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Non-Fourier motion is now commonplace in research om visual motion perception, yet lacks a
computational framework. This paper examines this issue based on the observation that many
non-Fourier motion stimuli have a simple characterization in the frequency domain, in terms of
oriented power distributions that lie along lines (or planes) that do not pass through the origin.
This provides a unifying theoretical framework for a very diverse class of non-Fourier phenomena.
It also allows us to examine some central issues concerning the computational nature of non-Fourier
models, and naturally occurring sources of non-Fourier motion. For example, it is shown that the
orientation of power in frequency demain corresponds to the velocity of a multiplicative envelope, and
may arise as a restricted form of lighting effects, translucency or occlusion. We also show that both
the location and orientation of spectral power may be extracted from the phase and amplitude output
of band-pass filters, consonant with existing non-Fourier models.

Motion perception Fourier analysis

Multiplicative transparency Group velocity

1. INTRODUCTION

Fourier analysis plays an important role in psycho-
physics. It provides a powerful descriptive tool for a
wide class of important stimuli, and it proves to be a
convenient method of studying computational models.
The domain of visual motion is no exception, the central
idea being that a translating signal has all its non-zero
power concentrated on a line (or plane) through the
origin in the frequency domain (Adelson & Bergen,
1985; Fahle & Poggio, 1981; Fleet, 1992; Morgan, 1980;
Watson & Ahumada, 1985; Watson, Ahumada &
Farrell, 1986). There are however diverse classes of
stimuli, the perception of which appears inconsistent
with this Fourier-based perspective. Such signals, often
referred to as non-Fourier stimuli, include drifting
amplitude (contrast) envelopes, sinusoidal beats (e.g.
Derrington & Badcock, 1985), sampled (aliased) motion
(e.g. Nishida & Sato, 1992), drift-balanced stimuli
(Chubb & Sperling, 1988), and theta motion (Zanker,
1993). Although they have become a major focus of
research, a unifying theoretical framework is lacking.

To address this issue, this paper presents a compu-
tational perspective on non-Fourier motion. Contrary to
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iFor example, with reference to amplitude-modulated sinusoidal
signals and beat patterns, Chubb and Sperling (1988, p. 1986) wrote
“certain sorts of apparent motion cannot be understood directly
in terms of their power spectra’”.

current beliefs,] it is shown that a wide class of non-
Fourier motion stimuli have a relatively straightforward
characterization in the frequency domain. Current
Fourier-based theories refer mainly to locations of
power in frequency domain, where velocity is determined
by the slope of the line (or plane) through the origin
along which the power is concentrated. In examining
various non-Fourier stimuli we have observed that it is
also helpful to consider the orientation of the local power
distribution in the frequency domain. When power is
concentrated about a line that does nor pass through the
origin in the frequency domain, the orientation of the
power distribution yields the velocity of a multiplicative
amplitude envelope, analogous to the classical notion
of group velocity in the theory of wave propagation
(e.g. see Whitham, 1974).

Using this perspective we examine a variety of
non-Fourier stimuli, and in doing so we suggest
that the orientation of power in the frequency domain
captures an essential property of these stimuli that is
central to non-Fourier motion perception. The same
perspective also allows us to examine the possible
sources of non-Fourier motion that occur in natural
images. It is shown for example that oriented power
in the frequency domain occurs as a special case of
nonlinear visual phenomena, including occlusion, light-
ing variations, and translucent effects, all of which
involve multiplicative signal interactions. When the
input involves the product of two signals, the orientation
of spectral power gives the motion of one of the two
signals.
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This paper also provides a computational basis for
the measurement of both location and orientation of
spectral power, based on the instantaneous phase and
amplitude behaviour in the output of band-pass filters.
Although it is shown that there are several ways to
extract location and orientation of spectral power in
frequency domain, in this paper we concentrate on the
notion that the phase component of the filter output can
be used to determine peak spectral locations, while the
amplitude of the filter output provides information
concerning the "distribution of power about the peak
spectral location. Amplitude is therefore shown to be an
appropriate source of information from which to extract
group velocity, which is consistent with the basic struc-

ture of current models of non-Fourier motion that”

involve some form of post-filtering nonlinearity (e.g.
Wilson, Ferrera & Yo, 1992).

In this computational framework, constraints
(measurements) on velocity may arise from both the
phase and amplitude of single band-pass channels. It is
shown that only in the case of coherent image translation
will both the phase and amplitude velocities coincide.
In other cases the interpretation of such constraints is
more complicated. In some of the more interesting
non-Fourier stimuli it appears that while different
channels suggest different phase-based velocities, they all
suggest a common group velocity; that is, although
power is widespread throughout the frequency domain,
it is strongly oriented in a single direction which corre-
sponds to the amplitude envelope. In other cases the
fine structure and amplitude envelopes are readily
perceived transparently, suggesting that phase and
amplitude structure of band-pass channels represent
somewhat independent sources of information in the
visual system.

The goal of this paper is to draw attention to the
orientation of power in frequency domain as a tool to
examine non-Fourier stimuli, the possible sources of
non-Fourier motion, and non-Fourier models. We also
suggest that the phase and amplitude components of the
output of band-pass filters are primary sources of visual
information that are relevant for motion perception
across a wide range of stimuli. This does not mean
that we believe that phase and amplitude are explicitly
represented in the visual system. Rather, we suggest
that they are relevant sources of information at the
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abstract computational level of analysis outlined by
Marr (1982).

2. FREQUENCY ANALYSIS AND VISUAL MOTION

We begin with a review of the relevant Fourier theory,
including an introduction to the classical notions of
phase and group velocity from the theory of wave
propagation (Brillouin, 1960; Whitham, 1974). With
these basic tools we then examine a variety of non-
Fourier motion stimuli, showing that Fourier analysis
may indeed be an appropriate form of analysis in many
cases.

Although we examine these issues with one-
dimensional (1-D) signals, the main concepts generalize
straightforwardly to 2 dimensions. The main difference
in 2 dimensions, which is beyond the scope of this paper,
concerns the aperture problem, the integration of differ-
ent constraints to solve for the direction and speed of
2-D velocity.

2.1. Image translation and phase velocity

The main observation inherent in the use of
Fourier analysis for visual motion has been the fact
that a signal translates coherently with velocity v if and
only if all its non-zero power lies along the line through
the origin in frequency domain given by kv +w =0,
where k£ and w denote spatial frequency and temporal
frequency variables. (A proof of this given in Appendix
Al for completeness.) This means that all Fourier
components, sin(k,x + w,t), of the translating signal
have frequencies (k,, w,) that satisfy kyv + w,=0. The
velocity v = —ay/k, of a drifting sinusoidal grating is
sometimes called phase velocity because it corresponds
to the velocity of points of constant phase (e.g. the
zero-crossings, crests, and troughs). To see this, note
that the paths of constant phase for sin(kyx + w,t) are
given by

kox +wyt =c, ey

where ¢ is a real scalar. Differentiating (1) yields
the velocity: v =dx/dt = —wy/k,. This illustrates the
well-known relation between temporal frequency, spatial
frequency, and phase velocity, as illustrated in Fig. 1.
Accordingly, one working hypothesis of perception
research has been that motion perception is determined

FIGURE 1. A drifting sinusoidal grating with spatiotemporal frequency (k,, w,) corresponds to an impulse of power in the
frequency domain. Its velocity is called phase velocity, and is determined by its location in frequency domain, as in
v = —y/ky= —tan(d,).
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FIGURE 2. When power lies along a 1-D curve in the frequency domain (the solid line segment), phase velocity for each

frequency component is determined by the orientation of the vector from the origin to that point in frequency domain:

v, = —tan(0,). Group velocity is given by the orientation of the power distribution: v, = —tan(0,). The diagram on the right
depicts these two velocities as direction vectors in space-time.

primarily from the location of power in frequency
domain, that is, by the phase velocities of dominant
spectral concentrations (Morgan, 1980; Adelson &
Bergen, 1985; Watson & Ahumada, 1985). Chubb and
Sperling (1988) have since referred to this as the motion-
from-Fourier-components (MFFC) principle.

The facts that coherent image translation has a simple
representation in the Fourier domain, and that several
computational methods may be used to estimate it, are
now well-known. The main methods include correlation-
based methods (Reichardt, 1961; van Santen & Sperling,
1985), differential methods (Adelson & Bergen, 1986;
Srinivasan, 1990), energy-based methods (Adelson &
Bergen, 1985; Watson & Ahumada, 1985; Heeger, 1987)
and phase-based methods (Fleet & Jepson, 1990; Fleet,
1992). Although these different approaches to the
measurement or detection of image motion may differ,
they are currently thought to be broadly equivalent
insofar as they are based on a model of coherent image
translation. In effect, they all measure some approxi-
mation to the line (or plane) through the origin of the
frequency domain that contains most of the spectral
power. In current terminology, coherent image trans-
lation has become known as Fourier motion, and these
methods of detection or measurement are called Fourier-
based methods.

2.2. Group velocity

But there remain several phenomena that appear
inconsistent with this Fourier-based framework. These
include the perceived motion of amplitude envelopes,
sinusoidal beats, drift-balanced stimuli, second-order
motion, sampled (aliased) motion and various multi-
plicative transparent phenomena. As an idealization of

*A wonderful example of this has been created by Freeman, Adelson
and Heeger (1991) for computer graphics with a stationary
envelope centred on the edges of a figure, with a time-varying phase
component. Observers enjoy a sensation of motion due strictly to
the local phase velocities, although the locations of power at the
edges are stationary.

+To see this, remember from the convolution theorem that the Fourier
transform of a product is the convolution of the individual Fourier
transforms, and that the Fourier transform of the sinusoid is a pair
of impulses.

these phenomena, we consider a model that stems from
the concept of group velocity from the theory of wave
propagation in dispersive mediums (Brillouin, 1960;
Whitham, 1974). While the notion of phase velocity
is associated with the location of power, group velocity
is related to the orientation of power distributions in the
frequency domain (as in Fig. 2), and can be shown to
correspond to the velocity of a multiplicative amplitude
envelope.

In strict terms, as discussed in Appendix A2, group
velocity is relevant when all power lies along a 1-D
curve (called a dispersion relation) through the Fourier
domain, the orientation of which determines group
velocity. If the curve is expressed with temporal
frequency written as a function of spatial frequency,
i.e. w(k), then group velocity is defined as

o) o

dk

Appendix A2 derives this definition and shows that v,
gives the velocity of a multiplicative amplitude envelope.
The concentration of power along a 1-D curve in the
frequency domain is of course an idealization, as is
the notion of power concentrated along a line through
the origin in the case of coherent translation. For
our purposes the important observation is the oriented
nature of the power distribution, the orientation of
which corresponds to the motion of an amplitude
envelope; Appendix A3 explains that similar conclusions
hold if power is concentrated near a line in the frequency
domain.

