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4 Velocity likelihoods in biological and machine
vision

Yair Weiss and David J. Fleet

Introduction

What computations occur in early motion analysis in biological and machine
vision? One common hypothesis is that visual motion analysis procedes by first
computing local 2d velocities, and then by combining these local estimates to
compute the global motion of an object. A well-known problem with this approach
is that local motion information is often ambiguous, a situation often referred to
as the “aperture problem” [13, 6, 2, 8]. Consider the scene depicted in Figure 4.1. A
local analyzer that sees only the vertical edge of a square can only determine the
horizontal component of the motion. Whether the square translates horizontally
to the right, diagonally up and to the right, or diagonally down and to the right,
the motion of the vertical edge will appear the same within the aperture. The
family of velocities consistent with the motion of the edge can be depicted as a
line in “velocity space”, where any velocity is represented as a vector from the
origin whose length is proportional to speed and whose angle corresponds to the
direction of motion. Geometrically, the aperture problem is equivalent to saying
that the family of motions consistent with the information at an edge maps to a
straight line in velocity space, rather than a single point.

Because of ambiguities due to the aperture problem, as well as noise in the im-
age observations, it would make sense that a system would represent the uncer-
tainty in the local estimate as well as the best estimate. This would enable sub-
sequent processing to combine the local estimates while taking their uncertainties
into account. Accordingly, it has been argued that the goal of early motion analysis
should be the extraction of local likelihoods (probability distributions over velocity),
rather than a single estimate [10]. In a Bayesian approach to motion analysis, these
local likelihoods would be combined with the observer’s prior assumptions about
the world, to estimate the motion of objects.
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Figure 4.1: a. The “aperture problem” refers to the inability to determine the two
dimensional motion of a signal containing a single orientation. For example, a local
analyzer that sees only the vertical edge of a square can only determine the horizon-
tal component of the motion. Whether the square translates horizontally to the right,
diagonally up and to the right, or diagonally down and to the right, the motion of
the vertical edge will be the same. b. The family of motions consistent with the mo-
tion of the edge can be depicted as a line in “velocity space”, where any velocity is
represented as a vector from the origin whose length is proportional to speed and
whose angle corresponds to direction of motion. Graphically, the aperture problem
is equivalent to saying that the family of motions consistent with the edge maps to a
straight line in velocity space, rather than a single point.

In this paper, we assume that early motion analysis does indeed extract velocity
likelihoods, and we address a number of questions raised by this assumption:

= What is the form of the likelihood? Can it be derived from first principles?

= What is the relationship between the local likelihood calculation and other mod-
els of early motion analysis?

= Can these likelihoods be represented by known physiology?
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a b

Figure 4.2: a. A “narrow” rhombus whose endpoints are occluded appears to move
diagonally (consistent with VA). b. A “fat” rhombus whose endpoints are occluded
appears to move horizontally

Motivation - Motion analysis as Bayesian inference

In the Bayesian approach to motion analysis, the goal is to calculate the posterior
probability of a velocity given the image data. This posterior is related to the like-
lihoods and prior probabilities by Bayes’ rule. Denoting by I(z, t) the spatiotem-
poral brightness observation (measurement) at location x and time ¢, and by v the
2d image motion of the object, then

P(w|I(z,t)) = o« P(v) P(I(z,t)]|v), (4.2)

where « is a normalization constant that is independent of v.

Bayes’ rule represents a normative prescription for combining uncertain infor-
mation. Assuming that the image observations at different positions and times are
conditionally indpendent, given v, it is straightforward to show that this simplifies
into:

P(v|I(z,t)) = aP(v) HP(I(xi,tj)lv)), (4.2)

where the product is taken over all positions z; and times ¢;. The important quan-
tity to calculate at every image location is the likelihood of a velocity, P(I(z;,t;) | v).

