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Neurophysiclogical data support two models for the disparity selectivity of binocular simple and
complex cells in primary visual cortex. These involve binocular combinations of monocular
receptive fields that are shifted in retinal position (the position-shift model) or in phase (the phase-
shift model) between the two eyes. This article presents a formal description and analysis of a
binocular energy model with these forms of disparity selectivity. We propose how one might
measure the relative contributions of phase and pesition shifts in simple and complex cells. The
analysis also reveals ambiguities in disparity encoding that are inherent in these model neurons,
suggesting a need for a second stage of processing. We propose that linear pooling of the binocular
responses across orientations and scales (spatial frequeney) is capable of producing an

unambiguous representation of disparity. Copyright © 1996 Elsevier Science Ltd.
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1. INTRODUCTION

Neurons sensitive to binocular disparity have been found
in the visual cortex of many mammals and in the visual
wulst of the owl, and are thought to play a significant role
in stereopsis (Barlow et al., 1967; Nikara et al., 1968;
Hubel & Wiesel, 1970; Clarke et al., 1976; Pettigrew &
Konishi, 1976; Poggio & Fischer, 1977; Fischer &
Kruger, 1979; Ferster, 1981; Poggio & Talbot, 1981;
Ohzawa & Freeman, 1986a, b; LeVay & Voigt, 1988;
Ohzawa et al., 1990; DeAngelis et al., 1991; Wagner &
Frost, 1993). A number of physiologists have suggested
that disparity might be encoded by a shift of receptive-
field position (Hubel & Wiesel, 1962; Pettigrew et al.,
1968; Pettigrew, 1972; Maske et al., 1984; Poggio et al.,
1985; Wagner & Frost, 1993). According to this position-
shift model, disparity selective cells combine the outputs
of similarly shaped, monocular receptive fields from
different retinal positions in the left and right eyes. More
recently, Obzawa et al. (1990) and DeAngelis et al.
(1991, 1995) suggested that disparity sensitivity might
instead be a result of interocular phase shifts. In this
Phase-shift model, the centers of the left- and right-eye
receptive fields coincide, but the arrangements of
receptive field subregions are different. Simulations by
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Nomura et al., (1990) showed that phase-shift models can
account for the disparity tuning of some V1 neurons and
an implementation by Qian (1994) showed that the
disparity of random-dot stereograms can be correctly
extracted when disparities are small.

This article presents a formal description and analysis
of a binocular energy model. We examine the behavior of
both position-shift and phase-shift models of disparity
selectivity, as well as a hybrid of the two. Our analysis
provides quantitative predictions of the models and
suggests how one might measure the relative contribu-
tions of phase and position shifts to the disparity
selectivity of simple and complex cells. This analysis
shows further that there are ambiguities in disparity
encoding that are inherent in the position-shift and phase-
shift models. The presence of these ambiguities suggests
the need for a further stage of processing. We
demonstrate that pooling the binocular energy responses
across orientations and scales produces an unambiguous
representation of disparity.

2. MODELS OF DISPARITY SELECTIVITY

There are two major classes of neurons in primary
visual cortex (V1): simple cells and complex cells (Hubel
& Wiesel, 1962). Both types are selective for stimulus
position and orientation. They respond vigorously to
stimuli of a preferred orientation, but less well or not at
all to stimuli of other orientations. Many V1 neurons are
also disparity selective.

Disparity sensitive cells are often divided into four
types: tuned-excitatory, tuned-inhibitory, near and far
(Poggio & Fischer, 1977). Disparity selectivity in these
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FIGURE 1. Receptive fields of model neurons. (A) A monocular,
orientation-selective linear neuron. Its response depends on a weighted
sum of the stimulus intensities within its receptive field. Shaded
ellipses correspond to inhibitory subregions of the weighting function
and the unshaded ellipse corresponds to an excitatory subregion. (B) A
binocular linear neuron’s response depends on a weighted sum of the
stimulus intensities presented to both eyes. The reference points (black
dots) below the weighting functions indicate that the two weighting
functions are in exact binocular correspondence. (C) A monocular
energy neuron sums the squared responses of two monocular linear
neurons. The weighting functions of the two linear neurons are
identical except for a 90 deg phase shift. (D) A binocular energy
neuron sums the squared responses of two binocular linear neurons. All
four linear weighting functions are centered in exact (monocular and
binocular) retinal correspondence.

different types might arise from different mechanisms
(Poggio & Fischer, 1977; Ferster, 1981; but see Nomura
et al., 1990 for the opposite point of view). Tuned-
inhibitory, near and far cells usually receive a strong
excitatory input from one eye and an inhibitory input
from the other eye (i.e. the monocular inputs are
unbalanced) and most of them do not show binocular
facilitation. Tuned-excitatory cells show a sharp response
peak due to binocular facilitation, the responses at
disparities flanking the peak are often inhibited, and they
have balanced monocular inputs. This article concerns
tuned-excitatory cells.

2.1 Linear neurons and energy neurons

There is a long tradition of modeling simple cells as
linear neurons (Hubel & Wiesel, 1962; Campbell et al.,
1968; Campbell et al., 1969; Movshon et al., 1978a;
Ohzawa & Freeman, 1986a; Hamilton et al., 1989). This
model is attractive because a linear neuron can be
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characterized with a relatively small number of measure-
ments.

Figure 1(A) shows a schematic diagram of a monocular
linear neuron. A linear neuron’s response is a weighted
sum of stimulus intensities within a small region of the
entire visual field, called the neuron’s receptive field. In
the illustration, the three ellipses depict subregions of the
receptive field, one with positive weights (the unshaded
ellipse) and two with negative weights (the shaded
ellipses). The neuron is excited when a bright light is
flashed in the positive subregion and inhibited when a
bright light is flashed in a negative subregion. Bright
lights flashed simultaneously in both positive and
negative subregions tend to cancel. The positive and
negative weights are balanced, so the neuron does not
respond to blank stimuli. Rather, its response is
proportional to stimulus contrast for patterned stimuli
that vary in intensity over space.

Figure 1(B) depicts a binocular linear neuron. This
neuron’s response depends on a weighted sum of the
stimulus intensities presented to both eyes. The left- and
right-eye receptive fields are identical for the neuron
depicted in the figure, but this need not be the case in
general. Also, the left- and right-eye receptive fields of
this linear neuron are in exact binocular correspondence
as indicated by the small reference points below the
weighting functions.

However, there is a small problem with a linear model
of simple cells. Linear neurons can have negative
responses because they sum input intensities using both
positive and negative weights, while extracellular
responses (firing rates) of real neurons are by definition
positive. Neurons with a high maintained firing rate could
encode positive and negative values by responding either
more or less than the maintained rate. But simple cells
have very little maintained discharge. Instead, positive
and negative values may be encoded by two neurons, one
responsible for the positive part and one for the negative
part. The two neurons are complements of one another;
an excitatory subregion of one neuron’s receptive field is
aligned with an inhibitory subregion of the other neuron’s
receptive field. The response of each neuron is halfwave-
rectified so that only one of the two neurons has a non-
zero response at any given time. Simple cells are often
characterized as halfwave-rectified linear neurons (e.g.
Movshon et al., 1978a; Heeger, 1992b).

Complex cells do not have discrete ON and OFF
receptive field subregions, and have been modeled as
energy neurons (Adelson & Bergen, 1985; Emerson et
al., 1992; Heeger, 1992b; Pollen & Ronner, 1983). An
energy neuron sums the squared responses of a
quadrature pair of linear neurons that are 90 deg out-of-
phase, but with otherwise identical tuning properties [Fig.
1(C)]. Equivalently, an energy neuron could sum the
squared responses of four halfwave-rectified, linear
neurons.

The monocular energy neuron depicted in Fig. 1(C) has
one linear subunit that is even-symmetric (even phase)
and another that is odd-symmetric (odd phase), but this is
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FIGURE 2. (A) A binocular linear neuron that prefers zero disparity.
(B) and (C) Non-zero disparity preferences attained by shifting the
position or phase of one of the monocular receptive fields.

not necessary. The critical property is that the two
subunits must be in quadrature phase (90 deg phase shift).
Although simple cell weighting functions are not
necessarily even- or odd-symmetric (Field & Tolhurst,
1986; Heggelund, 1986; Jones & Palmer, 1987), the
receptive fields of adjacent simple cells tend to exhibit
90 deg or 180 deg phase relationships (Foster et al., 1983;
Liu et al., 1992; Palmer & Davis, 1981; Pollen & Ronner,
1981). A local pool of simple cells thus provides the right
combination of signals for an ideal energy neuron.
Approximately the same behavior may be obtained by
summing the squared responses of many linear neurons
(or halfwave-rectified, linear neurons), regardless of their
phase, but with receptive fields distributed over a local
spatial region.

A binocular energy neuron (Ohzawa et al., 1990) is
depicted in Fig. 1(D). This neuron sums the squared
responses of a quadrature pair of binocular linear
neurons. This article is primarily concerned with the
behavior of binocular energy neurons.