As a simple example of these ideas, consider a
modified Gabor function (Gabor, 1946) in which the
Gaussian envelope G (x) moves with one velocity while
the sinusoidal fine structure sin(k,x) moves with
another:*

I(x,1)=G(x —v,t)sinky(x —0,1). 3)

As shown in Fig. 3, the amplitude spectrum of (3)
consists of two 1-D Gaussian distributions centred at
frequencies + (ko, kyv,), oriented with slope —u;.t
The locations of the power distributions correspond to
the scale and velocity of the sinusoidal fine structure,
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FIGURE 3. The modified Gabor function (A) has the Gaussian envelope drifting to the right while the sinusoidal fine structure
drifts to the left. Its amplitude spectrum (B) shows power concentration along a line that does not pass through the origin.
The origin is in the centre of the image.

while the orientation of the power distributions deter-
mines the envelope (group) velocity v,.

In this case, because power lies along a line,
the group velocity is constant for all frequencies.*®
However there may be a wide range of phase velocities.
To see this, consider Fig. 4 which is an extreme
example of (3) in which the Gaussian shrinks to an
impulse:

I(x, 1) =0(x —vt)sin(x —v,1), 4

where 6 (x) is a Dirac delta function. In effect, this
space—time sinusoidal profile could be a 1-D slice from
any one of an infinite family of sinusoids, three of which
are shown in Figs 4C-E. Every sinusoid in the family has
a different space-time orientation (i.e. phase velocity)
and a different wavelength.f Together, they represent all
the frequencies that make up the Fourier transform of
(4), shown in Fig. 4B. However, while the collection
of non-zero frequencies include a wide range of leftward
and rightward phase velocities, they all lie along
lines with an orientation that is consistent with the
space-time path of the amplitude envelope, that is, the
group velocity v,.

Interestingly, if and only if the power is oriented
along a line passing through the origin will the
group velocity equal the phase velocity for all frequen-
cies, and the signal therefore translates coherently.
Otherwise, like the modified Gabor function above,
or like a large spotlight moving over a scene, the
orientation of the power in the frequency domain (group
velocity) corresponds to the motion of the amplitude
envelope.

*If the power were to lie along a curve rather than a line, as with many
dispersion relations, then the group velocity is only relevant to a
small band of frequencies where the dispersion relation is nearly
linear.

tThis is also an idealization of the randomly contrast-reversing bar
described Chubb and Sperling (1988, Fig. 2).

{The wavelength decreases as the cosine of the angle between the
sinusoid orientation and the 1-D intensity profile.

2.3. Relevance of frequency analysis

Before continuing with an examination of non-
Fourier stimuli it is essential that we qualify the use of
Fourier analysis. Fourier analysis is global in nature and
therefore most appropriate for stationary signals, where
the expected behaviour in one region is similar to that
in neighbouring regions. Although images are typically
nonstationary, these simple Fourier descriptions provide
a convenient idealization for the development and un-
derstanding of both stimuli and computational models.
We do not expect amplitude spectra of natural images to
be concentrated along 1-D curves. Rather, we view these
cases as idealizations of local visual phenomena, as
a convenient way of predicting the behaviour of the
output of band-pass filters. Even the common idea of
power concentrated along a line through the origin, for
example, should be viewed as an idealization of local
coherent translation.

As a consequence, because of various global effects, it
is often not possible to easily predict local behaviour
from a Fourier transform. For example, with random
patterns there are very often dominant scales in local
regions while globally the power appears flat, thus hiding
dominant local spectral peaks. Another global artifact is
the introduction of horizontal and vertical power caused
by intensity discontinuities between top-bottom and
side-to-side image borders (since the Fourier transform
assumes a periodic signal). Thus, it is important to stress
that Fourier analysis should only be used to analyze
global idealizations of local phenomena, since we expect
our computational models and measurement processes
to be local. As discussed in Appendix A3, the occurrence
of group velocity will only be evident in the Fourier
domain when the envelope shape changes slowly
through time, the underlying structure has band-pass
spectral peaks, and the signal is stationary.

3. NON-FOURIER STIMULI

With the ideas of location and orientation in the
frequency domain, corresponding to the notions of
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FIGURE 4. A sinusoidally-modulated translating impulse is shown (A) with its amplitude spectrum (B). The spectrum lies

along a line that does not contain the origin. The origin is in the centre of the image. The orientation of the line determines

the velocity of the path of the amplitude modulated line. The bottom row shows three of the Fourier components contained
in the original signal.

phase and group velocity, we now examine several
non-Fourier stimuli.

3.1. Beats

Sinusoidal beats (or interference patterns) are formed
easily with a sum of two or three sinusoidal gratings, and
have been used often in psychophysical experiments (e.g.
Derrington & Badcock, 1985; Turano & Pantle, 1989).
They are also used to introduce the concept of group
velocity in elementary physics textbooks. In the simplest
case, beats may be formed with the superposition of two
sinusoidal signals:

I(x, t) =cos(k, x + wt) + cos(k,x + w,t).  (5)
The Fourier transform of (5) consists of impulses
at locations +(k,, w,) and +(k,, w,). Using trigono-

(A)

FIGURE 5. Two sinusoidal gratings are shown in (A) and (E), with their superposition in (C).

metric identities, it is also straightforward to show that
(5) is equivalent to

I(x, 1) = 2 cos(Akx + Awt)cos(kx + i), (6)

where Ak = (k,— k)2, Aw =(w,— )2, k =(k,+
k)/2, and @ = (w, + w,)/2. As illustrated in Fig. 6, the
difference frequencies, Ak and Aw, are referred to as beat
frequencies, and correspond to the vector from (k,
w,) to (k,, m,), that is, the orientation of the power
distribution. Accordingly the beat (or group) velocity is
— Aw /Ak. The average frequencies, k£ and @, are referred
to as carrier frequencies, and represent the center of the
power distribution. The carrier velocity is similarly given
by —a/k.

Equations (5) and (6) show that there are two
mathematically equivalent representations for such
signals. Yet Fig. 5 shows that in certain cases our

(B) (©
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FIGURE 6. With two sinusoids of nearby frequencies, the centre of
the power distribution is known as the carrier frequency, while the
orientation of the power distribution is known as the beat frequency.

perception reflects a beat/carrier representation. In this
case the low-frequency beats and the higher frequency
carrier are clearly evident, even though the carrier has
no corresponding frequency component in the Fourier
transform of the signal (5). Furthermore, it is interesting
to note that the perceptual dominance of the beat/carrier
representation only occurs when the two frequencies
are reasonably close. If the frequencies are sufficiently
different, then the signal becomes somewhat ambiguous
with the individual sinusoids appearing to dominate. As
discussed in more detail in Section 4.6, this suggests a
model in which the beats and carrier might be available
only when the two sinusoids fall within the tuning range
of a single channel.

Derrington and Badcock (1985) were among the first
to notice that the human visual system can separate
beats and carrier, with time-varying 1-D stimuli com-
posed of two sinusoidal gratings as in (5). For certain
combinations of frequencies humans perceive the modu-
lating envelope (the beats) sliding coherently over a
sinusoidal background, as suggested by the signal shown
in Fig. 5. The perception of such stimuli is not easily
accounted for by the MFFC principle because there is no
sinusoidal component in the stimulus that corresponds
to either the beat frequency or the carrier frequency.
In fact, the beat frequency is often very far from
the frequencies of the two component gratings, and
appears to be extracted by a different mechanism than
the sinusoidal fine structure (Derrington & Badcock,
1985).

Three component sinusoidal beats were used by
Turano and Pantle (1989):

I(x, 1) =[1.0 4+ a cos(Akx + Awt)lcostkx + @t), (7)

where |a| < 1.0, Aw « @, and Ak «k.* They showed that
detection thresholds for drifting envelopes (beats) can be
substantially lower than those of single sinusoidal
gratings (of similar frequency), while velocity difference
thresholds for envelopes and sinusoidal gratings of the
same frequency are very similar. Among the possible
explanations outlined by Turano and Pantle (1989) is the

*This is often called a side-band signal since it contains three frequen-
cies, the central one of which, (k,, w,), coincides with the carrier.
In some ways the two component case is more interesting because
the perceived fine structure does not coincide with either of the two
component sinusoids.
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hypothesis that there exist two motion channels, one that
acts on image intensity and another that acts on the
amplitude of the intensity modulation.

3.2. Sampled motion stimuli

In a very different context, Nishida and Sato (1992)
suggested that non-Fourier motion may help explain
human motion perception when a spatially band-pass
signal is displaced by more than half a cycle of the lowest
frequency in the pass-band. Recent debates have been
focussed on whether or not the maximum displacement
of band-pass noise that elicits a coherent motion percept
(referred to as D,,,) is larger than one half cycle of its
lowest frequency (Cleary & Braddick, 1990; Braddick &
Cleary, 1991; Bishof & DilLollo, 1990, 1991). Nishida
and Sato (1992) showed that as spatial displacements
increase beyond the half-cycle threshold, the behaviour
of aftereffects is very different than that associated with
coherent translation. The lack of aftereffects is more
consistent with known results concerning envelope
motion (Derrington & Badcock, 1985), and they there-
fore suggested this as evidence for the influence of a
non-Fourier channel.

The stimuli used by Nishida and Sato (1992) involved
a band-pass spatial signal that was held constant for a
short period (128 msec in their case) and then shifted
by about half a cycle of the lowest frequency,
with essentially no delay between frames. As explained
in detail in Appendix B, such signals can be viewed
as temporally undersampled versions of continuous (co-
herent) image translation. The degree of undersampling
(or aliasing) is a function of the magnitude of the
displacement d, the duration of each frame Ar, and the
spatial wavelengths present in the signal. The corre-
sponding continuous velocity is v, = d/At.