Interestingly, there is growing evidence that the human visual system can be
described in terms of computations like these. For example, in [15, 5] it was
shown that a large number of visual illusions are explained by a model that
maximizes Equation 4.2 when P(v) is taken to be a prior distribution that favors
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Figure 4.3: The response of the Bayesian estimator to a narrow rhombus. (replotted
from Weiss and Adelson 98)

slow speeds. Figure 4.2 shows an example from [15]. Each stimulus consisted of a
translating rthombus whose endpoints are occluded. When the rhombus is “fat”,
it is indeed perceived as moving horizontally. But when the rhombus is “narrow”
the percevied motion is illusory — subjects perceive it as moving diagonally rather
than horizontally.
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Figure 4.4: The response of the Bayesian estimator to a fat rhombus. (replotted from
Weiss and Adelson 98)
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Why do humans misperceive the motion of a narrow rhombus but not a fat
one? To address this question, let us first consider models that do not represent
uncertainty about local motion measurements. In the case of the fat thombus,
the perceived motion can be explained by an intersection-of-constraints (IOC)
model [2]. According to this model, each local analyzer extracts the constraint
line corresponding to the local moving contour. Subsequent processing then finds
the intersection of these two constraint lines. This procedure will always give the
veridical motion for a translating 2D figure, so it can explain the motion of the fat
rhombus.

But, this IOC model does not account for the motion percept with the narrow
one. As an alternative model, if each local analyzer were to extract the normal
velocity of the contour followed by a vector average of these normal velocities, this
would predict the diagonal motion for the narrow rhombus [16]. But, this vector
average model does not explain the percept of the fat rhombus.

Figures 4.3—4.4 show how both percepts can be accounted for by Equation 4.2.
Here, each local analyzer extracts a likelihood from the local contour motion.
As shown in the figures these likelihoods are fuzzy constraint lines, indicating
that velocities on the constraint lines have highest likelihoods, and the likelihood
decreases gradually with increasing distance from the constraint line. When these
likelihoods are multiplied together with the prior, as dictated by Equation 4.2,
the predicted motion is horizontal for fat rhombuses and diagonal for narrow
rhombuses.

These results and others in [15] suggest that a Bayesian model with a prior
favoring slow speeds can explain a range of percepts in human vision. But our
original question concerning the right likelihood function remains.

What is the likelihood function for image velocity?

Previous approaches

In order to compute image velocity, one must first decide which property of the
image to track from one time to the next. One common, successful approach in
machine vision is based on the assumption that the light reflected from a object
surface remains constant through time, in which case one can track points of
constant image intensity (e.g., [3, 6, 7]). Mathematically, this can be expressed in
terms of a path, z(t), along which the image, I(x(¢), t), remains constant: i.e.,

I(z(t),t) = C, (4.3)
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where C'is a constant. Taking the temporal derivative of both sides of Equation 4.3,
and assuming that the path z(t) is sufficiently smooth to be differentiable, with

v = (va,vy) = (%, %), provides us with the constraint

or, o1 o1 _
Ve T oz T ot T

5 0. (4.4)

This is often refered to as the gradient constraint equation. When the exact solu-
tions to Equation 4.4 are plotted in velocity space, one obtains a constraint line.
This line represents all of the different 2d velocities that are consistent with the
image derivative measurements, as given by Equation 4.4.

In estimating image velocity, it is the likelihood function that expresses our be-
lief that certain velocities are consisten with the image measurements. Uncertainty
in belief arises because the derivative measurements in Equation 4.4 only constrain
velocity to somewhere along a line. Further uncertainty in belief arises because
the partial derivative measurements are noisy. According to reasoning of this sort,
most likelihood functions that have been proposed fall into one of two categories:
“fuzzy constraint lines” (as in Figure 4.5¢) and “fuzzy bowties” (as in Figure 4.5d).
Examples of the two categories appeared in Simoncelli (93)[10].

