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ABSTRACT

Similarity judgments from three subjects were obtained for twenty artificial 
textures comprising filtered noise.  Multidimensional scaling (MDS) revealed that 
three perceptual dimensions explain most of the variance and subjects’ solutions are 
similar.  Both individuals’ similarity judgments and MDS solutions were highly 
correlated.  A computational model utilizing the energy responses in nine bandpass 
filters explains an average of 80% of the variability in the original similarity scores 
of individual subjects.  Energy responses are mapped to the perceptual space 
through a linear transformation that can be decomposed into two components.  The 
first component decorrelates initial filter responses and the second component maps 
the decorrelated filter responses to a perceptual space.  These latter transformations 
show remarkable agreement between the three subjects.



Studies of visual texture can be motivated from either an ecological or signal 
processing perspective.  The ecological perspective rests on the obvious fact that 
visual textures are ubiquitous in the natural world; surfaces are rarely composed of 
materials having uniform reflectance.  From this one may conclude that textures 
should be studied because they provide cues to object identity or that textural 
discontinuities can provide cues to surface-, depth- or illumination discontinuities.  
The signal processing perspective views textures as a useful class of stimuli for 
examining the way in which the visual system encodes distributions of light 
intensities that are more complex than sine-wave gratings, gabor patches or oriented 
line segments.  Little really hinges on what perspective is taken.  The majority of 
psychophysical texture studies employ artificial textures even though the 
motivation for such studies may rest on ecological considerations.  Our goal in the 
present paper is to examine the representational system that permits the visual 
system to make similarity judgments about isolated patches of visual texture.  We 
choose to study artificial textures with controlled spectral characteristics that are free 
of associations that may undermine our attempt to examine purely visual responses 
to the textures.

Current theories of the mechanisms subserving texture perception make use of 
the idea of neural images (Robson, 1980) or filter banks.  A neural image represents 
the retinal image as “seen” through a filter selective for a particular combination of 
orientation and spatial frequency.  Examples of this proposal can be found in Bergen 
and Landy (1991), Gurnsey, Pearson and Day (1996) and Harvey and Gervais (1981).  
The simplest version of this “neural image hypothesis” is that each scalar-valued 
image intensity I(x,y) is transformed into a vector I(x,y), each component of which 
represents the average “activity” in a local region around a retinal position (x,y) 
within a particular neural image.  We ask in this paper whether the activities that 
textures elicit within neural images determine the appearance of textures as 
revealed by similarity judgments.

The question of perceived similarity is addressed here through multidimen-
sional scaling (MDS), a computational procedure that finds structure in data matrices.  
Given M objects, subjects may be asked to judge the similarity of the objects in each 
of the (M2 - M)/2 pairs that can be formed from this set.  MDS algorithms (see 
Schiffman, Reynolds & Young, 1981) attempt to find an arrangement of the M objects 
in an N-dimensional space that maximizes the negative correlation between the 
distances that separate objects in this space and the original similarity judgments.  If 
the fit is good between distances in the MDS solution and the original similarities 
then one would be encouraged to find a theoretical interpretation of the MDS 
solution.  Ideally, one would like to determine the transformation that maps 
textures from their representations in a physical space (e.g., the Fourier domain) to 
their representations in the psychological space revealed by MDS.  In the case of 
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texture, the relationships between textures in an MDS solution space might be related 
to the activities they induce in a set of neural images.

The approach taken here draws parallels between colour vision and texture 
vision and is inspired by early studies showing that MDS can reveal the mechanisms 
underlying colour perception.  Shepard (1962) demonstrated that similarity 
judgments (collected by Ekman, 1954) about fourteen monochromatic colour patches 
ranging in wavelength from 434 nm to 674 nm can be “inverted” through MDS to 
reveal the internal organization of colour space.  Specifically, the MDS analysis 
revealed that a 2D arrangement of the colour patches explained most of the variance 
in the original similarity judgments.  The recovered 2D solution was essentially the 
well known colour wheel typically associated with colour opponent mechanisms 
(Hurvich & Jameson, 1957; DeValois, Smith, Kitai, & Karoly, 1958) and colour 
naming (Werner & Wooten, 1979).  MDS in this case revealed the existence of a 
representational system for which there is independent evidence.  In general, 
however, MDS is used as an exploratory technique to bootstrap the process of 
theorizing about mental representations.  Richards and Koenderink (1995, p.1323) 
recently commented that “...texture space, unlike color space, has been extremely 
resistant to study” and agree that MDS-like scaling techniques may provide useful 
insights into the nature of texture space (although they prefer an approach different 
from traditional MDS).