Figure 7A shows such a stimulus, with spatial wave-
lengths between 6 and 8 pixels, and a shift of 4 pixels
(half of the longest wavelength) that occurs every 4
frames in time. The Fourier transform of this stimulus
is shown in Fig. 7B, and reveals local concentrations of
power, each of which is strongly oriented in a direction
consistent with the continuous velocity v, of the sampled
signal. Appendix B shows that the positions and orien-
tations of these power concentrations are determined
by the continuous velocity v, and the sampling interval
At relative to the wavelengths in the signal. The multiple
line segments of non-zero power are replicas of the
power spectrum of the continuously moving signal
(which satisfies @ + kv, =0), caused by the discrete
temporal sampling. Normally, with sufficiently high
sampling rates relative to the velocity v,, these replicas
cannot be seen because of resolution limits of the visual
system (Burr, Ross & Morrone, 1988; Watson et al.,
1986). However, by increasing the velocity ». with the
sampling interval held constant, or by increasing the
sampling interval Ar, spectral power to which we are
sensitive can be introduced far from the original line of
non-zero power @ + kv, = 0. Finally, it is also evident,
from Fig. 7B that power decreases with increasing
temporal frequency; as explained in Appendix B, this is
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FIGURE 7. The amplitude spectrum (B) of this rightward stepping band-pass signal (A) contains several concentrations of

power, each of which has an oriented distribution consistent with the rightward velocity. One of these power concentrations

lies on the line through the origin that is also consistent with the rightward velocity. The concentration with the largest energy
suggests leftward motion according the MFFC principle.

caused by each frame being held static over the sampling
interval At.

From the Fourier perspective, with the notions of
location and orientation of power distributions in the
Fourier domain, subsampled motion provides an inter-
esting collection of stimulus conditions and effects, a
detailed examination of which is somewhat beyond the
scope of this paper. However, the notion of orientation
in frequency domain helps show that there is infor-
mation present in these signals about the original direc-
tion of motion in the form of group velocity. If the
replications of power are sufficiently far apart relative to
the tuning of different channels, the response in each
channel will exhibit the same group velocity. Conversely,
their phase velocities will indicate a wide distribution of
power, inconsistent with a single Fourier motion. The
case shown in Fig. 7B is also interesting because the
line segment with the largest energy has phase velocities
consistent with leftward motion, while all the group
velocities suggest rightward motion. With this particular
input, although the motion is somewhat ambiguous,
there is a dominant percept of rightward motion.

3.3. Drift-balanced stimuli

Another well-known example of non-Fourier motion
is the class of drift-balanced stimuli, popularized by
Chubb and Sperling (1988, 1989). They constructed
ensembles of drift-balanced stimuli so that, on average
over each ensemble, there is as much Fourier power
supporting leftward motion as rightward motion in the
sense of phase velocity and the MFFC principle. That is,
the expected (average) amplitude spectrum E[A4 (k, w)],
where E[-] denotes mathematical expectation, is sym-
metrical about the spatial frequency axis:

E[A(k, )] = E[A(k, —®)]. ®)

According to the MFFC principle there should be no
preference for any particular direction of motion since
phase velocities are symmetrically distributed over the
ensembles for leftward and rightward motion. However,

with several ensembles of drift-balanced stimuli, Chubb
and Sperling showed that these stimuli can elicit a
consistent motion percept (to varying degrees depending
on the ensemble).

To understand the motion percept with drift-balanced
stimuli it is instruciive to examine the amplitude
spectra of individual samples from an ensemble of
inputs. In several of these ensembles one can show
that the individual amplitude spectra exhibit significant
elongation of the power concentrations. Moreover
such power orientations are constant throughout the
ensemble, and are consistent with the observed direction
of motion. In other words, although power is symmetri-
cally distributed and nearly flat throughout the fre-
quency domain on average, it may still be highly oriented
in individual samples or in local regions.

For example, consider the rightward-stepping
randomly contrast-reversing bar depicted in Fig. 8A,
following Chubb and Sperling (1988, Fig. 4a). This may
also be described as a drifting spotlight that illuminates
a sequence of locations at which intensity is a random
variable. One can see from the Fourier transform in
Fig. 8B that power occurs on both sides of the spatial
frequency axis, suggesting that there are rightward
and leftward phase velocities. One can also see clear
oriented concentrations of power, which, as discussed in
Appendix A3, suggests that there is a single envelope
velocity that might be extracted from different band-pass
channels.

As explained in Appendix C, the amplitude spectrum
of Fig. 8A can be described in terms of the space—time
orientation of the path of the squares, the sequence of
intensity variations along the path, and the size of the
squares. The space-time orientation of the path (at 45°)
determines the dominant orientation of the amplitude
spectrum (i.e. its level contours at —45°). The 1-D
intensity variation along the path determines the profile
of the amplitude spectrum perpendicular to its level
contours; this causes the spectral peaks in Fig. 8B.
Finally, the shape and size of the squares determines the
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FIGURE 8. A sample from a drift-balanced ensemble is shown in (A) with its amplitude spectrum in (B). The spectrum shows
no significant power concentration along a line through the origin, but it does exhibit peak concentrations with orientations
consistent with the rightward motion of the bar.

overall patterns of zero power which remain the same for
all stimuli in the ensemble.

Unfortunately, the drift-balanced stimuli of Chubb
and Sperling do not lend themselves easily to Fourier
analysis as a way of understanding the local behaviour
of the signal. This is true for example of the sinusoidally-
modulated noise as well as the contrast-reversing bar. As
discussed in Section 2.3, for non-Fourier stimuli such as
the drift-balanced stimuli used by Chubb and Sperling,
we would only expect power to be concentrated
about isolated lines in frequency domain when the fine
structure has distinct peaks of spectral power, and when
the shape of the envelope changes slowly through time.
Although these conditions do not exist globally in most
cases, they do exist in many local regions. For example,
Fig. 9 shows two windowed portions of the stimulus in
Fig. 8 and their amplitude spectra. The local structure
in the first case suggests coherent translation since most
of the power lies along a line through the origin in
frequency domain. The structure in the second case does
not reflect coherent translation since the power does not
lic along a line through the origin. However, it is clear
that the orientation of power remains the same in both
cases, suggesting a common group velocity that is
consistent with the motion of the bar,

It is important that one consider local analyses of such
stimuli, or construct idealizations whose global structure

(A) (B)

is characteristic of local behaviour. One idealization of
the rightward-stepping randomly contrast-reversing bar
is the sinusoidally modulated path shown in Fig. 4A.
Another idealization is given in Appendix C. Interest-
ingly, not only do these idealizations follow from
the model, we often find them to be more compelling
demonstrations of non-Fourier motion.

3.4. Sources of non-Fourier motion

Non-Fourier stimuli such as these are often associated
with the motion of texture boundaries, or the motion
of motion boundaries. The sinusoida! beats and the
modified Gabor function discussed above show that
the non-Fourier components of the signal (the beats)
can also be perceived transparently, sliding over
some fine structure. From this perspective, it is import-
ant to examine the conditions under which oriented
structure in the frequency domain will arise from
similar naturally occurring visual signals, such as
the occlusion of one surface by another, multiplicative
transparency, and the non-linear transmission of light
through textured translucent material, such as stained
glass.

3.4.1. Transparency. Perhaps the simplest case to con-
sider first is a multiplicative form of transparency (or
translucency). For example, assume that a surface with
radiance /;(x) is viewed through a (non-refractive)

(C) (D)

FIGURE 9. The left two images, (A) and (B), show Gaussian windowed regions of the sample of a drift-balanced ensemble

shown in Fig. 7. The right two images, (C) and (D), show their amplitude spectra. It is clear that some regions such as that

shown in (A) reflect coherent translation because power is concentrated along a line through the origin. In other regions, such
as that in (B), power is still oriented in the same direction, but no longer passes through the origin.
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translucent material with density py(x). If both are
moving, we might write the intensity input as

I(x, 1) = po(x —vo ) (x —v1), )

In practice we expect 0 < py(x) < 1 so that sign changes
in the radiance I,(x) are not caused by the translucent
material. Thus, we can reexpress po(x) as a constant y
plus a mean-zero term p(x), yielding

I, )=y (x —v; ) + p(x —v0) [ (x —vy7), (10)

where 7 is the mean value of py(x), and p(x)=
0o(x) — 7. Interestingly, some of the non-Fourier stimuli
above contain only the product term, and therefore
violate this condition.

From the results of Appendix Al and the convolution

theorem one can show that the Fourier transform of
(10) is

Ik, ) =9I, (k) 6§ (0 + v,k)
+[pk) (@ + vk)] * [, (k)6 (w + v, k)], (11)

where & (k) is a Dirac delta (impulse) function, and =
denotes convolution. The first term represents power
concentrated along a line through the origin of the
frequency domain that is consistent with the velocity v,
of the background radiance pattern.

The velocity of the transparent material v, occurs
only in the second term, which is the convolution of
the Fourier transforms of p(x —v,t) and I,(x —v,1).
As shown in Fig. 10, this convolution in the frequency
domain will introduce power relatively far from the lines
o = —vok and @ = —ov k. However, because it is a
convolution of 1-D profiles it exhibits simple structure
in certain situations. For example, notice that if the

" intensity I,(x) is slowly varying compared to p(x),
then the Fourier transform of the product in (10) will
have power concentrated about the line w = —uvyk,
consistent with the velocity of the transparent signal.
Second, if one of the two 1-D spectral profiles, for
example, /1, (k), exhibits a spectral peak, then power will
be spread along a line in frequency domain that is
consistent with the motion of the other signal, in this
case parallel to the line = —uvyk as shown in Fig. 10.
In these special cases the local power distributions will
be highly oriented, and the orientation will correspond

Sum

k
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directly to the velocity of one of the two multiplicative
signals.

When the local spectra of both signals are flat and
nonzero, then power will be not be restricted to lines in
frequency domain. In these cases the simple notion of
group velocity becomes inappropriate, and the compu-
tational models that follow from it will not yield the
velocities of the component signals. Therefore, it is the
relative spectral distributions of the two signals that
determines how readily their motions can be extracted
based on the orientation of power in the frequency
domain.

3.4.2. Occlusion. Occlusion can be modelled locally in
a similar manner. Consider an object with velocity v,
that occludes a background with velocity v,. Let ;(x)
and I,(x) denote the intensity profiles of the occluding
object and the background, and let y(x) denote a
characteristic function that specifies the region of space
occupied by the object:

1 if location x is occupied by the object
x(x)= .
0 otherwise.
(12)
The combined intensity pattern consists of the back-

ground, plus the object, minus the region of the back-
ground occluded by the object:

I(x,t) = Ij(x —vyt) + I, (x —vy,t)

—x (x — vy ), (x — vyt).

As above, the Fourier transform of (13) is
Ik, w) = Iy(k) 6 (0 + vok) + I, (k) 6 (0 + vpk)
— [ (k) 6 (@ + vok )] # [y (k) & (@ + v,k)]. (14)

The first two terms are the Fourier transforms of the
object and background. The third term represents the
multiplicative distortion caused by the occlusion. In
this case the multiplicative term includes the intensity
profile of the background and the characteristic function
¥ (x). The intensity profile of the foreground j(x) does
not appear in the multiplicative term.