The first one defines the likelihood to be

1 a1 a1 ar\?
P(I|v) = aexp (_ﬁ/ (avz + a—yvy + E) d:cdt) . (4.5)

This likelihood function is often derived by assuming that the temporal derivative
measurement is contaminated with mean-zero Gaussian noise, but the spatial
derivative measurements are noise-free [11]. Figure 4.5c shows an example of
the likelihood for the image sequence shown in Figure 4.5a. For this image, that
contains only a single orientation, this looks like a fuzzy constraint line.

The second category of likelihood function is defined to be:

B 5
P(I|v) = aexp (—F/ 1+’U;:+v§ Y~ dzdt | . (4.6)

This likelihood function has been shown to result from an assumption that mean-
zero Gaussian noise is added to each of the spatial and temporal derivative mea-
surements [9]. While this likelihood function has only recently been derived, the
velocity at which it is maximal corresponds to what has been usually called the
total-least-squares velocity estimate [14]. Figure 4.5d shows the picture in veloc-
ity space. For a sequence that contains only a single orientation, this looks like a
fuzzy bowtie. Given the assumption of noise in both spatial and temporal derivat-
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a b
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c d
Figure 4.5: a: A moving edge. What is the likelihood of a velocity given this image
sequence? b. The constraint line in velocity space. In the absence of noise, all veloc-
ities along the constraint line are consistent with the data. c-d. Likelihood functions
in velocity space. White pixels correspond to high likelihood. Assuming only the
temporal derivatives are noisy gives a fuzzy constraint line (as in b) but assuming

all derivatives are equally noisy gives a fuzzy bowtie (as in c). What is the right
likelihood to use?

ices, the fuzzy bowtie seems slightly more attractive — why should one direction
of differentiation behave differently than another?

The fuzzy constraint line has other desirable qualities however. One nice prop-
erty can be illustrated in Figure 4.5. Obviously a vertical edge moving with ve-
locity v is indistinguishable from a vertical edge moving with velocity (v, vy) +
a(0,1)T. Thus if our image sequence contains only vertical edges, we might like
the likelihood function to be invariant to an addition of a vertical component
P(I|(vz,vy)) = P(I|(vz,vy) + @(0,1)T). This means that curve of equal likeli-
hood should be lines that are parallel to the constraint line, a property that fuzzy
lines have but fuzzy bowties do not.

Surprisingly, after many years of research into local motion analysis, there re-
mains a lack of concensus regarding which likelihood to use, as these two and
others have been suggested. To illustrate this, consider the recent paper of Fern-
muller et al. [4] who have suggested yet another local likelihood function. It as-
sumes that the noise in the spatial and temporal derivatives may be correlated.
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Figure 4.6: The generative model that we use to derive the likelihood function. The
signal function (top panels) translates and conserves brightness. The image (bottom
panels) equals signal plus imaging noise.

Specifically the noise in the two spatial derivatives is uncorrelated but the noise
in the spatial and temporal derivatives is correlated with a correlation coefficient
that depends on the sign of the derivatives, E(I;I;) = —ogzsgn(Iz1;). For o, =0
this reduces to the total-least-squares likelihood or the fuzzy bowtie. But when o,
is nonzero, they find that the likelihood is biased. That is, even if the noise is zero,
the ML estimator using their likelihood function does not give the true velocity.

The problem with deriving these likelihoods from Equation 4.4 is that there is
no generative model. The preceding discussion tries to derive noise models in
the derivative domain rather than basing the noise assumptions in the imaging
domain (where presumably we have better intuitions about what constitutes a
reasonable noise model).

Generative model

In what follows we derive a likelihood function from a generative model of im-
ages. It is a natural extension of intensity conservation to a noisy imaging situation
(see Figure 4.6). For notational simplicity we consider the generation of 1d images.
The extension to 2d images is straightforward.

Let us assume that an unknown scene function s(z) is first generated with
probability P(s). It is then translated with velocity v:

S(z,t) = s(x —vt) . 4.7)
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In what follows we use capital S(z, t) to denote the ideal, noiseless image sequence
and s(z) = S(z,0) to denote a single image from that sequence.