Recently, Rao and Lohse (1996) used MDS in an effort to develop a naming system 
for visual textures.  Such a naming system would be useful for organizing and 
conveying graphical information (Ware & Knight, 1992).  Theoretically, texture 
naming data might connect to the computations underlying texture perception in 
the same way colour naming data connect to the opponent theory of colour.  Rao 
and Lohse (1996) had subjects arrange 56 of the Brodatz (1966) textures1 into groups 
according to their perceived similarity.  From these groups they calculated a 
similarity measure for each of the 1512 pairings of the 56 stimuli.  These similarities 
(averaged over subjects) were submitted to a non-metric MDS analysis (Kruskal & 
Wish, 1978) and a three-dimensional solution was accepted.  The positions of the 
stimuli on the MDS solution axes were then related to verbal descriptions of the 
stimuli that subjects had provided through responses on Lickert scales (see Rao & 
Lohse, 1996, Figure 9).

Heaps and Handel (1999) conducted experiments similar to those of Rao and 
Lohse (1996) using natural textures.  One of their main conclusions was that 
perceived similarity may be context dependent and hence the search for a canonical 
1 Richards and Koenderink (1995) also examined the perceptual space of a subset of 
the Brodatz textures.  Their objective was to evaluate their trajectory mapping 
algorithm as a viable alternative to MDS.
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set of dimensions that describe perceptual texture space may be futile.  Heaps and 
Handel make the reasonable point that natural textures afford many bases for 
similarity judgments.  For example, two “visually” similar textures might be judged 
as dissimilar if an observer’s judgments are based on semantic class.  Conversely, 
two visually dissimilar textures might be judged as similar if they are seen as 
exemplars of the same semantic class.  Tactile interpretations (soft, smooth, rough, 
hard, etc.) of recognizable surfaces (e.g., silk, wood, gravel, marble, etc.) might also 
compete with visual factors in determining the nature of the similarity judgments 
that subjects make.  It might be argued that these difficulties are due in large part to 
the use of natural textures for which semantic and material interpretations are 
available.  If the objective is to understand the visual coding mechanisms 
underlying texture perception then fewer problems of the sort just described might 
be expected when artificial textures are employed as stimuli.

Several years ago, Harvey and Gervais (1981) used MDS to study the perceived 
similarities among 30 artificial textures  Each texture comprised the same seven, 
non-harmonically related, vertical sine-wave gratings in cosine phase.  The stimuli 
differed only in the amplitudes of the sinusoidal components which were chosen at 
random and scaled so that they produced images having the same Michelson 
contrast [(Lmax - Lmin)/(Lmax + Lmin)].  In two different experiments Harvey and 
Gervais (1981) collected similarity measures for each of the (302 - 30)/2 = 435 pairings 
of the 30 textures.  The similarity judgments were submitted to two MDS analyses 
(MDSCAL in one case and INDSCAL in a second) both of which revealed that the thirty 
textures could be arranged in perceptual spaces of three dimensions.  That is, the 
textures could be arranged as points in a three dimensional Euclidian space such 
that the distances between them were highly negatively correlated with their 
perceived similarity; textures eliciting high similarity scores were located close to 
each other in the MDS solution space and textures eliciting low similarity scores were 
far apart in the MDS solution space.

A critical question concerns the relationship between the positions of the 
textures in the 3D, MDS solution space and the physical description of the stimuli 
given by the amplitudes of their sinusoidal components.  Harvey and Gervais (1981) 
modelled the internal representations of their textures using the four channel 
model of Wilson and Bergen (1979); i.e., each texture elicited responses in four, 
spatial frequency selective channels.  Regression analyses were then performed to 
find the linear combinations of the filter outputs that best matched the positions of 
the textures on each of the recovered MDS dimensions.  This analysis showed that a  
high percentage of the variability on the first two dimensions of the MDS solution 
could be explained by a weighted sum of the activities in the four spatial frequency 
channels.  Therefore, the modelled internal representations of the textures were 
given by linear combinations of the four filter outputs.  A final step in the process, 
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which we describe below, would be to compare the calculated distances between the 
modelled representations of textures with the raw similarity scores.