2.2 Disparity selectivity: Position shifts and phase shifts

Figure 2 depicts two ways that non-zero disparity
preferences have been introduced in models of disparity
selectivity. The neuron depicted in Fig. 2(A) is tuned for
zero disparity because the locations of the two monocular
receptive fields are in exact binocular correspondence
(indjcated relative to the reference points) and the two
weighting functions are identical. In Fig. 2(B), the right
eye’s receptive field is shifted to the right. In Fig. 2(C),
the right eye’s subfield is shifted in phase by 90 deg. Both
neurons in Fig. 2(B) and (C) are constructed to prefer
uncrossed disparities; to evoke a maximal response, a
visual feature (line, edge, grating) should be presented to
the right eye in a position that is slightly shifted to the
right.

Figure 3 depicts three binocular energy neurons. A
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FIGURE 3. Disparity preferences of binocular energy neurons.

(A) Zero disparity preference. (B) Non-zero disparity preference is

introduced by shifting the positions of both right-eye receptive fields

by the same amount (relative to the reference points). (C) Non-zero

disparity preference is introduced by shifting the phases of both right-
eye weighting functions by 90 deg.

non-zero disparity preference is introduced either by
shifting the receptive field positions [Fig. 3(B)] or the
receptive field phases [Fig. 3(C)].

3. FORMALIZING THE MODEL

In order to examine the behavior of the model in detail,
we derive formulas for their responses. A table of
symbols (Table 1) is provided to help the reader keep
track of mathematical notation. We begin by concentrat-
ing on linear neurons and the zero-disparity energy
neuron, like that in Fig. 3(A), after which the position
shifts and phase shifts are analyzed.

3.1 Spatial arrays of identical linear neurons:
Convolution

Consider a spatial array of monocular linear (left-eye)
neurons that are identical except for spatial location, so
that their responses can be computed by convolving the
stimulus with a linear filter. For one spatial dimension
(ignoring time and the other spatial dimension), the
responses L(x) are given by the familiar convolution
formula:

L(x) = / fil€ — I (€)de, )

where I(£) is the stimulus intensity at each spatial
position and f(£) is a linear filter (i.e. the weighting
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TABLE 1. Symbol table

Terms Definitions

x Spatial or retinal position

L(x), R(x) Complex-valued response of quadrature-pair, monocular
linear neurons in left and right eyes, at position x

Re[L(x)] Real part of left monocular response (e.g. response of a
linear neuron with an even-symmetric receptive field)

Im[L(x)] Imaginary part of left monocular response (¢.g. response of
a linear neuron with an odd-symmetric receptive field)

21(x) Monocular (left eye) amplitude signal (square-root of
monocular energy)

di(x) Monocular (left eye) phase signal

ki(x) Left-eye instantaneous frequency at position x, equal to
phase derivative ¢;(x)

s Receptive field position shift

Ay Receptive field phase shift

d Stimulus disparity

Ad(x) Interocular phase difference (equals ¢;(x) — ¢,(x))

E(x) Binocular energy response at retinal position x

E(x;s) Response of binocular energy neuron with receptive-field
position shift s

E(x;A) Response of binocular energy neuron with receptive-field
phase shift Ay

E(x;s,A¥) Response of binocular hybrid energy neuron with position

shift s and phase shift Ay

function of a neuron) and x is the position of the receptive
field center of each neuron.

For notational convenience, we use complex numbers
to express the weighting functions and responses of a
quadrature pair of linear neurons. For example, let f; be a
complex-valued weighting function in the left-eye like
that in Fig. 1(C). In this example, f; consists of an even-
symmetric weighting function that we call the real part of
the complex-valued weighting function, and an odd-
symmetric weighting function called the imaginary part.
Similarly, let L(x) denote the complex-valued response,
where Re[L(x)] is the output of the real part of f;, before
the squaring step in the top half of Fig. 1(C) and Im[L(x)]
is the output of the imaginary part, before the squaring
step in the bottom half of Fig. 1(C).

3.2. Spatial arrays of identical energy neurons

Now consider a spatial array of binocular energy
neurons that are identical to one another except for their
receptive field locations. Let L(x) and R(x) be the
complex-valued, monocular, linear responses for the left
eye and right eye. The spatial array of energy responses,
E(x), can then be expressed as:

E(x) =|L(x) +R() [
= (ReL(x)] + Re[R(x)])’ + (Im[L(x)] + Im[R(x)])*, (2)

where (Re[L(x)] + Re[R(x)])* corresponds to the top half
of Fig. 1(D) and (Im[L(x)] + Im[R(x)])* corresponds to
the bottom half of Fig. 1(D).

In order to understand the binocular energy responses,
we must introduce some additional terminology and
notation; namely, we define the monocular amplitude
signal, the monocular phase signal, the interocular phase
difference signal and the instantaneous frequency signal.
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FIGURE 4. Illustration of the response of a monocular, quadrature-pair

of linear neurons in terms of its real and imaginary parts and its

amplitude and phase. The real part (response of the even-phase linear

neuron) is indicated by the position along the horizontal axis. The

imaginary part (response of the odd-phase linear neuron) is indicated

by position along the vertical axis. The amplitude is the radial distance
from the origin and phase is the angular coordinate.

These signals do not correspond directly to neural
responses. Rather, they are implicit in the responses of
a collection of model neurons.

We begin by expressing the monocular responses in
polar coordinates, in terms of amplitude and phase. As
illustrated in Fig. 4, we can write the left response as
L(x) = p;(x) €™, where p? is the monocular energy:

Phx) = L&) = RelL ()] + ImL(x)*  (3)

and ¢,(x) is the phase angle of the complex-valued,
monocular response, often written as:

¢i(x) = arglL (x)] = arctan (Im{L(x)}/RelL(x)]) (4)

The square root of the energy, pi(x), is called the
monocular amplitude signal and ¢;(x) is called the
monocular phase signal. Note that the monocular
amplitude and phase signals defined here are not the
amplitude and phase spectra of a Fourier transform.
Rather, they are a polar transformation of the responses
of quadrature-pairs of linear neurons, at each retinal
position. They are functions of spatial location x, not
frequency.

Figure 5 shows an example. The stimulus in this case
was a noise field in which the intensity varied randomly
from one point to the next. The real part of the response is
shown in Fig. 5(A); each point on this curve depicts the
response of a single, monocular, linear neuron with an
even-symmetric weighting function. The curve repre-
sents the responses of many linear neurons that are
identical to one another except for their receptive field
locations. Figure 5(B) shows the monocular amplitude
signal. Each point on this curve corresponds to the square
root of the response of a monocular energy neuron. These
amplitudes were computed from the linear responses in
Fig. 5(A) and the responses of a complementary set of
odd-symmetric linear neuions. Figure 5(C) shows the
monocular phase signal. The monocular amplitude signal
usually changes slowly with x since the amplitude signal
is the low-pass envelope of the convolution output. The
phase signal, on the other hand, represents the fine
structure of the responses.

With the amplitude and phase signals we can now
simplify the expression for binocular energy. Substituting
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FIGURE 5. (A) Responses of a collection of monocular linear neurons, all with even-symmetric weighting functions. The
horizontal axis represents the spatial location of each successive linear neuron. (B) Monocular amplitude signal, computed as
the square-root of the sum of squared linear neuron responses, the real parts of which are shown in (A). (C) Monocular phase
signal, which computed from the linear responses. The amplitude signal typically changes slowly with x, whereas the phase
signal represents the fine structure of the responses. Phase is predominantly linear and changes more rapidly as a function of
spatial position. The vertical dashed lines reflect the fact that phase is uniquely defined between — 7 and = radians (i.e. it wraps
around every 360 deg); these lines are not phase discontinuities. Small regions of unstable phase occur occasionally, like that
shown near spatial location 35, and are discussed briefly in Section 6, Building disparity detectors.

p1(x) 4% and p,(x) @ for L(x) and R(x) in equation
(2) gives:

E(x) = p}(x) + 0} (x) + 2p1(x)p (x) cos(Ag),  (5)

where A¢ = ¢y(x) — ¢.(x) is called the interocular phase
difference. Using this notation, it is clear that a binocular
energy neuron generates a response that is the sum of the
three terms: the two monocular energies, p,? and p,?, and
a term that is a cosinusoidal function of the interocular
phase difference. The binocular energy response is
independent of the monocular phases.

Note that throughout this exposition (and indeed,
throughout this entire article) we assume that there are
collections of neurons centered at each spatial position x
and that the responses of the linear neurons can be
expressed collectively as a convolution operation.
Alternatively, we could have defined L(x), R(x) and
E(x) by fixing x to xp and varying the spatial location of
the stimulus. This corresponds more closely to the usual
preparation of single-cell neurophysiology in which one
records from a single neuron while drifting a visual
stimulus across its receptive field. This is important to
remember, although often it is not critical to the
arguments that follow.