The theta motion stimuli of Zanker (1993) provide
interesting examples of non-Fourier motion that involve
occlusion, although they are somewhat more complex

(13)

Product @ 4

/

1

k

FIGURE 10. When two signals are combined additively, the resultant Fourier transform is the sum of the two individual

Fourier transforms. When two signals are combined multiplicatively, the resultant Fourier transform is the convolution of the

two individual Fourier transforms. This shows the Fourier transforms of a sum and a product of two signals, one of which
has a distinct spectral peak.
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(A)

(C)
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(D)

FIGURE 11. The first image (A) shows an instance of a drifting occlusion window, like the theta motion stimuli of Zanker
(1993). The other stimulus (B) is an idealization of theta motion in which the random dots within the moving window are
replaced by a sinusoidal grating. The amplitude spectra of the two images are shown below in (C) and (D).

than the model in (13). As shown in Fig. 11, the
occlusion window in theta motion stimuli moves inde-
pendently of the foreground and the background, and
may be expressed as

I(x, 1) = x (x — v, ), (x —vy1) + L, (x — v, 1)
— 1 (x —v, ), (x —v,1). (15)

There are now three velocities and two multiplicative
terms. The Fourier transform of Fig. 11A is shown in
Fig. 11C, and not surprisingly, does not clearly exhibit
a group velocity that is consistent with the motion of the
occlusion window. The apparent lack of group velocity
is due to the variations in local scale throughout the
stimulus that tends to flatten the amplitude spectrum.
However, from the arguments above, group velocity
should appear as we introduce a spectral peak into
the foreground or the background. Toward this end,
Fig. 11B shows a somewhat idealized version of theta
motion in which the occluding foreground pattern is
replaced by a sinusoid. The resulting Fourier transform
in Fig. 11D now clearly shows a group velocity that
is consistent with the moving occlusion window. Inter-
estingly, we also find that such idealizations provide a
more compelling percept of the window’s motion.

In summary, it appears that group velocity may be
viewed as an idealization of a restricted class of multi-

plicative transparency and occlusion due to multiplica-
tive combinations of signals. It occurs when one of the
multiplicative intensity patterns exhibits a local spectral
peak, in which case the group velocity yields the velocity
of the other multiplicative component. This raises the
question: is the occurrence of group velocity (locally)
important or necessary for multiplicatively combined
signals to be perceived individually in a coherent
manner? Does this characterize the class of multiplica-
tive signal combinations that can be perceived transpar-
ently, or is the visual system able to interpret wider
classes of multiplicative motion?

4. COMPUTATIONAL MODELLING

To model the perception of non-Fourier motion stim-
uli, various authors have suggested that there may be
two channels (e.g. Chubb & Sperling, 1988; Turano &
Pantle, 1989; Wilson er al., 1992; Zanker, 1993), as
illustrated in Fig. 12. One channel, referred to as the
Fourier motion channel, involves one of the standard
methods of measuring coherent image motion (called
Fourier-based mechanisms), such as correlation or
energy-based schemes, applied directly to intensity. The
other channel, called the non-Fourier channel, involves
spatiotemporal band-pass filtering followed by some
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FIGURE 12. This illustrates the two-channel model.

form of non-linearity, the output of which is then fed to
a standard Fourier-based mechanism.t

The principle differences among the models concern
the nature of the initial filtering and the nonlinearity
in the non-Fourier channel. Chubb and Sperling
(1988, 1989) suggested that the initial filtering involves
a limited form of band-pass filtering, followed by a
rectifying nonlinearity. The filtering is relatively broad-
band, and is used to remove mean illumination and
to enhance band-pass temporal structure; they have
suggested different types of filters that appear suited to
different stimuli. Wilson ez al. (1992) proposed a model
in which the prefilters are the same oriented filters
as those in the Fourier channel, and the nonlinearity
is a simple squaring operation. Moreover, they
extended the two channel idea to account for the extrac-
tion of 2-D velocity, combining 1-D constraints from
both channels. The results appear to account for a
wide variety of phenomena, along with several predic-
tions that help to support the model (Wilson & Mast,
1993).

Closely related to the Fourier/non-Fourier distinction
is the first-order/second-order distinction proposed
by Cavanagh and Mather (1989). They describe first-
order motion as motion available directly from intensity,
and the second-order motion as the motion derived
from other stimulus properties, such as the motion of
textured boundaries, or occlusion boundaries. In prac-
tice this resembles the two-channel models mentioned
above.

The remainder of the paper examines the relationship
between such computational models and the notion of
oriented power in the frequency domain. Towards this
end, we consider the information available in band-pass
filter responses. Our approach is based on quadrature-
pair filters, assuming that velocity measurement is a local

tThese two channels are sometimes referred to as linear and non-linear
respectively, referring mainly to the preprocessing that precedes
the velocity computation, but this can be misleading since both
channels, in their entirety, involve significant nonlinearities.

IAlthough Gabor filters are not quadrature pairs, they provide a
reasonably good approximation for sufficiently small bandwidths
of about 1 octave or less.

process at its primitive level. We focus mainly on the idea
that the phase component of the filter output is related
to phase velocity (the localization of spectral peaks), and
the amplitude component is related to group velocity
(the orientation of power). This view is consonant, but
different in detail, with current models of non-Fourier
motion (Chubb & Sperling, 1988, 1989; Wilson et al.,
1992).

It is important to remember that this is an abstract
framework from a computational perspective (Marr,
1982). We do not suggest that phase and amplitude
are explicitly represented at the neural level. Rather, the
model makes these principal sources of information
explicit, and therefore further aids understanding of
the stimuli and their relation to the models. We begin
by outlining the definition of the filters, and the
instantaneous phase and amplitude components of their
outputs. After discussing our reasons for examining a
representation based on phase and amplitude we discuss
the typical behaviour of phase and amplitude, especially
in the context of coherent image translation and group
velocity in a single channel.

4.1. Spatiotemporal band-pass filters

Although many properties of linear filters have been
discussed in the context of early motion perception, here
we assume only that the filters are band-pass, and occur
in quadrature pairs (that are approximately /2 radians
out of phase with similar amplitude spectra). For con-
venience, we view the quadrature pair of real filters as a
single complex-valued filter [where the imaginary part
of the filter is the Hilbert transform of the real part
(Papoulis, 1977)].

Let K(x,t; ko, ) be a complex-valued impulse
response, such as a Gabor function (Gabor, 1946),}
tuned to frequencies about (kq, ;). Imagine that its real
and imaginary parts are simply the cosine-phase Gabor
and the sine-phase Gabor respectively. The response to
K(x, t; ky, ®y) can be expressed as

R(x, 1) = K(x, 15k, ) % 1(x, 1), (16)

where = denotes the usual convolution operator, and
I(x, t) is the input. Because K(x, t; k,, w,) is complex-
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Im[R(x,t)] *
Band-pass Response

/ Re[R(x,t) ]

FIGURE 13. Response as a function of space-time is shown as a

counter-clockwise function in the complex-plane. Phase and amplitude

form a polar representation of the response, as a function of
space—time.

valued, (16) involves the convolution of both its real and
imaginary parts with I(x,t), and therefore yields a

complex-valued response R(x, t):
R(x,t)=Re[R(x, t)] + iIm[R(x, 1)], {17

where 2= —1. It is also convenient to express the
response in polar coordinates in the complex plane (see
Fig. 13) in terms of its amplitude and phase components,
p(x,t) and ¢(x, 1), as in

R(x, 1) = p(x, 1)e®9,
=p(x,t)cos dp(x, t)+ip(x, t)sin p(x, ), (18)

where amplitude and phase are simple functions of the
real and imaginary parts:

plx, 1) =|R(x, 1)
= /RelR(x, O + Im[R(x, 1]
¢ (x, 1) =arg[R(x, 1)]
=Im[log R(x, 1)} e(—mn, ]

(192)

(19b)

To emphasize the local nature of these response
properties, it is common to refer to ¢(x, ) and p(x, 1)
as instantaneous phase and amplitude.

The final concept we need here is instantaneous fre-
quency, which is defined as the derivative of instan-
taneous phase. More precisely, the spatial and temporal
instantaneous frequencies are

0P (x,t)

kx, 1) = F

&(x, 1) (20)

Od(x,1)
- a
To understand these definitions, remember that the
frequency of a sinusoidal signal refers to the reciprocal
of wavelength which is the distance between adjacent
crests. Alternatively, frequency may be thought of as
the rate of change of phase; where phase is a quantity
that varies linearly between —n and © over one wave-
length. As frequency increases, so does the rate of phase
variation as a function of spatial position. The definition
given in (20) measures the instantaneous rate of phase
change at each point, allowing frequency to change
through space-time.

DAVID J. FLEET and KEITH LANGLEY

4.2. Why phase and amplitude?

There are many ways to represent a complex-valued
band-pass signal, but two natural ones are apparent,
namely, in terms of its real and imaginary parts, or in
terms of its phase and amplitude. Our reasons for
choosing phase and amplitude stem from their tendency
to capture salient aspects of the signals. Phase gives
the local structure of response while amplitude gives
the strength of response (illustrated in Section 4.6.).
We feel that, in an abstract sense, this particular
representation of the filter output helps address ques-
tions concerning signal representation as well as motion
perception.

The use of quadrature amplitude is not new to models
of motion perception as it is central to energy-based
frameworks (e.g. Adelson & Bergen, 1985; Emerson,
Bergen & Adelson, 1992)]. The importance of phase has
also been noted previously. For example, Morrone and
Burr (1988) reported that phase coincidence across
several scales plays a major role in perceived salience
of image structure. This is especially true with phases
that are integer multiples of n/2, that are perceived
as edges and bars of different polarities. While the
relative magnitude of amplitude depends in part on the
degree of phase coincidence through scale, it is the local
phase behaviour that determines the structure and
polarity of the local signal. In the auditory domain,
representations of band-pass channels in terms of
phase and amplitude are commonplace. Interaural time
differences for auditory lateralization are usually associ-
ated with phase information, but it has also been
suggested that envelope may also play a significant
role (Bernstein & Trahiotis, 1982, 1985). This view
is also supported by physiological recordings (Yin,
Kuwada & Sujaku, 1984). Phase has also been proposed
recently to play a major role in the extraction of
binocular disparity in visual cortex, with cells show-
ing interocular phase-specific responses (Ohzawa,
De Angelis & Freeman, 1990; DeAngelis, Ohzawa &
Freeman, 1991). Finally, phase and envelope have also
been found useful in machine vision for motion analysis,
the measurement of binocular disparity, texture analysis,
and the extraction of lines and edges (e.g. see Barman,
Haglund, Knutsson & Granlund, 1991; Bovik, Clark &
Geisler, 1990; Fleet & Jepson, 1990; Fleet, Jepson &
Jenkin, 1991; Heeger, 1987, Jenkin & Jepson, 1991;
Langley, Atherton, Wilson & Larcombe, 1990; Sanger,
1988).