Finally, to model the process of image formation, we assume that the observed
image is equal to the translating scene plus imaging noise:

I(z,t) = S(z,t) + on (4.8)

where 7 denotes zero mean Gaussian noise with variance 1 that is independent
across time and space, and independent of S. We assume that we observe I(z,t)
for a fixed time interval |¢| < t,, and for all z. Also, we will use the notation | f||?
to denote the energy in the signal f; that is,

1712 = /| S, (4.9)

Claim 1: Assuming a uniform prior over scene functions (P(s) is independent of
s) then

1 N

PT1) = aexp (~5llT -7, ) (4.10)
with
S,(z,t) = 5(z — vt), (4.11)
and

1 [t
Sy(z,t) = oY I(z + vt,t)dt, (4.12)

m J—t,

Figure 4.7 illustrates this calculation. For each velocity we calculate the pre-
dicted intensity assuming a scene function moving at that velocity (shown in the
left column). The residual intensity (shown in the right column) is explained as
noise: the less energy in the residual the more likely the velocity.

Proof: A proof of claim 1 is obtained by first formulating the likelihood, P(I|v),
as the marginalization of the joint distribution over both I and the unknown scene
function s, conditioned on v. More formally,

P(I|v) = / P(s,|v) (4.13)
- / P(s|v)P(I]5,0) (4.14)
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stimulus

S

Figure 4.7: Top: A space versus time (xt) plot of an edge moving to the right. Bot-
tom: Calculations of the log likelihood for different velocities. For each velocity we
calculate the predicted intensity assuming a scene function moving at that velocity
(shown in the left column). The residual intensity (shown in the right column) is
explained as noise: the less energy in the residual the more likely the velocity.

- / arexp (—2}7 / (I(z,t) — sz — vt))2dmdt) (4.15)
— max a exp (-% / (I(z,t) — s(a — vt))2dmdt> (4.16)

= aexp (—% / (I(z,t) — §(w,t))2da:dt> (4.17)

where we have used the fact that P(s|v) is independent of s and of v, and that
for jointly Gaussian random variables, marginalization can be replaced with max-
imization: [, P(z,z)dz = a/+/V(z|x) max, P(z, z) where V(z|z) denotes the con-
ditional variance of z given z. The maximization over s turns into a separate max-
imization over s(z) for each = and it is easy to see that s(z) is most likely when it
is equal to the mean of I(z + vt) over ¢t. O

Extensions

Of course the derivation given above makes several assumptions, many of which
are somewhat restrictive. However, many of them can be relaxed in straightfor-
ward ways:
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stimulus: I(z, t)

prediction: $(, t)

Figure 4.8: When the image is sampled temporally to yield two frames. The like-
lihood of Equation 4.10 is monotonically related to the sum of squared difference
(SSD) criterion.

m Colored noise: If the noise is not white, then it can be shown that the likelihood
becomes:

1 N
P(I|v) = aexp (—QHI— Sv”%v) . (4.18)

That is, rather than calculating the energy of the residual, we calculate a weighted
energy; the weight of an energy band is inversely proportional to the expected
noise variance in that band.

= Non-uniform prior over scene functions: Above we assumed that all scene func-
tions are equiprobable. However, if we have some prior probability over the scene
function, it can be shown that Equation 4.10 still holds but S, is different. The esti-
mated scene function is the one that is most probable given the prior scene proba-
bility and the observed data (unlike the present case where just the observed data
determine the estimated scene function)

Connection to other models of early motion analysis

Sum of squared differences (SSD): In many computer vision applications motion is
estimated using only two frames I1(z) = I(z,t1) and Ix(z) = I(z,t2). Velocity is
chosen by minimizing:

SSD(v) = / (L(z) - L(z +v))2de (4.19)

It is straightforward to show that if we only observe I(z, t) at two distinct times
t1, t2 then:

P(I,, I |v) = aexp(—SSD(v)/40?) (4.20)

so that minimizing SSD(v) is equivalent to maximizing the likelihood.
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stimulus I(z,t)

prediction: S (z,t)

Figure 4.9: When the image sequence is perfectly described by its linear Taylor
series approximation, the likelihood of Equation 4.10 is a function of the gradient
constraint.