3.3 Instantaneous frequency

How does the binocular energy response depend on
binocular disparity? If one varies disparity by slightly
shifting the stimulus position in one eye, the monocular
amplitude and phase signals of that eye are also shifted.
The shift in the amplitude signal typically has negligible
impact on the binocular energy response because the
amplitude signal changes slowly with x [see Fig. 5(B)].
Thus, the binocular energy response modulates with
disparity based mainly on the interocular phase differ-
ence.

How does the interocular phase difference depend on
disparity? Note in Fig. 5(C) that the monocular phase
signal increases approximately linearly with spatial

position x. For small changes in disparity, the interocular
phase difference depends on the slope of this curve. If the
phase signal is rising quickly, then a small disparity (a
small shift of the phase signal in one eye) will result in a
large interocular phase difference. The derivative of the
monocular phase signal is therefore critical and it is often
referred to as the instantaneous spatial frequency
(Papoulis, 1965):

ki(x) ~ )

. (6)
Note that instantaneous frequency is not the same as the
usual Fourier frequency, which has no explicit depen-
dence on spatial position.

To help clarify this definition of instantaneous
frequency, recall that the frequency of a sinusoid is the
inverse of its wavelength and its phase changes linearly
from —m to 7 over one wavelength. If the signal is
cos(kx), then the phase signal is ¢(x)=kx and the
instantaneous frequency (the phase derivative) is £,
constant at all positions x. A more interesting example
is shown in Fig. 6. The frequency of this sinusoidal signal
is constant on the left half, and then increases linearly as
one moves further to the right. As frequency increases,
the wavelength decreases and the phase signal begins to
cycle more quickly between — 7 and 7; the instantaneous
frequency captures this variation.

For more general inputs, the responses of a spatial
array of linear neurons will modulate sinusoidally in
small spatial neighborhoods. The instantaneous fre-
quency in each neighborhood will be different. This
local variation is what distinguishes instantaneous
frequency from global Fourier frequency, which does
not specify what frequency content is predominant in
each neighborhood. Finally, from the quasi-linearity of
monocular phase in Fig. 5(C), one can see that
instantaneous frequency usually varies slowly across
space. Also, it remains close to the preferred spatial
frequency of the underlying linear neurons.
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FIGURE 6. (A) Quasi-sinusoidal signal, the frequency of which varies
with spatial location; the frequency is constant from locations 0 to 60,
after which it increases linearly. (B) The corresponding phase signal.
(C) Instantaneous frequency, which is the derivative of the phase
signal. When stimulus frequency is constant, the phase signal increases
linearly and the instantaneous frequency is constant. When frequency
increases, so does the slope of the phase signal, which is the
instantaneous frequency.

3.4 Interocular phase difference and instantaneous
frequency '

As mentioned above, the binocular energy response
depends on the interocular phase difference and the phase
difference depends on instantaneous frequency. Here, we
formalize the relationship between interocular phase
difference and instantaneous frequency.

For now, assume that the right-eye stimulus I,(x) is a
shifted version of the left-eye stimulus [(x): ie.
L(x) =I{x — d), where d is the disparity. When disparity
d is positive, I,(x) must be shifted to the left to match I,(x).
With these inputs, the right monocular responses R(x) are
a shifted version of the left monocular responses L(x), i.e.
R(x)=L(x — d). Similarly, the phase signals satisfy
¢,(x)=d(x — d). From this, one can re-express the
interocular phase difference using a Taylor series of

$ix — a):

Ap(x;d) = ¢i(x) — ()
= ¢i(x) — di(x — @)
=d ¢ (x) + Old?), ()

where O[d?] denotes all terms of second order, i.e. d* and
higher. In words, the interocular phase difference is
(approximately) proportional to the product of disparity
and the instantaneous frequency.

Combining this with equation (5) gives us a useful
characterization of a binocular energy neuron. As the
disparity is increased slightly above zero, the binocular
energy response decreases as the cosine of disparity times
instantaneous frequency, cos (d¢"). When the disparity is
zero, the interocular phase difference is also zero. Zero
disparity, therefore, produces a peak, cos (0) =1, in the
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binocular energy response. If the disparity becomes too
large (more than half of a wavelength of the preferred
spatial frequency), second- and higher-order terms in the
Taylor expansion become significant and the approxima-
tion breaks down. In this case, a response peak in the
binocular energy would no longer indicate a disparity of
zero. These false peaks are discussed at length below in
Section 5.1, False energy peaks.

3.5 Position-shift model

We now introduce position shifts between the left and
right monocular subfields of a binocular energy neuron to
obtain nonzero disparity preferences. Toward this end,
consider a binocular energy neuron whose right mono-
cular subfield is shifted by a distance s compared to the
retinal position of the left monocular subfield. From the
formulation in equation (5), the energy response
becomes:

E(x;s) = g} (x) + o2 (x +9)

+2pi(x)pr(x +5) cos(¢i(x) — ¢rx +5)).  (8)
If we assume further that the right and left input signals
were shifted versions of one another with disparity d, as
above, then this equation becomes:

E(x;s) = o} (x) + p{(x + 5~ d) (9)

+ 201(x)pi(x + s — d) cos(hi(x) — di(x + 5 — d)).

Finally, if the receptive-field position shift s is close to the
disparity d, so that ¢,(x + s — d) is well approximated by
its first-order Taylor series, ie. dfx+s5 — d) = Pfx) +
(s ~ d)ki(x), where Kk (x)=¢/(x), then the binocular
energy response simplifies to:

E5i5) ~ x) + 2x) + 200)01(x) cos(l(x) (d — 5))
= p,z(x)[l + cos(ki(x)(d — s))]. (10)

This approximation makes use of the fact that
instantaneous frequency changes slowly through space.
Also, it relies on the fact that the amplitude signal is
expected to change slowly with x, so that
plx+s — d) = pix).

The position-shift model posits that there is a
population of energy neurons with different receptive-
field position shifts. The continuous binocular. energy
function E(x;s) at each spatial position is, therefore,
sampled at different values of s. One can see from
equation (10) that the binocular energy function has a
peak when the position shift s equals the stimulus
disparity d. Therefore, the position shift of a binocular
energy neuron is also the preferred disparity of that
neuron.

The stimulus disparity may not agree exactly with the
preferred disparity of any one neuron in the population.
To find the peak in the binocular energy function, we
must interpolate between the samples. This interpolation
can be done exactly if there are enough samples (enough
position shifts). From the analysis above, we know that
the energy response has a cosinusoidal shape at the peak.
The frequency of this cosine is equal to the instantaneous
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frequency. This limits the rate of modulation of the
binocular energy response to the same band of frequen-
cies to which the linear neurons are responsive. This also
tells us how finely one should sample E(x;s), i.e. how
many and how closely spaced the different position shifts
must be so that the responses of linear neurons and energy
neurons can be interpolated.

3.6 Phase-shift model

The phase-shift model involves differently shaped,
monocular receptive fields in the left and right eyes, but
centered at the same retinal position. Let Ay denote a
phase shift between the left- and right-eye weighting
functions, i.e. f,(x) = fi(x) ¢¥. In order to analyze the
binocular energy behavior, assume, as above, that the left
and right input signals are shifted versions of one another
with a disparity of d. The left and right linear responses
are then related as follows:

R(x) = ¢®L(x — d),
— p[(JC—d) ei[¢,(x—d)+A1/)]_

The phase difference A¢(x) now has the form:
Ap(x) = ¢i(x) — ¢1(x — d) — Avp.

If we use a Taylor series expansion as above and assume
that d is small (less than half of one wavelength of the
instantaneous frequency), then the phase difference can
be approximated by:

$1(x) = ¢r(x) = d ki(x) ~ Ay,

where k(x) = ¢;(x) is the instantaneous frequency. Then
the binocular energy response can be approximated by:

E(x; Ay) = p} (x) + p?(x)
+ 2p1(x) p1(x) cos (dk(x) — Av)
= 2(0)[1 + cos(dku(x) — AY).  (11)

The phase-shift model, like the position-shift model,
posits that there is a population of binocular energy
neurons. In this case, however, it is a population of
neurons with different receptive-field phase shifts Ay so
that the binocular energy response function E(x; Ay) is
sampled at each spatial position x and with several phase
shifts Ay. This binocular energy function, like its analog
in the position-shift model, has a peak for a particular
shift. The peak in E(x; Ay) occurs when the receptive-
field phase shift is equal to the product of stimulus
disparity and instantaneous frequency:

Ay = d k). (12)

For disparities d close to this value, the response falls off
cosinusoidally, with a frequency of kf(x).