In recent work on texture perception there is an emerging dichotomy between 
so-called high-level (Roa &Lohse, 1996) or attentive (Grossberg & Williamson, 1999; 
Heaps & Handel, 1999) texture analysis and low-level or preattentive texture 
analysis (e.g., Harvey & Gervais, 1981; Landy & Bergen, 1991).  The present work 
takes the latter point of view although we acknowledge that the concepts of high-
level vs low-level, or attentive vs preattentive texture analysis may be debated.  A 
more neutral position that obviates debates of this sort focuses on the nature of the 
computations that lead to particular judgments.  We ask what biologically plausible 
transformation takes stimuli, described in physical terms, into the perceptual space 
that is revealed by MDS.

The purpose of the present study is three-fold.  First, the Harvey and Gervais 
study is one of rather few to address specifically the internal representation of visual 
textures (cf., Harvey & Gervais, 1978; Roa & Lohse, 1996; Richards & Koenderink, 
1995; Heaps & Handel, 1999).  Past studies have tended to focus on texture 
segmentation (Beck, 1982; Gurnsey & Browse, 1989; Gurnsey & Laundry, 1992; Julesz, 
1981; Landy & Bergen, 1991 Malik & Perona, 1990; Rubenstein & Sagi, 1990; 
Voorhees & Poggio, 1988).  Studies of segmentation typically focus on the 
mechanisms that limit the discriminability of two spatially adjacent textures (e.g., 
Gurnsey & Browse, 1987).  The results of such studies are often interpreted in terms 
of mechanisms that respond to discontinuities within neural images.  Fewer studies 
have examined the perceived similarity (or dissimilarity) of spatially (or temporally) 
separated textures (Harvey & Gervais, 1978, 1983; Rao & Lohse, 1996; Richards & 
Koenderink, 1995; Heaps & Handel, 1999).  Therefore, it is important to examine the 
issue of texture representation in contexts other than the texture segmentation task.

Second, the Harvey and Gervais (1981) study provides a very interesting 
framework within which to advance our understanding of the internal 
representation of textures.  We wish to reexamine their study to determine if their 
results can be replicated and whether they generalize to different stimuli having the 
same kind of spatial frequency structure but which are, at the same time, somewhat 
more in line with the intuitive notion of texture.  Whereas Harvey and Gervais 
used textures comprising seven vertical sine waves, our textures comprise six, 
narrow bands of 2D noise.  As well, Harvey and Gervais sampled the seven 
dimensional stimulus space randomly, whereas we used a more systematic 
sampling strategy.

Third, to calculate the response of each channel of the Wilson and Bergen (1979) 
model to a given stimulus, Harvey and Gervais weighted the amplitude of each sine 

GURNSEY AND  FLEET TEXTURE SPACE

4 [Dec 17, 1999]



wave by the filter’s transfer function and summed the results, rather than by 
applying the filter directly to the image and measuring its energy output.  Although  
this method of analysis may be appropriate for stimuli comprising relatively few 
sine waves, it is not straightforward for more general stimuli.  An important 
component of the present study is to determine whether the responses of filters 
applied the images themselves give rise to similar results.

EXPERIMENT 1

METHOD

Subjects

Three subjects with normal or corrected to normal vision participated as subjects.  
The subjects included the two authors and a third subject who was naive to the 
purpose of the experiment.

Apparatus.

All aspects of stimulus presentation and data collection were under the control 
of a Macintosh PowerPC 7100/180 equipped with a 17 inch multi-scan colour 
monitor.  The monitor was set to have a screen resolution of 640 by 480 pixels and 
the colour lookup table was calibrated to be linear.

Stimuli

Twenty textures were created for use in the experiment.  Each texture was created 
by adding together three band-pass images.  Each of the band-pass images resulted 
from filtering a single image comprising Gaussian noise.  The noise was filtered 
with six isotropic, narrowband filters having non-harmonically related centre 
frequencies; specifically, 4, 6.52, 10.68, 17.44, 28.48 and 46.52 cycles per patch or 0.53, 
0.86, 1.41, 2.30, 3.76 and 6.14 cycles per degree.  The six bandpass images were equated 
for energy; i.e., sum of squared amplitudes.  Each bandpass image was then 
windowed with a circular window, smoothed along the edges.