4.3. Behaviour of instantancous phase and amplitude

Before considering specific cases of visual motion, it is
useful to review some of the general properties of phase
and amplitude. In particular, a common observation
about band-pass signals, such as those shown in the
simulations in Section 4.6, is that their local behaviour
is approximately sinusoidal, with a frequency close to the
filter tuning, and a slowly varying amplitude. In terms
of instantaneous properties, this implies that ¢(x, t)
is predominantly linear and the amplitude p(x, ) is
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FIGURE 14. Multiplying the band-pass filter response R (x, 1) by a sinusoidal signal as in (21) will translate its amplitude
spectrum to the origin.

low-pass. A pure sinusoid, for example, has linear phase
and constant amplitude.

Recent results have shown that the spatiotemporal
extent within which phase is predominantly linear (and
hence the filter output nearly sinusoidal) increases as the
bandwidth of the filter decreases (Fleet & Jepson, 1993).
Moreover, the instantaneous frequency of the filter
output [i.e. the phase derivative (20)] will usually be
close to the filter tuning.* In fact it can be shown
that the average instantancous frequency (averaged over
space-time) is a measure of the location of the band-pass
signal’s spectral centre of mass (or peak energy concen-
tration) (Boashash, 1992). The specific relationship
between the instantaneous frequency at a point in space—
time, and local maxima in frequency domain of the
amplitude spectra of the local neighbourhood is not
precisely understood. Despite this, it is generally thought
that instantaneous frequency provides a measure of local
energy maxima in frequency domain.

Concerning the slowly varying nature of amplitude,
Knutsson (1982) derived an autocorrelation function for
p*(x, t) to show that it is low-pass, and that the mean
frequency of p(x, t) is zero. To see this from another
perspective, note that we can transform the Fourier
transform of R(x, t) into a low-pass signal by multiply-
ing it by a sinusoid, leaving its amplitude unchanged,
that is

M(x, t) = R(x, t)e~ ko) @2n

where (ky, w,) is the tuning frequency of the filter.
As illustrated in Fig. 14, the Fourier transform of
M(x, t) is simply the transform of R(x, 1) shifted to the
origin, M(k, ) = R(k +ky, o + w,) (Papoulis, 1977).
The demodulated signal M(x, ¢), with amplitude p(x, ),
is a low-pass signal, whose highest frequencies depend on
the bandwidth of the filter.

4.4. Coherent image translation (Fourier motion)

We are now ready to examine the behaviour of
instantaneous phase and amplitude when the input

*One can derive a probability density function for the distribution
of instantaneous frequencies for typical filters, thereby showing
that probability density is typically concentrated about the filter’s
tuning frequency, and its spread increases with the bandwidth of
the filter (Fleet, 1992).
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translates coherently, as in
I(x,t)=I{(x —vt,0). (22)

In this case, one can show that the response of any
convolution operator will also translate with the same
speed:

R(x,1)=R(x —vt,0) = p(x — vt, 0) e #>-0 (23)

where R(x, 0) is the spatial response profile at time 0.
Not surprisingly, this means that both the phase and
amplitude of the filter output also translate with
velocity v. In particular, it follows from (23) that

d(x,1)=d(x —v1,0)
p(x,t) =p(x —01,0).

One can then differentiate these equations with respect
to time to get the motion constraints

d)x(xa [) v+ ¢t('x7 t) =0,
p(x, 1) v+ p,(x,1) =0,

(24a)
(24b)

(252)
(25b)

from which velocity of instantaneous phase is v =
—¢x,0)/p.(x,1), and the amplitude velocity is
v=—p,(x 1)/p.(x, 1).

This shows that both the amplitude and phase out-
puts yield consistent velocity information. Also note
that because phase derivatives are just instantaneous
frequencies, the phase-based constraint in (25a)
resembles the relationship between Fourier components
and phase velocity discussed in Section 2.1. In other
words, given velocity v, all instantaneous frequencies lie
on the same line through the origin in the frequency
domain as do the Fourier frequencies of the original
translating signal. We conclude from (25) that the
coincidence of phase and amplitude orientations in
space-time is a useful constraint on the local coherence
of the signal.

4.5. Multiplicative envelope velocity (non-Fourier motion)

When all power in a single channel lies along a line
segment in frequency space, analogous to the simple
example of group velocity given in Section 2.2, one can
show that instantaneous frequency will lie somewhere
along the same line, depending on the distribution of
power, and the amplitude velocity can be shown to equal
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the group velocity, which depends on the orientation of
the line.

To see this, let all nonzero power in a filter output
R(x, 1) lie on the line in frequency domain through the
point (k,, w,) in direction (d,, d,,). All frequencies on the
line therefore satisfy

(k (@), o (@) = (ko, wo) + o (dy, d,,)

for some real-valued scalar «. If we demodulate the
filter output R(x, t) as in Section 4.3,

M(x,t) = R(x, t)e~ ot

(26)

27

which shifts the line segment in frequency domain
by —(kyx, w,), then the amplitude spectrum of M(x, t)
lies on a line through the origin with direction (d;, d,,).

Accordingly, Section 4.4. has already shown that
the amplitude and phase velocities of M(x, t) will be
the same, equal to v = —d,/d,. Since the amplitude
components of the M (x, 1) and R(x, t) are identical, the

amplitude velocity of R(x,t) will also be —d,/d,.
It therefore follows that
(px(x7 t)a pr(xa t))za(dk:dm)a (28)

- for some real «. The space-time orientation of the
amplitude response gives the group velocity.

The instantaneous phase velocity of R(x, t) is given by
instantaneous frequencies. From (27), with some alge-
braic manipulation, it follows that the instantaneous
frequencies of R(x, ) are related to the instantaneous
frequencies of M(x, ) by

(b:(x, 1), p,(x, 1))
= (k07 w()) + ('//x(-xs t)a !//t(x: t)):

where  (x, t) =arg[M(x, t)] denotes the phase com-
ponent of M(x, 1), and ¢ (x, t) = arg[R(x, t)]. Because
the power spectrum of M(x, ¢) lies on a line through
the origin in the direction (d,, d,), its instantaneous
frequencies lie along the same line. Therefore, we can
replace (. (x, 1), ¥, (x, t)) in (29) by o (d,, d,) where «
is a real scalar:

(¢x(xa y)s ¢,(X, t)) = (koa C00) +a (dk’ dw)

This shows that all instantaneous frequencies lie along
the original line of nonzero power (26). The distribution
of instantaneous frequencies along this line depends on
the concentrations of power (Fleet, 1992). Interestingly,
this means that the distribution of instantaneous fre-
quencies from a local collection of filter responses may
provide another source of information concerning group
velocity, and hence non-Fourier motion.

In practice we do not expect filter outputs to have
all their power concentrated strictly along line
segments in frequency domain. With this in mind,
Appendix A3 shows that the above results generalize
in reasonable ways. In particular, when power is con-
centrated near a line, it still follows that the dominant
orientation of the amplitude output of the filter in
space—time corresponds to the orientation of power in
frequency domain.

(29)

(30)
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4.6. Simulations

To complement the theoretical results, we now show
simulations of the behaviour of instantaneous phase and
amplitude from the output of band-pass filters when
applied to the stimuli examined in Section 2. We used
Gabor filters (Gabor, 1946) with isotropic Gaussian
windows, and bandwidths of one octave (measured at 1
standard deviation of the amplitude spectrum in fre-
quency domain). The simulations concentrate on the
phase and amplitude behaviour of the filter outputs
because they are directly related to phase velocity (lo-
cation of power in the frequency domain) and group
velocity (orientation of power in the frequency domain).

Figure 15 illustrates the response properties of
two filters applied to the plaid pattern shown in Fig. 5.
This signal consists of two sinusoidal components with
identical wavelengths, and orientations of 120° and 135°.
The first filter, tuned to 127.5°, is equally sensitive to
both sinusoidal components, and therefore they have
equal amplitude in the filter’s response. The other filter,
tuned to 140°, is more sensitive to the sinusoid with
orientation 135°, and this simply changes the relative
amplitudes of the two sinusoids in the filter’s response.
Figures 15A,D show the real parts of the filter outputs,
while Figs 15B,C and E,F show the corresponding
amplitude and phase components as functions of
space~-time. Upon brief inspection it is evident that the
amplitude signals appear to capture the beat—structure,
while the phase captures properties of the carrier (the
fine structure).

Examining these and other filter outputs in more
detail, one may observe that the space-time orientation
of the amplitude signal is stable over a wide range
of filter tunings, despite the variations in the relative
amplitude of the two sinusoidal components in the filter
responses. This is a consequence of the results in Section
4.5 that show that the amplitude orientation depends on
the orientation of (non-zero) spectral power in the
frequency domain, which does not depend on the ampli-
tudes of the sinusoids. In practice we expect that the
perceptual salience of the beats wiil however depend on
their magnitude and frequency which do depend on the
relative amplitudes and frequencies of the two sinusoids.
This becomes evident as the two frequencies become
increasingly far apart.

Interestingly, the phase structure in Fig. 15 signifi-
cantly depends on the relative amplitudes of the two
sinusoids in the filter output. When the amplitudes are
equal (in Fig. 15C), the instantanteous frequency (the
phase derivative) is constant, midway between the two
frequencies (except for the lines of phase singularities
along the amplitude troughs). When the amplitudes
differ (in Fig. 15F), the instantancous frequency varies
as a function of space—time, with its mean closer to the
frequency of the sinusoid with the larger amplitude. This
is especially noticeable in the amplitude troughs. But
remember that this variability is by no means random,
for the instantaneous frequencies extracted from all filter
outputs will lie along the line in frequency domain that
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(B) (C)

. (F,)

(E)

FIGURE 15. This figure shows responses of two one-octave Gabor filters applied to the beat pattern in Fig. 5, which consists

of two sinusoids with orientations 135° and 120°. (A) shows the real part of the response of filte: tuned to 127.5° (B) and

(C) show the corresponding amplitude and phase responses. (D), (E) and (F) show the real part, the amplitude, and the phase
responses of a filter tuned to 140°.

passes through the two impulses of power, as explained
in Section 4.5.