Comparing equations (10) and (11), one can see that
position shifts and phase shifts (s and Ay) have different
effects on binocular energy responses. Unlike the
position-shift model, a peak in the energy response of
the phase-shift model does not constrain the disparity
completely. It would be inaccurate to say that a phase-
shifted binocular energy neuron has a unique preferred
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disparity. Rather, disparity is equal to the interocular
phase difference divided by instantaneous frequency,
quantities that depend both on the neuron’s tuning
properties and the stimulus. To estimate disparity using
the phase-shift model, therefore, we must estimate first
the instantaneous frequency. One could measure the
instantaneous frequency as the derivative of phase, as in
equation (6), or one could assume that the instantaneous
frequency is equal to the neuron’s preferred spatial
frequency. The accuracy of this latter approximation
depends on the expected distribution of possible
instantaneous frequencies, which depends on the spatial
frequency content of the stimulus and the bandwidth of
the linear weighting functions. This is discussed in detail
in Section 5.2, Frequency uncertainty.

Despite this difference between position-shifted and
phase-shifted energy neurons, note that both exhibit a
clear preferred disparity when tested with conventional
bar stimuli. For bar stimuli, the instantaneous frequency
will stay close to the neuron’s preferred frequency. But,
unlike the position-shift energy neuron, a phase-shift
neuron’s disparity tuning curve will not be symmetric
about the central peak, though the central peak may be
clearly evident.

3.7 Hybrid model

One restriction on phase-shifted energy neurons stems
from the fact that phase shifts are unique only between
—7n and n. When combined with a restricted spatial
frequency bandwidth, this means that, for any one spatial
frequency band, there is a limited range of disparities that
one could hope to detect. The upper limits are reached as
the phase shift approaches *7 (i.e. half of one wave-
length) and the instantaneous frequency approaches the
lowest spatial frequencies to which the neurons are
responsive. This limitation of the phase-shift model is
particularly restrictive for neurons tunied for high spatial
frequencies. This leads us to consider a third model, a
hybrid of the previous two, that would allow one to
extend the range of disparities that phase-shifted energy
neurons might detect.

In this hybrid model, binocular energy neurons have
both a phase shift of Ay and a position shift of s. With the
same analysis used above, when the input disparity d is
close to s+ [Ay/k(x)], where k(x) is the instantaneous
frequency, the energy response is given by:

E(x;s, AY) = p}(x) + pf (x)
+ 2pi(x)pr(x) cos(ki(x)(d — 5) — Ay)
= 201 (x)[1 + cos(ki(x)(d — s) — Ay)]. (13)

This hybrid binocular energy response function,
E(x; s, Ayr), depends cosinusoidally on both the position
shift s and the phase shift Ay. The hybrid model posits
that there is a population of binocular energy neurons
with different receptive-field position and phase shifts, so
that E(x; s, Aiy) is sampled at each spatial position x, with
several position shifts s and with several different phase
shifts Ay. In Section 6, Building disparity detectors, we



1846

Position Shift Neuron

A s=6
A =20, 40, 60

TATAVANATE
AVAVA

NN

B Ay=n/4
A =20, 30, 40

Tt e

-40 -20 0 20 40

xxxxx

-40-20 0 20 40

D. I. FLEET et al.

Phase Shift Neurons

C Ay=mn/4
A =20, 40, 80

D Ay=3n/4
A =20, 30, 40

..........

-40-20 O 20 40 -40-20 0 20 40

Stimulus Disparity

FIGURE 7. Disparity tuning curves of energy neurons when presented with drifting sinusoidal gratings. (A) A position-shift

energy neuron with a preferred disparity of s =6, and input wavelengths spanning 1.5 octaves. The bottom panel shows the

superposition of three tuning curvés, where the peak at the preferred disparity occurs at all wavelengths. (B)~(D) Phase-shifted

energy neuron responses with different phase shifts and different frequency ranges. With small phase shifts and a small

frequency range [as in (B)] only a slight, but systematic, frequency dependence is evident. With a larger frequency range [as in

(O)] or a larger phase shift [as in (D)), the dependence of peak disparity on frequency is more evident. Phase-shifted energy
neurons do not have a unique preferred disparity.

discuss how this collection of neural responses can be
pooled to estimate disparity unambiguously.

4. MODEL PREDICTIONS AND COMPARISONS WITH
EXISTING DATA

The position-shift model involves binocular combina-
tions of monocular receptive fields of similar shape at
different retinal positions, while the phase-shift model
combines monocular receptive fields with different
shapes from the same retinal location. Only when both
are tuned to a disparity of zero are they strictly
equivalent. The next sections review neurophysiological
evidence for position shifts and phase shifts. We also
present predictions of the two “pure” models and the
hybrid model.

4.1 Distribution of preferred disparities

In attempting to measure the range of preferred
disparities, caution must be taken because eyes tend to
drift and rotate under anesthesia. To control for this,
Hubel and Wiesel (1970) introduced the reference-cell
method, in which a binocular cell is recorded for an
extended period to find the disparity that elicits a
maximal response. A second electrode is used to record
from other neurons. By adjusting disparity settings to
maintain the maximal response from the reference cell,
one can track eye movements. Interestingly, it is not
necessary to track eye drift in the owl, as their eye
movements are negligible (Steinbach & Mooney, 1973).

If a broad distribution of preferred disparities is found
in a sample of neurons, relative to their preferred spatial
frequencies, then one can infer that position shifts occur.
In the cat, early reports gave a range of *+3 deg for the

distribution of preferred disparities (Barlow et al., 1967).
Later studies using a reference-cell method found that the
range of preferred disparities of tuned-excitatory cells in
area 17 is less than 1 deg for eccentricities up to 8 deg
(Ferster, 1981; LeVay & Voigt, 1988). In the owl, the
range of preferred disparities was found to be +2.5 deg
(Pettigrew, 1979). In anesthetized monkeys, cells with
preferred disparities up to 30" were documented in V2
(Hubel & Wiesel, 1970). Studies on awake, behaving
monkeys seldomly found preferred disparities greater
than 12’ (crossed or uncrossed) for eccentricities within
2 deg of the fovea (Poggio & Fischer, 1977). One would
expect that cells in the parafoveal region might have
larger preferred disparities, but we are aware of no
quantitative data regarding this issue. In the monkey, near
and far cells often respond maximally at the largest
disparities that have been tested (up to 1 deg) (Poggio &
Fischer, 1977). Near and far cells of cats cover a range of
at least *5deg of disparity (Ferster, 1981; LeVay &
Voigt, 1988).

Unfortunately, spatial frequency tuning has usually not
been measured along with disparity tuning. However,
data from Ohzawa and Freeman (1986a,b) suggest that
the range of preferred spatial frequencies in disparity-
sensitive cells is similar to the overall range of preferred
spatial frequencies in cat area 17. If we assume the same
in the monkey, with foveal simple and complex cells
having preferred spatial frequencies between 1 and
10 cpd (DeValois et al., 1982), then one can indirectly
conclude that in monkeys, cats, and owls the preferred
disparities cover a range that is larger than one period of
the typical spatial frequency preference. This suggests
that position shifts do occur, but it does not rule out an
additional contribution from phase shifts.
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4.2 Monocular receptive-field shape

The results reviewed so far imply that there are
position shifts. However, receptive-field shape was
characterized only crudely in these studies. To determine
whether there are phase shifts, a more elaborate method is
required. One method is to directly examine the shapes of
the monocular receptive fields using white noise stimuli
and reverse-correlation procedures. Ohzawa et al. (1990)
and DeAngelis et al. (1991, 1995) applied this method to
simple cells in cat area 17. Then they fitted Gabor
functions to the monocular receptive fields and used the
phase of the fitted Gabor functions as a measure of
receptive field shape. They found that the monocular
receptive field shapes of binocular cells are often
different. Moreover, the differences depend on orienta-
tion; cells tuned to horizontal ‘orientations have similar
receptive field shapes, while cells tuned to near vertical
orientations exhibit a wide range of phase shifts (from 0
to 180 deg). While these data show that phase shifts exist,
the existence of additional positional shifts cannot be
excluded.

This reverse-correlation procedure works well for
simple cells, the monocular responses of which depend
strongly on the position of a stimulus within the receptive
field. More sophisticated procedures, analyzing higher-
order kernels of the white noise responses, would be
needed to determine the monocular receptive field
properties underlying disparity selectivity of complex
cells.

4.3 Binocular dependence on spatial frequency

Another way to examine the mechanism of disparity
selectivity is to measure the dependence of disparity-
tuning curves on the spatial frequency of a sine-grating
stimulus. Several studies have shown that simple and
complex cells respond with sinusoidal disparity-tuning
curves when presented with drifting sinusoidal gratings
(Ohzawa & Freeman, 1986a,b; Hammond, 1991; Wagner
& Frost, 1994). The binocular linear neurons and energy
neurons behave similarly. Next we describe the behavior
of the position-shift, phase-shift and hybrid models with
sinusoidal stimuli. The goal is to describe experimental
predictions for each model. Although we concentrate on
the predictions for binocular energy neurons, these
predictions also hold for binocular linear neurons.