Taking six items (i.e., bandpass images) three at a time results in 20 
combinations.  Therefore, twenty different textures were created each comprising 
three narrow frequency bands.  These are shown in Figure 1.  A principal 
components analysis of the frequency components composing the stimuli yielded 5 
orthogonal dimensions each explaining 20% of the variability within the set.  
Therefore, in purely physical terms, five dimensions are required to explain the 
variability among the textures.  All stimuli were normalized by the minimum and 
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maximum intensities over the entire set of 20 images.  Maximum and minimum 
screen intensities were 87.0 cd/m2 and 0.4 cd/m2 respectively and the average 
Michelson contrast was 81% [although it is not clear that Michelson contrast is a 
meaningful measure of the contrast in complex images (Peli, 1990)].
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[1,1,1,0,0,0] [1,1,0,1,0,0] [1,1,0,0,1,0] [1,1,0,0,0,1]

[1,0,1,1,0,0] [1,0,1,0,1,0] [1,0,1,0,0,1] [1,0,0,1,1,0]

[1,0,0,1,0,1] [1,0,0,0,1,1] [0,1,1,1,0,0] [0,1,1,0,1,0]

[0,1,1,0,0,1] [0,1,0,1,1,0] [0,1,0,1,0,1] [0,1,0,0,1,1]

[0,0,1,1,1,0] [0,0,1,1,0,1] [0,0,1,0,1,1] [0,0,0,1,1,1]
Figure 1.  Examples of the twenty stimuli used in the experiment.  The six-tuple under each 
patch indicates the components that compose the patch.  The left most element of the six-tuple 
represents the lowest frequency component and the right-most the highest frequency component.  
A 1 indicates the component is present and a 0 indicates that the component is absent.



Procedure 

The procedure followed the method of triads.  Three textures were presented on 
each trial.  At a viewing distance of 57 cm, each patch subtended 7.5° visual angle.     
The three patches were centred on an imaginary circle also having a radius of 7.5° 
visual angle.  Subjects were asked to indicate which two patches appeared the most 
similar and which two were the least similar.  By pressing a predetermined key a 
small black bar could be moved to connect different pairs of textures.  When the bar 
connected the two most similar textures the “s” key was pressed and when it 
connected the two least similar textures the “d” key was pressed.  All possible triples 
of textures were presented (1140 triplets) so that each pair of textures appeared 18 
times.  Each time two textures were judged most similar a counter for that pair 
(which had been initialized to 0) was incremented by 2.  When a pair was judged 
least similar the counter remained unchanged and for the remaining pair the 
counter was incremented by 1.  Given that each pair occurred 18 times in the course 
of the experiment the maximum possible similarity score was 2 * 18 = 36 and the 
minimum score was 0.  Trials were run in blocks of 100 and the whole experiment 
took about two hours to complete.

RESULTS

The similarity judgments (henceforth, the data) showed good inter-subject 
agreement.  Each subject produced (202 - 20)/2 = 190 similarity scores.  The squared 
correlation coefficients (r2) between subjects’ similarity judgments were .682 for 
subjects RG and FP, .70 for DF and FP and .778 for DF and RG.  An obvious first 
question is whether the data can be explained in terms of the simple correlation (r) 
between the binary six-tuples representing the stimuli (see the six-tuples associated 
with each texture patch in Figure 1).  There are 190 such correlation-coefficients and 
190 similarity scores.  For RG, DF and FP the correlation-coefficients explained 25%, 
25%, and 27% of the variability in the similarities scores respectively.  Therefore, the 
simple correlations between between pairs of binary vectors do not explain the data.  
A similar analysis was conducted for cross correlations between the actual texture 
patches.  For all subjects the cross correlations between the stimuli accounted for less 
than 1% of the variability in the similarity scores.

To understand better the structure of each subject’s data, each similarity matrix 
was submitted to a non-metric MDS analysis using Kruskal’s method (SYSTAT, v5.2) 
and solutions with 1 to 5 dimensions were obtained.  As the number of dimensions 
in the solution increased from 1 to 5, the average stress values decreased (0.235, 
0.143, 0.073, 0.049, 0.027) and the average explained variability (r2) increased (0.65, 
0.79, 0.89, 0.92, 0.95).  The three dimensional solutions were selected for further 
analysis because they accounted for 89% of the variance in the original similarity 
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matrices (on average) and the addition of further dimensions did not improve upon 
this greatly.