The gradient constraint: A popular computer vision algorithm for estimating
local velocities [7] is to find the vector v that minimizes:

2
Jrx(v) = / (giwr g) (4.21)

It can be shown that when I(z, v) is well approximated by its Taylor series, i.e.
I(z + vt,t) = I(z,0) + vt% + t% then:

3
P(I|v) = aexp (—;?JLK('U)) (4.22)

This derivation is based on the assumption that I(z, t) is perfectly approximated
by its Taylor series, an assumption that will never hold with white noise, nor
exactly in practice. In most situations, thus, Equation 4.22 will only be a rough
approximation to Equation 4.10. Equation 4.22 is also based on the assumption
that the image is observed for |t| < ¢, and for all z. When the image is observed
within a spatial window of finite extent, then the likelihood changes.

Connection to physiology

The most popular model for early motion calculations in primate visual cortex is
based on the idea that motion is related to orientation in space-time. Accordingly,
velocity tuned cells could be used to extract “motion energy” by applying space-
time oriented filters to the spatiotemporal image sequence, followed by a squaring
nonlinearity [1, 12]. The term “motion energy” refers to the fact that summing
the squared output of oriented filters in all spatiotemporal bands is equivalent
(by Parseval’s theorem) to calculating the energy in an oriented hyperplane in the
frequency domain.
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|lresidual||® =

||signal||® —||prediction||?

Figure 4.10: The energy of the residual is equal to the energy of the sequence minus
that of the predicted sequence. This means that the likelihood of Equation 4.10 is
montonically related to the motion energy of the sequence.

To formalize this notion, we define the motion energy of a stimulus f as the
energy of that stimulus convolved with an ideal oriented filter; i.e.,

ME(v; f) = ||f *6(z — vt)||*. (4.23)

Equation 4.23 can also be interperted in the Fourier domain, where convolving
f and §(z — vt) are equivalent to multiplying their Fourier transforms f and
0(w¢ + vwy). Thus if we used infinite windows to analyze the stimulus, motion
energy can be thought of as the total power of spatiotemporal frequencies that
lie along the plane w; + vw, = 0. Recall, however, that our definition of energy
integrates (f * §(z — vt))? over the window |t| < t,,, so that we also include
spatiotemporal frequencies that are close to the plane w; + vw, = 0 but lie off
it.

Claim 2: Let P(I | v) be as defined in Equation 4.10. Then:

P(I|v) = avexp (w) (4.24)

80212,
with f = I(z,t) for |t| < t,, and zero otherwise.
Claim 2 follows from the fact that the residual, I — $, and the predicted signal §
are orthogonal signals (see Figure 4.10):

I = Sull> = II)1* = [|5.]1? (4.25)

Equation 4.25 can be derived by performing the integration along lines of constant
& — vt. Along such lines S, is equal to the mean of I so that cross terms of
the form (I — 8)S cancel out. Using the fact that ||I||? is independent of v and
18,2 = %gi;”) gives Equation 4.24.

This shows that the likelihood of a velocity v can be computed as follows:
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= compute the responses of a band of filters that are oriented in space-time with
orientation dependent on v. The filters are shifted copies of f(z,t) = 6(z — vt)

= square the output of the filters.
= pool the squared output over space.

= pass the pooled response through a pointwise nonlinearity

If the input signal is band-limited we can replace ¢ (z—wvt) with a sufficiently skinny
oriented Gaussian. Thus the log likelihood can be calculated exactly by summing
the squared response of space-time oriented filters.

The main difference between this calculation and the Adelson and Bergen [1]
model is that the oriented filters are not band-pass. That is, the idealized filters
d(x —vt) respond to oriented structure in any spatiotemporal frequency band. The
oriented filters in Adelson and Bergen as well as in Simoncelli and Heeger [12]
respond to orientation only in a band of spatiotemporal frequencies. Note that
the squared response to an all-pass oriented filter can be computed by adding the
squared responses to band-pass oriented filters (assuming the band-pass filters are
orthogonal). It would be interesting to find conditions under which the likelihood
calculation requires band-pass oriented filters.