4.3.1. Position-shift neuron. Let the left and right
stimuli be sinusoidal gratings with spatial frequency kg
and disparity d:

I)(x) = sin(kox), I.{x) = sin(ko(x — d)). (14)

For a spatial array of linear neurons, we get an array of
responses that vary sinusoidally as a function of retinal
position. When there is no receptive-field phase shift, i.e.
when Ay =0, it follows from the analysis in Section 3,
Formalizing the model, that the binocular energy
responses are:

E(x;5) = 2p}[1 + cos(ko(d ~ 5))]. (15)

The monocular energy, p;%, is constant for sine-grating
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stimuli, independent of spatial position. The instanta-
neous frequency is also constant and equal to the stimulus
frequency ko. Peaks in the energy response occur
whenever the cosine term is equal to one. This happens
when the disparity satisfies ko(s — d) = n2 &, for integer
values of n, i.e. when:
n2m
d=s+ ko

(16)

Because n can be any integer, peaks occur periodically,
spaced by one wavelength of the stimulus frequency. One
of these peaks always occurs when the disparity equals
the position shift s, independent of the frequency of the
input [see Fig. 7(A)].

4.3.2. Phase-shift neuron. When there is a receptive-
field phase shift Ay but no position shift, the energy
response reduces to:

E(x; Ay) = 207(1 + cos(dhko — Ag)]. (17

Peaks in the energy response, E(x; Ay) now occur when
d kg — Ay = n2 &, or equivalently, when:
_ 8w nln

ko ko
As illustrated in Fig. 7(B)-(D), this means that the
neuron’s “disparity preference” depends, in a systematic
way, on the stimulus frequency. The distribution of
“disparity preferences” depends on the neuron’s spatial
frequency tuning bandwidth and on the neuron’s
interocular phase shift.

Thus, one way to discriminate the two “pure” models
is to measure disparity tuning curves for sine-grating
stimuli with different spatial frequencies. For the
position-shift model, peaks in the tuning curves occur
at the same disparity (the position shift) for all
frequencies. For the phase-shift model, peaks in the
tuning curves will occur when the two gratings have a
certain phase difference (but not a fixed disparity) for all
frequencies. Data of this sort have been obtained for the
owl (Wagner & Frost, 1993, 1994) and are more
consistent with the position-shift model.

4.3.3. Hybrid neuron. With a hybrid energy neuron,
following equation (13), the energy response is given by:

E(x;5, A¢) = 2p{[1 + cos(ko(d — 5) — Ay)].  (19)

It is a cosinusoidal function of disparity, with a frequency
ko and a phase offset of kos + Ayr. The phase offset is a
linear function of frequency; the slope is the position shift
and the intercept is the phase shift. Therefore, to measure
both the phase shift and position shift of a single neuron,
one can record disparity tuning curves with drifting
sinusoidal gratings of different spatial frequencies k. A
cosinusoidal function with frequency &; can then be fit to
each tuning curve, from which a phase offset, denoted by
€);, is obtained [see Fig. 8(A)]. Then one plots the phase
offset as a function of spatial frequency as depicted in
Fig. 8(B) and fits a linear function to the data. The slope
of the linear fit gives the positional shift s. The intercept
of the linear fit on the vertical axis will be equal to the
phase shift plus an integer multiple of 2. Because Ay is

d (18)
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FIGURE 8. (A) Cosinusoidal disparity tuning curve of a hybrid energy neuron. With the peak closest to the origin (zero

disparity) at d and an input spatial wavelength of 4, the phase-offset of the tuning curve is Q = 2 z8/4. (B) This phase-offset is a

linear function of frequency k=2 /4, the slope and intercept of which give the position shift and the phase shift of the
monocular receptive fields.

only unique within — = and &, one can find the phase shift
from the intercept by adding whatever multiple of 27 is
required to bring the resuit into the range (—m, 7).

Similar methods have been used to explore the
encoding of interaural time differences in the auditory
system of cats (Yin & Kuwada, 1984). In the visual
system, this method can be used to measure position and
phase shifts in simple and complex cells, without
requiring that the monocular receptive field shapes be
accurately localized or described. It is necessary,
however, that disparity be defined with stabilized eyes
or a reference cell.

5. ENCODING OF DISPARITY

The next major issue to address is the way in which
disparity might be inferred from the responses of
binocular energy neurons. Ohzawa et al (1990),
DeAngelis et al. (1991) and Qian (1994) have suggested
that disparity is encoded directly by peaks in the
responses of phase-shifted binocular energy neurons
and therefore called them ideal disparity detectors. We
show here that disparity is not encoded directly by peaks
in the responses of binocular energy neurons. Rather,
binocular energy responses are ambiguous; for both the
position- and phase-shift models, false peaks are
inevitable and for the phase-shift model, there is further
uncertainty about disparity.

5.1 False energy peaks

For binocular energy neurons, response peaks may
occur even when the input disparity is outside the range
of disparities to which the neuron was thought to respond.
One example of this is given above in Section 4.3,
Binocular dependence on spatial frequency, where, for
sinusoidal grating stimuli, both position-shifted and
phase-shifted energy neurons respond periodically as a
function of disparity. Peaks in their disparity-tuning
curves occur every wavelength.

This is a contrived example because the stimulus is
periodic. But the problem of false peaks is more general
than this, lying not with the periodicity of the stimulus,
but with the quasi-periodicity of the responses of the
underlying linear weighting functions. False peaks occur
for almost all stimuli; including white noise. In fact, some

of the false peaks will be significantly larger in magnitude
than the peak at the correct disparity.

To illustrate this, Fig. 9 shows responses of two
binocular energy neurons. The left-hand column shows
the responses of an energy neuron with a disparity
preference of zero. The right-hand column shows
responses of an energy neuron with a position shift of
zero and a phase shift of n/2. The top four panels in each
column [Fig 9(A) and (B)] show responses, as a function
of stimulus disparity, for individual samples of white
noise. The bottom panels [Fig 9(C) and (D)] show the
average responses, averaged over many samples of white
noise. False peaks are clearly evident for individual trials
[Fig 9(A) and (B)]. However, when responses are
averaged over many stimulus presentations, one obtains
tuning curves that do not necessarily show the false
peaks.

In typical single-cell recordings, stimuli are swept over
the receptive field of the cell, with different disparities on
different trials. This produces a two-dimensional re-
sponse surface, with disparity on one axis and time (or
spatial position) on the other. Conventional disparity-
tuning curves plot average firing rate (computed by
averaging across time). The simulations in Fig 9(A) and
(B) show the instantaneous simulated responses of a
single neuron to different noise inputs; equivalently, each
plot can be viewed as a slice through the two-dimensional
response surface at widely separated times. The disparity
tuning curves in Fig 9(C) and (D) are the average
responses over time and therefore correspond more
closely to the conventional data analysis. In other words,
the methods used in physiology experiments will often
hide the presence of false peaks.

Therefore, one may only see false peaks in disparity-
tuning curves for very short stimulus presentations, of
when one analyzes the spike train by computing average
firing rate over very short time intervals. When conven-
tional bar stimuli are used to measure disparity tuning
curves, the false peaks are sometimes evident as small
side-lobes that flank the central peak (LeVay & Voigt,
1988). These are expected to occur in model neurons
when the bandwidth is reasonably small (e.g. less than 1.5
octaves). Larger false peaks occur with richer stimuli like
textured surfaces, random-dot stereograms and white
noise. Only when stimulus disparities are known to be
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FIGURE 9. Disparity tuning curves of binocular energy neurons for
white noise stimuli. (A) and (B) show responses to individual samples
of white noise. (C) and (D) show the average response over many
samples of white noise, or equivalently, the average response as the
white-noise stimuli are swept across the neuron’s receptive field. (A,
C) A binocular energy neuron tuned for zero disparity, with a preferred
wavelength of 16. One can see false peaks in (A) with approximately
that periodicity. (B, D) Responses of a binocular energy neuron with
the same frequency tuning, and a phase shift of Ay = a/2, i.e. tuned for
disparities equal to Ay/ky = 4. False peaks are evident in (B) with
approximately the same periodicity. The average responses over many
stimulus presentations (C) and (D) do not show the false peaks.

small, as in the implementation reported by Qian (1994),
can these false peaks be ignored.

False peaks occur because the linear neurons are
spatial frequency selective. Recall that a peak in the
binocular energy response occurs when the interocular
phase difference A¢(x) is zero; ie. whenever the
monocular phase signals from left and right linear
neurons are the same. Because of the spatial frequency,
selectivity of the linear weighting functions, the mono-
cular phase signals cycle between ~ 7 and = as a function
of spatial position. For example, if the left phase signal at
Xo is @fxp), then one can expect the phase at the nearby
position ¢,(xo + A) to be almost the same, where A is one
wavelength of the preferred spatial frequency. Thus the
phase signal in one eye will usually equal the phase signal
at several spatial locations in the other eye. Within a
population of binocular energy neurons with different
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disparity preferences, peaks occur whenever the left and
right monocular phase signals have similar values; there
will, in general, be more than one stimulus disparity for
which this occurs. The distribution of these false peaks
will depend on the frequency tuning of the linear neurons,
with false peaks occurring approximately every wave-
length on average.