The next example, in Fig. 16, illustrates the amplitude
and phase behaviour of a Gabor filter applied to the
sampled motion stimulus from Fig. 7A. The filter is
tuned near one of the dominant spectral concentrations
shown in Fig. 7B, the frequencies of which have left-
ward phase velocities. Figure 16C shows that the
instantaneous phase of the filter output also implies a
leftward velocity. But the space—time orientation of
the amplitude response is consistent with the rightward
motion of the input pattern. For such stimuli, different
filters are expected to yield different phase velocities, but

()

the space-time structure of their amplitude responses
can be very consistent across a wide range of filter
tunings.

Of course, this stability of amplitude orientation
depends on the shape and size of the filters” power
spectra in relation to the power spectrum of the input (as
discussed in Section 4.5 and in Appendix A3). Here, the
filter’s bandwidth is one octave, in which case the filter
will respond significantly to only one concentration of
non-zero spectral power of the input (shown in Fig. 7).
Therefore, while each channel yields a different phase
velocity, some leftward and some rightward, all ampli-
tude velocities will be consistent with the rightward

(B) (C)

FIGURE 16. Simulations with Sampled Motion: (A) shows the real part of the response of a one octave Gabor filter tuned
to 135° when applied to the subsampled motion stimulus in Fig. 6. (B) and (C) show the corresponding amplitude and phase
responses. Regions of numerical phase instability are replaced with zeros in (C) as discussed in Section 5.1.
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motion of the signal, which coincides with the dominant
motion percept.

If the power spectra of the filters were much larger
then they will be sensitive to more than spectral power
concentration of the input. In this case, the power
spectrum of the filter output would not be concentrated
along a line in the frequency domain. In fact, following
the results in Appendix A3, the amplitude component of
response would then include a product of two interfer-
ence patterns, namely, a low frequency term that reflects
the orientation of the individual power concentrations,
and a higher frequency component that reflects the
vector between the two major power concentrations.
As seen from Fig. 7B, this latter will be vertical in
the frequency domain, and would appear as temporal
contrast variation in space-time. In other words, we
could no longer assume a simple amplitude envelope that
translates coherently to the right.

It is worthwhile at this point to mention a major
difference between the framework described here and
current non-FFourier models. Here we have used quadra-
ture filters, the amplitude and phase of which cleanly
separate the two sources of information relating to
location and orientation in the frequency domain, i.e.
Fourier and non-Fourier motion. This separation is
clear in Figs 15 and 16. By contrast, the non-Fourier
channels of Chubb and Sperling (1988) and of Wilson et
al. (1992) involve a half or full-wave rectification of the
band-pass response directly. This will contain both
phase and amplitude, since, the square of real part of
R(x,t) in (18) is equal to the product of squared
amplitude and the squared cosine of the phase part.
Since local phase orientation yields information concern-
ing locations of spectral peaks in frequency domain
(and hence Fourier motion), and amplitude is closely
related to group velocity, such a non-Fourier channel
containsg information relevant to both phase and group
velocity.

Our third example, in Fig. 17, shows the response of
a Gabor filter applied to the rightward-stepping random
contrast-reversing bar shown in Fig. 8. The simulations
again show that the dominant space-time orientation of
the amplitude component is consistent with the path of

(A)
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the contrast-reversing bar. The phase component of
response however, reflects the filter tuning, which was
perpendicular to the space-time orientation of the bar’s
path. One can also see that the level contours of response
amplitude are not aligned perfectly with the path of the
bar, since the amplitude decreases in various places
along the path shown in Fig. 17B. In terms of Fourier
analysis, as discussed in Appendix A3, this means that
power does not lie strictly on a line in the frequency
domain, and therefore the amplitude may be viewed as
the product of two signals, but is still predominantly
oriented in the appropriate direction.

Over a wide range of filter tunings we find that the
amplitude structure continues to have this dominant
orientation while the instantaneous phase component of
response changes with the filter tuning. An interesting
example of this occurs with the idealized stimulus shown
in Fig. 4, the power spectrum of which is a line. In this
case one can prove that the instantaneous frequency of
the response of a Gabor filter (with an isotropic power
spectrum) will equal the point on the input’s power
spectrum that is closest to the filter tuning. As the filter
tuning varies smoothly, the instantaneous frequency of
the response will vary along the line in a predictable
fashion. This distribution of instantaneous frequencies
could also be used to measure group velocity, as
explained in Section 4.5.

Our final example, in Fig. 18A, shows an example of
the theta motion stimuli of Zanker (1993), along with the
amplitude and phase responses of two Gabor filters,
tuned to 90° and 135° respectively in Figs 18B,C and
D,E. These two filter tunings agree with velocities of
the foreground and background. In both cases the
amplitude component of response clearly shows evidence
of the occlusion boundary where the filter responds to
one of the two velocities. However, as expected from the
results of Section 3.4, the velocity of the occlusion
window is not everywhere evident in the output of the
amplitude, since group velocity will only occur when the
foreground or background exhibit local spectral peaks.
Like the contrasting reversing bar discussed above,
notice in the responses in Figs 18B,D that the local
amplitude signal stems from a product of two signals,

(B) (C)

FIGURE 17. Simulation with Rightward Stepping Reversing Bar: (A) shows the real part of the response of a one octave Gabor

filter tuned to 135° when applied to the drift-balanced stimulus in Fig. 7. The orientation tuning of filter is perpendicular to

the space-time orientation of the envelope motion. (B) and (C) show the corresponding amplitude and phase responses. Regions
of numerical phase instability are replaced with zeros in (C) as discussed in Section 5.1.
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(A

(B) (C)

(D) (E)

FIGURE 18. Simulation with Theta Motion: an example of Zanker’s theta motion, similar to those shown in Fig. 10 is shown
in (A). The remaining images show the amplitude responses in (B) and (D), and phase responses, (C) and (E), of Gabor filters
tuned to 90° and 135°. Regions of phase instability are replaced with zeros in (C) and (E) as discussed in Section 5.1.

the orientations of which depend on the noise and the
occlusion boundary, and therefore power does not lie
strictly along a line in the frequency domain. When
different scales are considered together, although not
shown here, the segmentation of the occlusion boundary
appears much more straightforward.

5. MEASUREMENT OF VISUAL MOTION

Before summarizing the main conclusions of this
paper, it is of interest to provide some comments regard-
ing some practical issues regarding methods for measur-
ing visual motion. This is important since much of this
paper concentrates on simple forms of idealized motion,
based only on image translation. Furthermore, although
a detailed computational treatment of methods for
extracting Fourier and non-Fourier motion are outside
the scope of this paper, some comments are warranted
concerning alternative methods of measurement.

5.1. Phase velocity

There are several well-known methods of extracting
coherent image translation (so-called Fourier motion).
Perhaps the most common are the correlation-based,
energy-based and gradient-based methods (e.g. van
Santen & Sperling, 1985; Adelson & Bergen, 1986;
Srinivasan, 1990; Barman et al., 1991). As discussed
above, they are thought to be broadly equivalent.
This paper suggests a closely related fourth approach,

based on the phase behaviour in the output of band-pass
channels.

Phase-based methods have been used successfully in
machine vision (e.g. Fleet & Jepson, 1990; Fleet et al.,
1991; Fleet, 1992; Jenkin & Jepson, 1991; Langley et al.,
1990; Sanger, 1988), and produced accurate results in a
recent comparative study (Barron, Fleet & Beauchemin,
1994). The preference for phase over the filter output,
even in the case of smooth coherent motion, is the result
of robustness considerations (Fleet & Jepson, 1993).
Phase is relatively stable under deviations from image
translation that commonly occur with projections of 3-D
scenes (e.g. the dilation of the image as a camera
approaches an object), while the amplitude of the filter
response is not. This means that phase-based measure-
ments can be accurate and local, based on the velocity
of points of constant phase. For example, let space-time
paths x (¢) along which phase is constant be

o (x(t),t)=c. 31)

Assuming that x(z) is smooth, we differentiate (31),
which yields the constraint

O.(x, v + ¢,(x,¢)=0.

from which velocity can be measured.

Despite its robustness, instantaneous phase also
exhibits regular instabilities that occur in the neighbor-
hoods of phase singularities, where amplitude goes to
zero (Jepson & Fleet, 1991). In these regions phase

(32)
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is very sensitive to small changes in scale or spatial
position, and does not produce reliable velocity esti-
mates. But they can be detected: if the instantaneous
frequency is not sufficiently close to the filter’s frequency,
or if the amplitude changes too quickly as a function
of space—time, then the motion information from the
channel in question should be discarded (Fleet & Jepson,
1993). It is also necessary to remove regions of phase
behaviour where the amplitude of response is particu-
larly small for numerical reasons. These constraints were
important for the reliability of the optical flow technique
described in (Fleet & Jepson, 1991). They were also used
in Section 4.6, where noted, to remove regions of phase
instability.

Finally, note that it is not necessary to explicitly
represent phase to compute instantaneous [requencies.
Rather, phase derivatives may be expressed in terms of
the filter output as (Fleet & Jepson, 1990):

Im[R*(x, 1)R.(x, 1)]
p(x, 1)
where R* denotes the complex conjugate of R. In
terms of the real and imaginary parts of R(x,¢) this

simplifies to

b.(x,1)

_ Im[R,(x, 1)IRe[R(x, )] — Re[R,(x, )Im[R(x, )]
B Re[R(x, 1)* + Im[R(x, 1)} '

Gu(x, 1) = , (33)

(34)

5.2. Group velocity

Methods of computing group velocity, the orientation
of the local power distribution in frequency domain,
are not well established. The models proposed by
Chubb and Sperling (1988) or Wilson et al. (1992), have
not been explored in much depth computationally. As
discussed below, the results in this paper show two
methods of extracting orientation of power in the fre-
quency domain, one based on response amplitude and
the other based on instantaneous frequencies.

In ideal cases, where all power in the output of a filter
lies along a line in frequency domain (not necessarily
through the origin), the results of Sections 4.4 and 4.5
suggests that the most direct method of extracting the
group velocity is to measure the velocity of points
of constant amplitude. For example, we could use the
constraint

p,(x, 1) + p,(x, 1) =0, (35)

Moreover, like the phase derivatives above, amplitude
derivatives can be simplified using

. Re[R*(x, 1)R,(x, )]
pi(x, 1) = .
p(x, 1)

Thus, both phase and amplitude derivatives may be
computed in the same way, based on the real and
imaginary parts of R*(x, t)R, (x, t).