Examples of likelihoods on specific stimuli

In the derivation so far, we have assumed that the sequence is observed for infinite
space and finite time. Any calculation on real images, of course, will have to
work with finite spatial windows. Finite spatial windows present the problem of
window boundary effects. The predicted scene function at a point is the mean of
all samples of this point in the window, but for finite sized windows, different
velocities will have a different number of independent samples. This introduces a
bias in favor of fast velocities.

To get an unbiased estimate as possible, we use windows whose spatial extent is
much larger than the temporal extent. For these simulations we used rectangular
windows of size 64 x 64 x 5 pixels. The data for each window was obtained by
zooming in on the moving square sequence shown in Figure 4.11.

Figures 4.12—4.15 show the results. We compare the likelihood from the genera-
tive model (Equation 4.10) to the likelihood from the bowtie equation (4.6) and the
likelihood from the fuzzy line equation (4.5). Gradients for the fuzzy bowties and
fuzzy line equations were estimated by convolving the signal with derivatives of
Gaussians. It can be seen that for edge locations the generative model likelihood
is approximately a fuzzy line and for corner locations it is a fuzzy blob centered
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Figure 4.11: A single frame from the simple stimulus on which we calculated local
likelihoods. The likelihoods were calculated at three locations: at the corner, side
edge, and top edge. The image sequence was constructed by moving a square with
velocity (2,2) and adding Gaussian noise with standard deviation 10% of the square
contrast.

Figure 4.12: The likelihoods at the corner of the square calcuated using three
equations. (a) The generative model likelihood (Eqn. 4.10) (b) the bowtie equation
(Eqn. 4.6) (c) the fuzzy line equation (Eqn. 4.5).

on the correct velocity. When contrast is decreased the likelihood becomes more
fuzzy; uncertainty increases.

The fuzzy line likelihood gives qualitatively similar likelihood functions while
the fuzzy bowtie equations give a very poor approximation.
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Figure 4.13: The likelihoods at the side edge of the square calcuated using three
equations. (a) The generative model likelihood (Eqn. 4.10) (b) the bowtie equation
(Eqn. 4.6) (c) the fuzzy line equation (Eqn. 4.5).

Figure 4.14: The likelihoods at the top edge of the square calcuated using three
equations. (a) The generative model likelihood (Eqn. 4.10) (b) the bowtie equation
(Eqn. 4.6) (c) the fuzzy line equation (Eqn. 4.5).

Discussion

We have briefly reviewed the successes of Bayesian models in accounting for
human motion perception. These models require a formula for the likelihood of
a velocity given image data. We have shown that such a formula can be derived
from a simple generative model — the scene translates and conserves noise while
the image equals the projected scene plus independent noise. We reviewed the
connection between the likelihood function derived from this generative model
and commonly used cost functions in computer vision. We also showed that
the likelihood function can be calculated by summing the squared outputs of
spatiotemporal oriented filters.

There are intriguing similarities between the calculation implied by the ideal
likelihood function and common models for motion analysis in striate cortex. To
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a b C

Figure 4.15: The likelihoods at the corner of the square calcuated using three equa-
tions. Here the contrast of the square was reduced by a factor of four and noise stays
the same. Note that the likelihood becomes more fuzzy: uncertainty increases. (a)
The generative model likelihood (Eqn. 4.10) (b) the bowtie equation (Eqn. 4.6) (c) the
fuzzy line equation (Eqn. 4.5).

a first approximation, complex cells in V1 can be modeled as squared outputs of
spatiotemporal oriented filters. Again to first approximation, MT pattern cells can
be modelled as pooling these squared responses over space [12]. This is consistent
with the idea that a population of velocity tuned cells in area MT represent the
likelihood of a velocity.
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