Binocular energy neurons produce peak responses at
their putative preferred disparities more often than at
other disparities. However, some of the false peaks will
be larger than the response at the preferred disparity. To
explain this, one can see from equation (5) that the
magnitude of an energy peak depends on the monocular
energies. False peaks are larger than the correct peak
whenever the monocular energies at the false peaks are
larger than at the correct matching position.

5.2 Frequency uncertainty

A further problem for phase-shift neurons is caused by
the dependence of response peaks on instantaneous
frequency. Given a peak response of a phase-shifted
energy neuron, the disparity is equal to the phase shift
divided by the instantaneous frequency. One might
suppose that instantaneous frequency is encoded by
another population of neurons and then used to compute
disparity. Alternatively, one might assume that the
instantaneous frequency is almost equal to the neuron’s
preferred spatial frequency. The latter approach, although
simpler, introduces uncertainty about the instantaneous
frequency and therefore about the disparity.

To examine the extent of this uncertainty, we derived
an expression for the probability density function for the
resulting disparity estimates. We calculated these prob-
ability densities for binocular energy neurons with Gabor
weighting functions of various bandwidths and various
interocular phase shifts, responding to mean-zero white
Gaussian noise stimuli. Detailed formulas are given in the
Appendix and Fig. 10 provides an example. Figure 10(A)
shows the density function for instantaneous frequency of
Gabor-filtered white noise (solid curve). The bandwidth
of the Gabor function in this example is 1.0 octave.
Figure 10(B) shows the behavior of the mean and SD of
disparity estimates as functions of the phase shift. The
solid line is the true disparity.

The conclusions one can draw from this analysis and
our simulations are straightforward. First, the uncertainty
in disparity increases with the filter bandwidth because a
larger bandwidth yields a broader distribution of
instantaneous frequencies. Second, the uncertainty also
grows with the magnitude of the phase shift; one can say
less about disparity from a peak response of an energy
neuron as the receptive field phase shift increases.

6. BUILDING DISPARITY DETECTQORS

Energy neurons respond quasi-periodically as a func-
tion of disparity, depending on the stimulus and the
neuron’s spatial frequency tuning. Also, phase-shifted
energy neurons do not have unique preferred disparities.
Disparity could be computed from the phase shift with
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FIGURE 10. (A) Probability density function for instantaneous frequency of Gabor-filtered white noise (solid curve), with the
Gabor power spectrum (dashed curve). The bandwidth defined by 1 SD of the Gabor amplitude spectrum, is 1.0 octave.
(B) Means and SDs of disparity estimates as functions of the phase shift. The solid line is the true disparity.

the instantaneous frequency, but this would necessitate a
population of neurons to encode instantaneous frequency,
and a divisive nonlinearity.

Here we propose that energy-neuron responses can be
pooled linearly (i.e. summed) over several scales and
orientations, and in local spatial neighborhoods, in order
to build disparity detectors. The theoretical basis for the
pooling is the theory of phase correlation (Fleet, 1994)
and the analysis of phase stability (Fleet & Jepson, 1993).
Consider a population of energy neurons at a single
retinal location, with the same preferred spatial frequency
and oriéntation, but with different disparity preferences.
That neuron tuned for the stimulus disparity will respond
vigorously. However, other neurons in the population
also might respond with false peaks. Now consider other
neurons with different spatial frequency and orientation
preferences. Neurons in these other populations that are
tuned for the stimulus disparity again will respond
vigorously and again there will be other neurons with
large false peak responses. Thus, when we pool the
responses across different scales and orientations, the
large responses near the correct disparity sum to produce
an even larger peak. Conversely, since the false peaks are
distributed over a broad range of different disparities, the
false peaks in the response of one neuron will cancel with
local minima in the responses of others.

Pooling over different spatial frequencies is critical for
attenuating false peaks. Recall that the expected interval
between false peaks is approximately the wavelength of
an energy neuron’s preferred spatial frequency (see Fig.
9). Thus, the false peaks at different frequencies occur at
different disparities. Pooling across enough scales yields
a prominent peak only at the stimulus disparity. This
pooling embodies some of the advantages of the coarse-
to-fine algorithms typical in computer vision (Marr &
Poggio, 1979), but without the sequential (one scale at a
time) processing. It is more like a coincidence strategy,
where the peaks coincide through scale at the correct

*To simulate the pooling over three orientations at each scale, we
summed three statistically independent responses at each scale,
assuming that neighboring orientation-tuned operators are largely
non-overlapping in their tuning. This allowed us to perform the
simulations with one-dimensional signals, avoiding-the computa-
tional expense of two spatial dimensions.

disparity (Fleet, 1994). Transparency may also occur,
where more than one significant peak remains after
pooling.

Pooling over orientation also helps to boost the correct
peak and attenuate false peaks. With textured stimuli
(e.g. textured surfaces, random dot stereograms, or white
noise), where false peaks are prominent, neurons tuned to
different orientations provide nearly independent re-
sponses. Therefore, false peaks are expected to occur at
different disparities, and cancel when pooled.

Localized spatial pooling plays a somewhat different
role. Normally, the amplitude and instantaneous fre-
quency signals are low-pass, and we expect interocular
phase differences also to change slowly, at least for
slowly changing disparity. Under these normal circum-
stances, energy responses are correlated over local spatial
positions and spatial pooling does very little. However,
thére are some circumstances when the monocular phase
signal is unstable (fluctuates rapidly from one spatial
position to the next) and it is particularly sensitive to
small distortions and scale changes between the left- and
right-eye views (Fleet & Jepson, 1993). In these cases,
the interocular phase difference is an unreliable measure
of binocular disparity. Spatial pooling will tend to
attenuate the rapid fluctuation of the phase signals and
suppress unreliable energy responses (Fleet, 1994).

The binocular energy neurons described above in
Section 2, Models of disparity selectivity, sum the
squared responses of a quadrature pair of linear neurons
[Fig. 1(C) and (D)]. With spatial pooling, however, a
binocular energy neuron computes a local spatial average
of the quadrature pair of linear neurons. Emerson et al.
(1992) found that spatial pooling of this sort was needed
to explain complex cell responses. This agrees also with
the larger extent of complex cell receptive fields. For the
simulations reported below, we used a Gaussian spatial
weighting function so that the energy neuron receptive
fields were 50% larger than those of the linear neurons.

6.1 Pooling of position shifted energy neurons

Pooling is straightforward for the position-shift model.
In our simulations, neurons with the same preferred
disparity are summed over four spatial frequency bands
(octave bandwidths and octave spacing) and over three
orientation bands.* Figure 11 shows an example simula-
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FIGURE 11. (A) Responses of position-shifted energy neurons to white noise stimuli. Each curve is the response, as a function
of stimulus disparity, after pooling over local space and over three orientation bands. Different panels correspond to different
spatial frequency bands. The preferred wavelengths of the four spatial frequency bands are given; each has a preferred disparity

of 4 pixels. (B) Response after summing the four panels in (A).

When peaks coincide across scales, the pooled response sums

constructively and, at other disparities, the response peaks and troughs cancel. The coarse-scales are particularly useful in
isolating the appropriate peak and the fine scales help make it a sharp peak.
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FIGURE 12. Simulations like that in Fig. 1 1 were run 300 with statistically independent white noise stimuli. Position-shifted

energy neurons were tuned for a disparity of 4 pixels. Each histogram plots the percentage of times that the peak response

occurred at each disparity. (A) Responses of a single energy neuron show a wide range of false peaks, with only 18% of the

peaks falling within 1 pixel of the correct disparity. (B) Pooling over orientation and space yields a sharper concentration of

peaks, but still only 52% of the peaks within 1 pixel of the correct disparity. (C) After pooling over scale, orientation, and space,
99% of the peaks lie at the correct disparity.

tion result. The top row shows responses of one neuron at
each spatial frequency, after pooling over space and
orientation. The stimulus was white noise. Although
pooling over space and orientation helps to attenuate the
false peaks, they still occur. When these responses are
summed across scale, however, the ambiguity is
essentially removed. The remaining peak occurs at the
intended disparity (d = 4 in this case).

Figure 12 summarizes the results of 300 simulations,
using different samples of white noise on each trial. The
histograms in Fig. 12 show the percentage of times, of the
300 trials, that the peak response occurred at each
disparity. Figure 12(A) shows the histogram for a single
binocular energy neuron with a position shift of 4 pixels,
tuned to a wavelength of 8 pixels. For only 18% of trials

did the peak response fall within 1 pixel of the intended
“preferred” disparity. False peaks dominated the other
82% of trials. Figure 12(B) shows the result after pooling
over orientation and spatial position. Figure 12(C) shows
the result after pooling over scale as well. The
concentration of peaks at one disparity shows that we
have successfully constructed a disparity detector.