In practice, power may rnot lie strictly along a line, as
is the case in some of the signals used in the simulations

(36)
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above. Moreover, amplitude derivatives will be noisy, in
part because the amplitude signal is slowly modulating
(in which case the derivatives are small near crests
and troughs), and in part because amplitude is sensitive
to geometric deformation through time that occur with
dilation or rotation in the optical flow field (Fleet &
Jepson, 1993). Therefore we cannot expect to get the
same accuracy with local computations on amplitude, as
we might with phase information, and it is therefore
advisable to consider the dominant orientation/motion
of amplitude over somewhat larger spatiotemporal ex-
tents than those of differential methods, perhaps with the
use of band-pass prefilters, as suggested in Appendix A3.
Interestingly, this approach is similar to that taken in the
models of Wilson et al. (1992) and of Chubb and
Sperling (1988), however, as noted above in Section 4.6,
their models do not cleanly separate amplitude and
phase as does the framework described here.

Sections 4.4 and 4.5 also suggest that another feas-
ible method of extracting group velocity may be to
consider the distribution of instantaneous frequencies in
local neighbourhoods from similarly tuned filters. As
explained in Section 4.5 this distribution of instan-
taneous frequencies should lie along a line in frequency
domain, the orientation of which gives the group vel-
ocity. For example, one might consider a least-squares
fit of instantaneous frequencies to a line based on the
constraint

¢, (x, 1) v+ ¢, (x, () = (37

rather than that in (32). This shows that one might
extract information pertaining to non-Fourier motion
via the orientation of power in frequency domain from
either the amplitude or the phase of the response of
band-pass channels.

Finally, it is also necessary to determine whether there
is indeed a reasonably coherent amplitude velocity.
As explained in Appendix 3 a single dominant envelope
velocity will only occur when power is concentrated near
a line in frequency domain. If the amplitude spectra of
the filters are sufficiently large that more complex power
distributions occur within the tuning of a single channel
in a local region, then the model of group velocity and
these methods of measurement would appear too simple.
A careful examination of this issue is a very important
direction for further research since it directly affects the
relevance of oriented power in the frequency domain, as
well as these computational models.

6. SUMMARY

This paper presents a characterization of non-Fourier
motion using the orientation of power in the frequency
domain, along lines that do not necessarily contain the
origin. Like the concept of group velocity from the
theory of wave propagation, the orientation of power in
frequency domain is shown to correspond to the velocity
of a multiplicative amplitude envelope.

Our goal in this paper is to examine how this
observation relates to the stimuli and models of non-
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Fourier motion. Towards this end, we considered a
diverse collection of non-Fourier stimuli including drift-
ing amplitude (contrast) envelopes, sinusoidal beats,
sampled (aliased) motion, drift-balanced stimuli, and
theta motion, most of which appear to exhibit oriented
power in the frequency domain, especially in idealized
cases. By characterizing stimuli in the Fourier domain
we are introducing an additional level of description
and prediction that may be used in the psychological
exploration of visual motion perception.

We also explained some of the consequences of this
perspective, by examining the sources of information
concerning the orientation of power in the frequency
domain that may be available in the output of a general
class of band-pass filters. It was shown that there is a
very simple complementary relationship between the
phase and amplitude structure of the filter outputs. We
viewed them as two distinct sources of information
concerning Fourier and non-Fourier motion, where the
phase component yields information about local spectral
peak concentrations, and the amplitude component
yields information concerning the orientation of power
in frequency domain. These results help explain the
apparent success of the current non-Fourier models of
Chubb and Sperling (1988) and Wilson ez al. (1992), that
have concentrated to varying degrees on the amplitude
part of band-pass versions of the stimuli. Our analysis
also shows that alternative approaches may be equally
well suited to extract Fourier and non-Fourier motion,
including the use of energy techniques to extract Fourier
motion, and the extraction of group velocity from the
phase information in band-pass channels. The detailed
behaviour of these somewhat different models, as they
relate to the individual stimuli, is beyond the scope of
this paper.

The other issue addressed here concerns the natural
causes of non-Fourier motion. It is shown that oriented
power in frequency domain can occur with multiplicative
signal combinations, such as those caused by multiplica-
tive transparency, lighting variations or occlusion. When
two signals are combined multiplicatively, oriented
power in frequency space occurs as a restricted case,
when one of the two signals exhibits a distinct local
spectral peak, in which case the orientation (or group
velocity) yields the velocity of the other signal. This may
therefore represent the class of multiplicative signal
combinations that can be perceived transparently. If
power in the local output of a band-pass channel
were concentrated along a line in frequency domain,
then more complex computational methods would
be required to extract the relevant signal velocities.
A detailed study of this issue remains a topic for future
research.

In summary, using the notions of group velocity and
oriented power in frequency domain we have examined
a diverse class of non-Fourier stimuli, as well as compu-
tational models of non-Fourier motion and the potential
sources of non-Fourier motion that occur in natural
images. Together, these results provide an interesting
new perspective on non-Fourier motion.
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“The motion of amplitude, given by group velocity has been used
to approximate particle velocity in quantum mechanics, the
velocity of energy transport, and the velocity of disturbance fronts
(or signal velocity) (Brillouin, 1960). Group velocity as defined
below provides an accurate model of the motion of a disturbance
so long as the variation of phase velocity with wavelength is
sufficiently smooth, and the medium is not dissipative.
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APPENDIX A

Fourier Analysis and Visual Motion

Here we derive some important results concerning the frequency
analysis of visual motion. We first prove the well-known result that
image translation is equivalent to power lying along a line through the
origin in the frequency domain. We then introduce the notion of group
velocity and show that the orientation of power in frequency domain
gives the velocity of a coherently translating multiplicative amplitude
envelope. The final section addresses the generalization of group
velocity to the case where the oriented power distribution in frequency
domain no longer lies strictly along a line.

Al Coherent image translation

A signal translates with velocity v if and only if all its non-zero power
lies along the line through the origin in the frequency domain given by
kv + o = 0. To see this, note first that if all power lies along the line
kv +® =0 then (via Fourier analysis) the image is equivalent to a
weighted sum of sinusoidal waves with spatial and temporal frequen-
cies k; and o; satisfying kv +w,=0. That is, all nonzero Fourier
components travel with the same phase velocity v = —w;/k; (see
Section 2.1.), and hence the entire signal translates with no distortion
with velocity v.

Conversely, assume that I(x, ) is composed of a 1-D function I,(x)
translating with velocity v

I(x, t) = I(x —vt). (A1)

To show that its non-zero power lies on the line kv + =0, we take
its Fourier transform, written [ (k, w). Using the Fourier shift property
(Papoulis, 1977), one can show

Ik, 0)= JJIO()C —or)e” R +oidx dy

:fo (k) J‘e—imke—inudt

=L,(k)3 (o + kv), (A2)

where I, (k) is the Fourier transform of the 2-D intensity pattern /,(x).
Here, 6 (x) is a Dirac delta function satisfying & (x) = 0 when x % 0.
Therefore, [(k, @) is only nonzero when w = —kv; i.e. on the line
through the origin.

A2, Group velocity

For dispersive mediums, such as water, the velocity of a disturbance
(or signal) is not simply given by the phase velocities of elementary
(sinusoidal) signal components. Sinusoidal waves of different wave-
lengths travel with different phase velocities, and the velocity of the
signal is given by the group velocity (Brillouin, 1960; Whitham, 1974).
In effect, the group velocity is defined to represent the velocity of a
modulating amplitude envelope, the motion of regions of significant
amplitude.* Our interest in group velocity stems from its relation to

_amplitude velocity.

The relationship between wavelength and phase velocity in disper-
sive mediums is usually characterized by a dispersion relation (k),
that maps spatial frequency to temporal frequency. The phase velocity
associated with a spatial frequency k, remains v, (ko) = —a(ky)/ky.
The group velocity associated with a band of frequencies close to k,
is defined by

_d(u(k)

v .
b, = dk Ik:kozvp'f_kodilflk:ko: (A3)
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that is, the negative derivative (slope) of the dispersion relation at
k.

There are several ways to derive this relation and its meaning, one
of which relies the notion of stationary phase (Papoulis, 1977). Below
we take a somewhat different approach. Consider a dispersion relation
w(k) that is predominantly linear over a band of frequencies near k.
We can then expand w(k) as a Taylor series about k,, with the first
two terms providing a good approximation:

a(k)x wy+ (k — ko) o '(k), (A4)

where

dok
oy = w(ky), and w'(ko)z-?

k |k =ko*

Furthermore, let 4 (k) denote the distribution of power as a function
of spatial frequency. With these preliminaries, we can write the signal
as a collection of sinusoidal components with spatial frequencies
near k,, their associated amplitudes 4 (k), and their corresponding
temporal frequencies, w(k):

I(x, 1) :J‘w

To see that this signal has a group velocity v, as defined above,
substitute the approximate dispersion relation (41) into (42), yielding

A (et +own g (AS)

fo 0= Jm A (il + @+ e~ kol 'tol] d (A6)
With further algebraic manipulation this becomes
I(x, l) -3 eit{mn—kom’(ko)]J‘DC A (k)eik[x*'“"(ko)z] dk
—0
=l(x+w ’(ko)t’o)en[mo—kum'(ko)]. A7)

The last step follows from the Fourier shift theorem (Papoulis, 1977).
Finally, taking the magnitude of I(x, t),

[(x, )] = [I(x + @ (ko)1,0)1, (A8)

one can see that the amplitude component of I(x,!) translates
in an undistorted manner with velocity v, = — ‘(k,). Thus, as illus-
trated in Fig. 2, while phase velocity depends on the location of power
in the frequency domain, group velocity reflects the orientation of
power.

A3. Oriented power in frequency space

We now consider the case where power is oriented in the frequency
domain, but not strictly on a line. For example, consider the following
amplitude spectrum

Ak =A4,(u-k), (A9

where, for convenience k = (k, ), and u= (y, u,) is a unit direc-
tion vector (i.e. |[u|| = 1) that is perpendicular to the level contours
(i.e. the orientation) of the 4 (k). Our primary concern is the case
where the 1-D profile 4,(k) has most of its power concentrated near
some k.

In practice, when we consider the output of band-pass filters, the
amplitude spectra will not extend infinity far in any direction. Locally
we might therefore approximate the amplitude spectrum as the product
of 4,(k) and a window. Since 4,(k) is generally assumed to concen-
trated in the direction u let us assume that the window limits the
spectral extent in the perpendicular direction u' = (—u,, 1), as drawn
in Fig. Al:

AK) = 4,(u- KW @ut-k). (A10)

Although this has a symmetric mathematical form, we will assume that
W (k) is broad relative to the elongation of the amplitude spectrum in
the direction of u'. This means that the predominant orientation
in frequency space remains perpendicular to u.

