired predictors).



“Cylindrical” topology

9 walk cycles
10 run cycles
different speeds 
different subjects

Back-constraints: first 2 latent coordinates map to vicinity of unit circle

Locally-linear prior: similar poses map to nearby latent positions

Transitions: poses with left (right) foot on the ground map to similar 
phases (around unit circle)

runwalk

[Urtasun et al. ’07]



“Cylindrical” topology

Simulations that transition from running to walking

[Urtasun et al. ’07]



Style-content separation

gait, 
phase,
identity,
gender, 
...

pose

Nonlinear basis functions  
[Elgammal and Lee ‘04]

data

factor 1 …factor 2 factor N

Multilinear style-content models 
[Tenenbaum and Freeman ’00; 
Vasilescu and Terzopoulos ‘02]



Multifactor GPLVM

[Wang et al. ’07]

where

Suppose     depends linearly on latent style parameters         , 
and nonlinearly on    :

where

If                          and                             , then           is zero-mean 
Gaussian, with covariance 



Multifactor locomotion model

Covariance function:

:  identity of the subject 
performing the motion

:  gait of the motion     
(walk, run, stride) 

:  current state of motion 
(evolves w.r.t. time)   

Three factor latent model with                             :

[Wang et al. ’07]



Multifactor locomotion model

Training data:Training data: 6 motions, 314 poses in total,  



Generating new motions

stride

run

walk

subject 1 subject 2 subject 3

The GP model provides a Gaussian prediction for new motions.    
We use the mean to generate motions with different styles.

Each training motion is a sequence of poses, sharing the same 
combination of subject ( ) and gait ( ). 



Generating new motions

subject 1, walk
subject 1, stride
(generated)



Generating new motions

subject 2, walk
subject 2, stride
(generated)



Compositionality

Hierarchical GPLVM  [Lawrence and Moore ’07]
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Compositionality

Data:Data: 1 walk cycle, 1 run cycle

Initialization:Initialization: PCA

Learning:Learning: joint ML optimization 
of latent coordinates and hyper-
parameters at all layers.



… and beyond

Scaling / Efficiency                                            
(e.g.,[Quinonero-Candela and Rasmussen `05])

Switching models for modeling activity transitions             
(e.g., [Pavlovic et al `00; Li et al `02; Oh et al `05; Li et al. `06])

…

Tracking applications



Interactions are important



Implausible motion

[Poon and Fleet, 01]

KinematicKinematic Model:Model: damped second-order Markov model with Beta 
process noise and joint angle limits

Observations:Observations: steerable pyramid coefficients (image edges) 

Inference:Inference: hybrid Monte Carlo particle filter



Implausible motion

[Urtasun et al. `05]

KinematicKinematic Model:Model: non-linear latent model of the pose manifold, 
with second-order Gauss-Markov model for temporal evolution

Observations: Observations: tracked 2D patches on body (WSL tracker) 

Inference:Inference: MAP estimation (hill-climbing)



Implausible motion

KinematicKinematic Model:Model: Gaussian process dynamical model (GPDM)

Observations:Observations: tracked 2D patches on body (WSL tracker) 

Inference:Inference: MAP estimation (hill climbing) with sliding window

[Urtasun et al. `06]



Can learning scale?

Problem: Learning kinematic models that incorporate 
dependence on the environment and other bodies from 
motion capture data may be untenable.



Physics-based models

Physics specifies the motions of bodies and their interactions in 
terms of inertial descriptions and forces, and generalize naturally 
to account for:

balance and body lean (e.g., on hills)

sudden accelerations (e.g., collisions)

static contact (e.g., avoiding footskate) 

variations in style due to speed and mass                  
distribution (e.g., carrying an object)

…



Modeling full-body dynamics is difficult

[Liu et al. `06] [Kawada Ind. HRP-2, Robodex 2003]



Biomechanics

[McGeer `90; Kuo `01,`02]

Im
pu
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Properties:Properties:
walks efficiently (passively down an incline)
when powered, exhibits a human-like preferred 
speed-step length relationship
invariant to total mass and leg length (approximately)

Anthropomorphic WalkerAnthropomorphic Walker
2D model with rigid bodies 
for the torso and each leg
forces can be added with a 
spring between the legs and 
an impulsive toe-off



Physics-based model of lower-body dynamics

Development of physics-based motion models for tracking:
equations of motions
prior distribution over forces that model natural 2D 
locomotion with different speeds, step lengths, …
a 3D pose model consistent with underlying dynamics

control
parameters

2D dynamics 3D kinematics,  
given dynamics

[Brubaker et al. `07]



Tracking results

Approximate MAP trajectory



Tracking results

Approximate MAP trajectory in 3D



Limitations (future work)

Knees and torso are needed to help account for bipedal 
locomotion on stairs, hills, etc.

3D models would allow body lean and foot placement in 
turning, and variations in upper-body moments of inertia

Extend dynamics to capture standing (both feet in contact) 
and running (no contact during flight)

Learning 
parameters of physics-based models from mocap
conditional kinematics.

Our work thus far has just scratched the surface



Modeling appearance: Shape

[Plankers and Fua, 2003]



Modeling appearance: Shape

[Allen et al. 2003]

[Balan et al. 2007]



Modeling appearance: Clothing

[Rosenhahn et al. `07]



Modeling appearance: Lighting

[de la Gorce et al. `07]



Conclusions

We need to get a lot of things right to successfully infer 
3D pose and motion from monocular video:

body size and shape
pose and motion
appearance (foreground and background)
lighting and occlusion
image measurement
search and detection
…