6.2 Pooling of phase-shifted or hybrid energy neurons

With phase-shifted energy neurons, response peaks do
not determine the disparity uniquely unless the instanta-
neous frequency is also known. We posit that one might
assume that the instantaneous frequency is equal to a
neuron’s preferred spatial frequency and that response
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FIGURE 13. Same format as Fig. 11. (A) Responses from phase-shifted energy neurons tuned to white noise stimuli. The
receptive-field phase shifts and the preferred wavelengths of the four spatial frequency bands are given. For each spatial

frequency, the “preferred” disparity (phase shift divided by preferred wavelength) was 4 pixels. (B) Sum of the four responses
. in (A).

pooling can alleviate the problem of frequency uncer-
tainty, in addition to attenuating false peaks.

As above, we sum the responses of energy neurons that
we expect to produce a peak at or near one particular
disparity. Assuming that instantaneous frequency is close
to the neuron’s preferred frequency, we pool responses
using the following rule: let the disparity represented by a
phase-shifted energy neuron equal AyA/(2 m), where Ay
is the neuron’s receptive-field phase shift and A is the
wavelength of the neuron’s preferred spatial frequency.
For example, if the phase shift is #/2 and the preferred
spatial frequency is 1 cpd, then the neuron represents a
disparity of 1/4 deg. Likewise, if the phase shift is = and
the preferred spatial frequency is 2 cpd, then the neuron
again represents a disparity of 1/4 deg. The responses of
these two neurons could be pooled.

An example simulation result is shown in Fig. 13. One
can see that the pooling largely eliminates the false peaks.
It also enhances the peak near the intended disparity.
Although false peaks still exist at individual scales, they
are attenuated when pooled across scale.

Of course, one consequence of assuming that the
instantaneous frequency is equal to the preferred spatial
frequency is that peaks do not occur exactly at the correct
stimulus disparity. However, as one pools over larger
spatial neighborhoods, and especially over different
orientations, the distribution of peak locations should
be centered upon the correct disparity. One might
conclude that a greater amount of spatial pooling
therefore is needed for the phase-shift model than for
the position-shift model. However, for the simulations
here, we used the same spatial pooling in both
simulations. One can see, as a consequence, that the

peak is not as sharply defined in Fig. 13(B) as it is in Fig.
11(B).

We also carried out 300 simulations of this phase-shift
pooling, using statistically independent samples of white
noise on each trial. The results are summarized in Fig. 14.
Each histogram in Fig. 14 shows the percentage of times
the peak occurred at each disparity. Figure 14(A) shows
the histogram of response peaks for the finest scale, after
pooling over orientation and space. The histogram shows
two concentrations of peaks because the preferred
disparity (4 pixels) corresponds to a phase shift of = at
this scale. Whenever the instantaneous frequency is
higher than the neuron’s preferred frequency, then a
disparity of 4 pixels will be more than half of a
wavelength, leading to a disparity estimate of similar
magnitude but in the opposite direction (a form of
aliasing).

Figure 14(B) shows the result of pooling over space,
orientation and scale. The largest concentration of
responses is at the intended disparity (4 pixels in this
case), so the problems of false peaks and frequency
uncertainty are largely eliminated. This histogram is,
however, not as sharp as the one we obtained from the
position-shift model (Fig. 12C) and it is biased slightly
toward a disparity less than 4 pixels. The reason for this,
as discussed above, is that relatively few energy neurons
are being summed, so that uncertainties about the
instantaneous frequencies in a small number of neurons
has a noticable effect in each simulation. When we use a
larger amount of spatial pooling in the model, then the
peak in the histograms, as well as a peak in the disparity
tuning curves (Fig. 14B), are sharper and less biased.
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Stimulus Disparity

FIGURE 14. Simulations like that in Fig. 13 were run 300x with statistically independent white noise stimuli. Phase-shifted

energy neurons were designed to have a preferred disparity of 4 pixels. (A) After pooling over orientation and space, the

histogram shows two distinct concentrations of response peaks. As explained in the text, this is the result of a receptive field

phase shift of r, which leads to significant aliasing, where responses appear at —4 instead of 4, as the preferred wavelength of

the neurons is 8 pixels. Only 23% of the peaks fall within 1 pixel of 4, the correct disparity. (B) After pooling over scale,

orientation and space, 97% of the peaks lie within 1 pixel of the correct disparity. The problems of false peaks and frequency
uncertainty are largely eliminated.

7. BISCUSSION

To understand the neural basis for stereoscopic vision,
one must address several issues, including the form of
binocular interaction in simple and complex cells, the
basis for their disparity selectivity and the way in which
they encode disparity. This article examines a model of
binocular interaction based on binocular linear neurons
and binocular energy neurons. Disparity selectivity of the
model neurons arises from a combination of position
shifts and phase shifts between the monocular subfields
of binocular receptive fields. Position and phase shifts
have different quantitative properties and it is argued that
both likely contribute to the disparity selectivity of cells

.in V1. The relative contribution of position and phase
shifts can be inferred by measuring disparity-tuning
curves using drifting sinusoidal grating stimuli with
several different spatial frequencies.

Position- and phase-shifted binocular energy neurons
are not ideal disparity detectors; they do not respond to a
unique, narrow range of disparities. Instead, they respond
quasi-periodically as a function of disparity. False
response peaks occur with a periodicity that depends on
the spatial frequency selectivity of the neurons. Only
when disparities are kept sufficiently small, as in the
implementation reported by Qian (1994), can these false
peaks in response be ignored. Our analysis shows that
these false peaks should be evident only when one uses
richly textured stimuli, such as random noise, and only
for brief stimulus presentations.

In order to construct disparity detectors from position-
shifted and/or phase-shifted energy neurons, we propose
that energy-neuron responses are pooled linearly across
several scales and orientations and in local spatial
neighborhoods. Pooled responses will not exhibit false
peaks, but they will exhibit much broader orientation and
spatial frequency specificity.

7.1 Related computational frameworks
Although the computational framework developed

here is based on an energy mechanism, many of our
results do not depend critically on this particular form of
binocular interaction. The main predictions (see Section
4.3, Binocular dependence on spatial frequency) of the
energy model, with position shifts and/or phase shifts,
remain valid for several alternative computational frame-
works. The significance of false response peaks and
frequency uncertainty (see Section 5, Encoding of
disparity) also remain.

For example, one might replace the squaring non-
linearity in the energy model by full-wave rectification
(Pollen & Ronner, 1983), or a higher-order nonlinearity
with an exponent greater than two (Albrecht & Hamilton,
1982; Sclar et al., 1990; Albrecht & Geisler, 1991). This
would affect the quantitative nature of the binocular
energy response. However, for drifting sinusoidal grating
stimuli, the response magnitude would remain a periodic
function of stimulus disparity with peaks at the same
disparities as the energy model. Moreover, the disparity
response curves would still be phase shifted, so that one
could determine the relative contributions of position
shift and phase shift. The false peaks, although sharper or
broader with different exponents, would still exist.

Interocular cross-correlation provides another plausi-
ble computational framework for modeling binocular
interaction (Mallot et al., 1995). It has been used also to
mode! binaural properties of cells in the inferior
colliculus of the cat for encoding interaural time
differences (Yin & Kuwada, 1984).

One way to build a cross-correlation model is to use
quadrature-pairs of monocular receptive fields, with
position and/or phase shifts between the left- and right-
eye receptive fields. Binocular neurons would then
compute a sum (over space, orientation and multiple
scales) of the product of the left and right monocular
responses. Interestingly, one can show that this model is
almost exactly the same as the energy model. Using the
complex notation introduced in Section 3.2, Spatial
arrays of identical energy neurons, the energy response



1854

at xo [with position shift s and spatial pooling with a
weighting function W (x)] is given by:

E(xg;s) = /W(x—xo) IL(x) + R(x — 5)* dx

= [ W -20) (L + RG:=)F
+ RelL(x)R* (x — 5)]) dx. (20)

The cross-correlation of L(x) and R(x) (computed as the
sum of cross-correlations of the real and imaginary parts)
is given by:

Clxoss) = / W (x — x0)RelL(x)]Re[R (x — 5)] d
+ / W {x — xo)Im[L(x)]Im[R(x — s)] dx

- / Wix - xo)ReL®R (x — )] dv.  (21)
The similarity of the two models is evident by comparing
equations (20) and (21). The energy response is equal to
the sum of the cross-correlation and the two monocular
energies. The empirical methods for determining the
relative contributions of position shifts and phase shifts
would, therefore, remain the same. The pooling (over
space, orientation and scale) in the cross-correlation
framework reduces the prevalence of false peaks, as it
does for the binocular energy model.

There is, however, an important difference between the
energy and cross-cotrelation models. The energy model
predicts that complex cell responses modulate about a
baseline equal to the sum of the monocular energies. The
cross-correlation model does not predict a stimulus-
dependent baseline.