With some mathematical manipulation [exploiting the separability
of (A10)] it can be shown that the inverse Fourier transform of A4 (k)
is the product of two complex-valued signals:

I(x, 1) = a;(u, x + u, 1) w(—xu, + tu,), (ALD
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FIGURE Al. This depicts an amplitude spectrum which represents the
product of two 1-D spectra. One has its level contours perpendicular
to u, where the profile of the spectrum in the direction nis called 4, (k).
In the case of pure group velocity, all non-zero power should be along
a line in which case A4, (k) would be an impulse. In practice, there will
also be some variation of power along the level contours of 4 (k ), and
therefore we introduce a slowly varying modulation in the direction ut,
denoted by W (k).

where a,(x) and w(x) are the inverse Fourier transforms of 4,(k) and
W (k). Here, (All) implies that a,(x) drifts with velocity —u,/u,
while w(x) drifts with velocity u, /u,,. Note that group velocity occurs
as a special case of this, in which the 1-D spectral profile in the
direction of u, that is 4,(k), is an impulse function. Group velocity is
then given by u,/u,.

In the case of ideal group velocity, where power is restricted to a
line, 4,(k) is an impulse funciion, and a,(x) would be a complex
exponential. Because the magnitude of the complex exponential is
unity, it follows that

[ I(x, )| = |w(—xu, + tu,)|, (A12)

and therefore | I(x, £)| can be used to measure the group velocity [which
is the velocity of w(x) as discussed above]. This shows again that
amplitude provides information about group velocity in the ideal case.
It also shows nicely that the structure of the amplitude spectrum of
W (k) along the orientation of the power concentration determines the
nature of the envelope in question. Furthermore, when W (k) is broad
with its frequency components in phase, the envelope w(x) will be
narrow and localized (as in the Gabor example in Fig. 3, and in the
drift-balanced stimuli described in Section 3.3). Alternatively, if phase
varies wildly along W (k), or if there are a small number of distinct
frequencies spread along the lines of power then the window will not
be localized (as in the case of the beats in Section 3.1.).

In a more general case, power may be concentrated in the neighbour-
hood of a line, rather than strictly on it. In this case, we might view
A, (k) as a blurred impulse rather than an impulse, in which case the
magnitude of I(x, t) is

7Gx, O] =lay (x4 1, £ 1w (—xu, + i), (A13)

where |, (x)] is now slowly varying because its corresponding ampli-
tude spectrum if highly concentrated near the line. In these cases, so
long as |w(x)| contains sufficiently high frequencies, its orientation will
still dominate the orientation of I(x,#). Again this justifies the
application of band-pass oriented filters to the amplitude component
of the response of an initial layer of filters, which will be somewhat
insensitive to the slow variations in g, (x), as in the model of Wilson
et al. (1992).

Finally, the more general case exists when neither 4, (k) nor W (k) is
concentrated near a point, in which case power will not be concen-
trated about a single line. This situation might exist for example with
the sampled stimuli illustrated in Fig. 7 when the replications occur too
close together relative to the filter tuning. In this case there would be
a fundamental ambiguity since amplitude is the product of two signals
with different velocities. Moreover, methods like those in this paper
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and those of Chubb and Sperling (1988), and Wilson ez al. (1992)
would be inappropriate; they are not even guaranteed to yield one of
the two component velocities. We are currently considering extensions
to the model of group velocity that allows for the extraction of multiple
velocities from the amplitude component of the filter output that
would allow this case to be handled adequately. Whether biological
systems have this capability is unclear.

APPENDIX B
Fourier Analysis of Sampled Motion

Our goal here is to derive the form of the Fourier transform of sampled
motion stimuli, in which a signal is shifted by a certain distance every
At frames, and is otherwise held constant between shifts. We express
the stimulus as a discretely sampled version of a smoothly translating
signal, the sampled version of which is blurred by a temporal pill-box
function to make it static between samples. The effective displacement
d can be expressed as a product of the continuous velocity v and the
sampling interval At (between displacements).

Let f(x,t)=fy(x —ovt) denote the continuously translating 1-D
signal with velocity v, and imagine that it is sampled every At in time
and Ax in space. That is, we define a discrete signal h(x, )=
f(x, t)s (x, 1), where s (x, t) denotes a sampling function which may be
written as a sum of Dirac delta functions:

s(x,1)=3 %Y 6(x —mAx,t —nAt).

m n

(B1)

As discussed in Appendix Al, the Fourier transform of f(x, 1) is

Sk, ©) =F(k)d (vk + w). (B2)

The Fourier transform of s(x,r) is another sampling function
(Rosenfeld & Kak, 1976),

Sk, w)=AkAw Y'Y 6 (k — mAk, o — nAw), (B3)
where Ak = 2n/Ax and Aw = 2n/Ar. Thus the Fourier transform of the
discrete signal h(x, t) is

Rk, 0) = fk, w) = §(k, »)
=[F (k)6 Wk + w)] = ¥ Y 6k —mAk, 0 —nAw). (B4)

The convolution of f(k)8(vk +w) with a single impulse,
o (k —mAk, o —nAw), amounts to a translation of the function to the
location of the impulse (mAk, nAw) in frequency domain. Thus (B4)
represents the amplitude spectrum replicated periodically at intervals
of Ak and Aw. Moreover, note that the orientation of each replication
(i.e. each group velocity) is consistent with v.

For the stimuli of interest here, we assume that there is a moderate
amount of temporal aliasing and very little spatial aliasing relative to
the range of spatial and temporal frequencies to which the visual
system is sensitive [cf. the window of visibility (Watson et al., 1986)].
In other words, let Afr>Ax, in which case we can simplify (B4) to

bk, ) = [fy(k)d (vk + )] %Y 8(w —nlAo). (BS)
This situation is depicted in Fig. BI.
Finally, to ensure that the signal remains constant between samples

we convolve the discrete signal with a constant averaging window ¢ (£)
defined by

1
— for |t|<At)2

c(t) ={At (B6)
0  otherwise.
The resulting stimulus may be written as
I(x, 1) =c(@) = h(x, 1) = c(t) + [f (x, Ds(x, 1)), (B7)

where = is the usual convolution operator. The Fourier transform of
c(¢) is given by

_sin(wAr)
T oAt

é(w) (B3)
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FIGURE BI. The amplitude spectrum includes the original line
through the origin, plus its replications that occur because of temporal
sampling. The small bold line segments indicate the regions of non-
zero power that lie along the dotted lines. The important parameters
include the velocity v = —tan(f,), the spatial frequencies k,, and
the replication distance Aw = 2r/Az. The window of visibility, corre-
sponding to the range of human sensitivity, shows that multiple line
segments of non-zero power should be visible in this case.

in which case the Fourier transform of I(x, t) can be written
Ik, ) = é(w)h(k, w)

sin(w At)

— <[f0(k)5(vk +o)] *'gﬁ(w—fmw)) (BY)

In other words, the blurring acts as a low-pass filter, attenuating high
temporal frequencies. The larger the sampling interval, A¢, the greater
the attenuation of high frequencies. Therefore, despite the underlying
continuous motion, the line segment in the Fourier spectrum with the
largest energy is the one closest to the spatial frequency axis, with
the smallest temporal frequencies. In the example given in Fig. 7B, the
concentration with the maximum energy has leftward moving phase
velocities, but a rightward moving group velocity, consistent with the
original velocity v.

APPENDIX C

Analysis of Rightward-Stepping Random-Contrast Bar

Like the sampled motion stimuli above, we view the rightward stepping
bar as a sampled version of a continuously drifting amplitude envel-
ope, the samples of which are convolved with a spatiotemporal pill-box
to create the square spatiotemporal regions seen in Fig. 8. Its Fourier
transform can be described in terms of the direction of the amplitude
envelope, the 1-D intensity pattern in this direction, and the squares
which represent the sampling and pill-box blurring.

In the ideal case, the amplitude envelope is an impulse function
moving rightward J (x —vt) which modulates an arbitrary intensity
pattern that varies in the space—time direction of the impulse envelope
f(vx +t), the continuous motion is given by

I(x, £) = f(vx + )8 (x — vt). (C1
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(B)

FIGURE C1. This shows the amplitude spectrum of a simple 8 pixel wide square. It illustrates the general pattern of power
that occurs on average over the ensemble of rightward-drifting contrast-reversing bars.

(A)

(B)

FIGURE C2. If we simplify the rightward contrast-reversing bar so that all local regions exhibit similar scales, the Fourier
spectrum provides a clearer indication of the dominant distribution of power that is relevant to local operators.

With some algebraic manipulation, the Fourier transform of I(x, t)
can be shown to be

1
1+0°

Ik, )= Fkv + o). (C2)

Thus the level contours of the amplitude spectrum will be aligned in
the same direction, given by

kv +o =c. €3)
where ¢ is a real-valued scalar. Whenever f(x) has some form of
peak spectral concentration, the amplitude spectrum | f(k, w)| will be
strongly oriented in frequency space, with an orientation consistent
with velocity v.

For the rightward stepping bar considered here, f(x) is a noise
sample. On average, or for a sufficiently large sample, the spectrum will
be flat. However, for smaller samples such as those in local windows,
and even for that shown in Fig. 8, there will generally be spectral
peaks. This helps to emphasize that although there are peak spectral
concentrations locally, they may not be visible globally through the
Fourier transform. In their sample stimuli, Chubb and Sperling used
relatively large squares with a small number of time steps, which will
exhibit peak concentrations at low frequencies.

When we take the pill-box blurring into account, the amplitude
specirum of the sampled signal is effectively multiplied by the ampli-
tude spectrum of the pill-box. Figure C1 shows a space-time pill-box
alone and its amplitude specirum. The pill-box spectrum determines
the locations of significant power in frequency space as shown
in Fig. 8B. The orientation of the streaks of power in Fig. 8B is
determined by the envelope orientation, and the profile of the spectrum
perpendicular to this orientation is given by the spectrum intensity
profile along the path of the envelope.

There are several ways to consider idealizations of these stimuli that
retain their essential character, yet clearly show the appropriate
behaviour in the frequency domain. For example, a global idealization
of these stimuli should have the same scale everywhere, e.g. a periodic
narrow-band pattern, and the envelope should be smoothly drifting in
space—time instead of the jumping squares. Figure C2 shows one step
toward an idealized version of the rightward drifting bar in which the
noise sample is replaced with a periodic pattern. In this way the pattern
in stationary in terms of distribution of local scales. Notice that this
case also contains no repeated luminance values which would locally
stimulate a Fourier-based mechanism as shown in Fig. 9. A further
idealization might involve a smooth envelope (rather than a discrete
sequences of squares), and a sinusoidal fine structure, which reduces
to something like the signal in Fig. 4.