An alternative cross-correlation model might use only
even-symmetric receptive fields, for example, instead of
quadrature-pairs. This would require more extensive
spatial pooling; otherwise, responses would depend
significantly on the position of the stimulus within the
receptive field.

A problem with both of these cross-correlation models
is that they are inconsistent with the behavior of simple
cells. The initial binocular interaction is multiplicative in
the cross-correlation framework. By contrast, the initial
binocular interaction is additive in the energy model,
consistent with the predominantly linear behavior of
simple cells (Ohzawa & Freeman, 1986a).

7.2. Behavioral relevance of position shifts

Humans fuse and extract depth information when
disparities are larger than half of a wavelength of the
frequencies present (Blake & Wilson, 1991). With
difference-of-Gaussian (DOG) stimuli, Schor et al.,
(1984) found that, for high frequency DOGs (with central
frequencies higher than 2.5 cpd, up to 10 cpd), the upper
fusion limit remains approximately constant at about 10’
(Schor et al., 1984). For frequencies above 3 cpd, a 10’
disparity is greater than half of a wavelength. With
similar stimuli, Schor et al. (1984) found that upper depth
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limits can be as much as 5 x greater than upper fusion
limits. For 10 cpd DOGs, they found upper depth limits
close to 50', which corresponds to more than eight cycles.
Smallman and MacLeod (1994) reached a similar
conclusion using stimuli at contrast threshold. A purely
phase-based model, at least for high spatial frequencies,
will not account for this performance. Position shifts
must also be present.

Unfortunately, quantitative neurophysiological data on
the dependence of disparity tuning on scale have not been
published. A related issue is how position and phase
shifts contribute to the disparity selectivity of neurons at
different scales.

7.3 Behavioral relevance of false peaks

We have argued that complex cells, modeled as
binocular energy neurons, are not disparity detectors, in
part owing to the existence of false peaks. At present,
there are few published data that show false peaks in the
responses of simple and complex cells (but they are
evident in the data of Wagner & Frost, 1994). Many
experiments use simple stimuli that are either sparse (e.g.
a single bar) so that false matches do not occur; or
periodic, so that false matches can be attributed to
ambiguity in the stimulus. Others report only the average
responses as stimuli are swept through a cell’s receptive
field. To reveal false peaks, one must test a wide range of
disparities with rich stimuli like random noise, without
averaging over long stimulus presentations. It is also
useful to know a cell’s preferred spatial frequency, to
predict the approximate disparities at which false peaks
are likely to occur.

False peaks are problematic mainly when disparities
are large. Moreover, large disparities occur regularly
under normal viewing. For example, consider an observer
with eyes 6 cm apart, fixated on a target 1 m away. A
point 90 cm away from the observer has a crossed
disparity of about 23', while a point 110 cm away has an
uncrossed disparity of about 18'. Points at 50 cm and 2 m
have disparities larger than 2 deg. A disparity of 15’ is
more than half of a wavelength for all frequencies above
2 cpd. Whether or not we fuse or perceive depth from
such large disparities, cettainly they can be expected to
produce false peaks in binocular energy neurons.

7.4 Multiple scales and pooling

The model developed in this article has two stages,
with binocular liniear and energy neurons in the first stage
and a second stage that pools the energy responses over
space, scale and orientation. These stages complement
one another. The band-pass nature of the first stage
significantly reduces frequency uncertainty for the phase-
shift neurons and allows for fine spatial and disparity
resolution. The subsequent pooling then reduces the
adverse effects of the false peaks that are inevitable with
narrow-band signals.

Psychophysical data also support the scale-specificity
of binocular interaction. The frequency content of
narrow-band stimuli in the two eyes must overlap for
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stereopsis to occur (Julesz, 1971; Mayhew & Frisby,
1976). Narrow-band noise, if two or more octaves away
from a band-pass filtered random-dot stereogram, has
little affect on stereopsis (Julesz & Miller, 1975). Also,
upper depth and fusion limits change with the scale of the
stimulus (Schor et al., 1984; Smallman & MacLeod,
1994).

To date, there are two main theories of multi-scale
interaction. The first, popularized by Marr and Poggio
(1979), is commonly referred to as a coarse-to-fine
control structure, in which disparity estimates are first
computed at coarse scales (low spatial frequencies). Once
obtained, they are used as initial guesses for finer-scale
matching. Marr and Poggio (1979) suggested that coarse-
scale disparity estimates are used to drive vergence eye
movements, thereby shifting the left and right views into
closer alignment and allowing for a fine-scale match.
Others have suggested that the “shifting” might be done
neurally. Regardless of how the shifting is done, recent
psychophysical data are inconsistent with this strict
coarse-to-fine sequential model (McKee & Mitchison,
1988; Mowforth et al, 1981; Mallot et al., 1993;
Smallman, 1995).

A second form of multi-scale interaction, advocated in
this article, is a form of coincidence model. When
multiple scales and/or orientations produce strong
responses at similar disparities, then they support one
another. When peaks at several scales coincide, then they
sum to produce a stronger peak. The false peaks at one
scale will cancel with response minima at the other
scales.

The majority of V1 cells, including binocular cells, are
selective for orientation and spatial frequency, consistent
with the first stage of our model. Complex cells have
larger receptive fields than simple cells on average,
indicating that complex cells perform some amount of
local spatial pooling. However, simple and complex cells
appear to have similar bandwidths and frequency
selectivities (DeValois et al, 1982; Movshon et al.,
1978b; but see Hammond & Fothergill, 1994) and
therefore there is little evidence for pooling over scale
or orientation in V1. Indeed, we know of no physiological
evidence for pooling over scale and orientation in the
visual system to build disparity detectors.

In the barn owl auditory system, by contrast, one
transformation from the central to the external nucleus of
the inferior colliculus is the convergence of frequency
channels (Knudsen & Konishi, 1978; Knudsen, 1984).
There is a well-defined map of interaural time differences
in this nucleus and it is thought that pooling over
frequency helps to reduce ambiguities in this representa-
tion of interaural time differences (Wagner et al., 1987).
It is possible that there is no analogous map of disparity in
the visual system. Rather, since the hypothesized pooling
is a simple linear summation, it could be accomplished
concurrently with later stages of processing. For
example, an oculomotor neuron involved in vergence
eye movements might pool over scale indirectly from a
population of binocular energy neurons. The pooled
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signals would not be evident in responses in sensory
neurons.

7.5 Temporal aspects and response normalization

The model, as presented in this article, ignores several
significant aspects of neural responses, namely temporal
properties and response normalization. These issues
remain topics for further exploration, as do issues
concerning fusion, binocular rivalry and occlusion.

For example, the monocular linear neurons should
have spatiotemporal linear weighting functions, possibly
selective for direction and/or temporal frequency. Also,
the binocular energy neurons should pool over time as
well as orientation, scale and space. Pooling the binocular
energies over time would help to attenuate false peaks
like the pooling over space.

Another problem with the current model is the fact that
V1 cell responses saturate at high contrasts. To explain
response saturation and other violations of the linear/
energy models, we and others have recently proposed a
new model of V1 cell responses called the normalization
model (Robson et al., 1991; Albrecht & Geisler, 1991;
Heeger, 1991, 1992a, 1993; Carandini & Heeger, 1994).
We are extending the binocular linear and energy models
to include response normalization. Our preliminary
simulation results (Fleet et al, 1995) indicate that
appropriate normalization can account for a large body
of data, including the observed invariance with respect to
interocular contrast differences (Freeman & Ohzawa,
1990; Ohzawa & Freeman, 1994). The response normal-
ization also helps to attenuate the false peaks.
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APPENDIX

Density function for disparity from phase shifts

We derive a probability density function for disparity. We assume
the phase shift is given and that instantaneous frequency is
approximated by the frequency tuning of the underlying neuron. The
key relation is d = Ay/k, for disparity d, instantaneous frequency k and
the phase shift Ay.

The probability density function for instantaneous frequency is
available in analytic form if we assume the stimulus is mean-zero
white Gaussian noise. We assume for convenience that the power
spectrum of the linear neuron’s weighting function, denoted by P(w),
integrates to 1, with spectral mean u and variance o2 given by:

b= / lwP(W)dw, o* = / W P(w)dw — 12,

Under these conditions, the instantaneous frequency is a random
variable, and its probability density function can be shown to be
(Broman, 1981):

o2

k)= —————, Al

MO = o )

Figure 10(A) shows the probability density function for the

instantaneous frequency of the output of a Gabor filter with a

bandwidth of 1.0 octave. This distribution closely resembles the power

spectrum of the Gabor weighting function, but with somewhat longer

tails. This behavior generalizes to Gabor filters of other frequencies
and bandwidths of interest.

Given the density function for instantaneous frequency, one can use

the relation d=Ay/k to derive the following density function for

disparity:

i) = (%) (a2)

The behavior of the mean and SD of this distribution, for several
different phase shifts, is shown in Fig. 10(B).