Several aspects of the MDS solutions deserve comment before moving on to 
further analyses.  Table 1 shows the correlation coefficients between all possible pairs 
of MDS solution vectors (three vectors for each of the three subjects) obtained in the 
present experiment.  The absolute values of nine coefficients are very high (mean = 
0.94, in bold text) and 27 are close to zero (mean = 0.08, in plain text).  The first 
column (RG1) in table 1 indicates that the positions of the twenty textures on the 
first dimension of RG’s MDS solution correlate very highly with the positions of the 
twenty textures on the first dimension of DF’s and FP’s MDS solutions.  The fourth 
column of table 1 (DF1) indicates that the positions of the twenty textures on the first 
dimension of DF’s MDS solution correlates very highly with the positions of the 
twenty textures on the first dimension of FP’s MDS solution.  These results indicate 
that for all three subjects the first dimension of their MDS solutions order the 
stimuli identically.  For DF and FP the positions of the the stimuli on the second 
and third dimensions (columns DF2 and DF3) are also highly correlated, indicating 
that for these two subjects the second and third dimensions of their MDS solutions 
order the stimuli identically.  (Negative correlations indicate that the relative orders 
of stimuli are very high but their absolute order are reversed).  The situation is 
somewhat different for RG.  The positions of the stimuli on his second dimension 
correlate highly with the DF and FP’s third dimension and RG’s third dimension 
correlates highly with DF and FP’s second dimension.  From these observations it is 
clear that the three dimensional solutions for the three subjects relate in essentially 
the same way to the the stimuli but the dimensions do not present themselves in 
the same order in the three solutions.   In subsequent discussion and analysis we flip 
the order of RG’s second and third dimensions to make his solution congruent with 
those of DF and FP.  As well, the signs of the dimensions have been flipped where 
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RG1 RG2 RG3 DF1 DF2 DF3 FP1 FP2 FP3

RG1

RG2 -0.04

RG3  0.02  0.06

DF1  0.98 -0.22 -0.06

DF2  0.13  0.15 0.82  0.06

DF3 -0.22-0.90  0.06 -0.05  0.10

FP1  0.97 -0.17 -0.01 0.98 -0.01 -0.16

FP2 -0.09 -0.12-0.94 -0.01-0.96 -0.08  0.01

FP3 -0.10-0.97  0.02  0.07 -0.05 0.96  0.00  0.02

Table 1.  Correlations between the three dimensions of the three subjects solutions.



necessary to make the solutions congruent.  These alterations of the MDS solutions 
do not affect distances in the solutions and hence do not affect the fit of the MDS 
solutions to the data2.

The three dimensional solutions (modified as just described) are presented as 
stereograms in Figure 2.  In each stereo pair of Figure 2 there is a coherence to the 
texture space such that neighbouring texture patches appear more similar than 
remote texture patches.  The dimension depicted on the x-axis (left to right) seems to 
distinguish stimuli containing predominantly high frequencies from those 
containing predominantly low frequencies.  This might correspond to a verbal label 
having something to do with coarseness.  However, one would be hard pressed to 
provide verbal characterizations of the other two dimensions; y- and z-axes.  Thus, 
although there is a visual coherence to the three texture spaces this does not seem to 
correspond directly to a set of verbal labels (cf. Rao & Loshe, 1996).

ANALYSES

What transformation of the stimuli produces the three dimensional perceptual 
spaces revealed by the MDS analyses?  We begin with the possibility that, for each 
subject, a simple linear transformation of the six dimensional “binary amplitude 
space” takes it into the three dimensional perceptual space revealed by MDS.  If such 
a transformation exists we may ask if there is a simple and systematic relationship 
between the transformations derived for each subject.  The method of analysis 
developed to explore these two questions will also be applied to a more plausible 
internal representation of the stimuli; specifically, the outputs of frequency selective 
filters.

Let aj be a six element column vector of zeros and ones describing the frequency 
components of the jth stimulus.  Let A be a matrix whose jth row is aj’, where aj’ is 
the transpose of aj.  Let yk  (for k ∈ {1, 2, 3}) be vectors representing the coordinate 
locations of the 20 stimuli along each of the three MDS solution axes.  We wish to 
determine the best linear combination of the six dimensional stimulus vectors, aj, 
that predicts their positions along the three MDS axes, yk .  For the k th coordinate 
axis, this amounts to finding the vector xk  that minimizes:

|| yk  - A xk ||2 [1]

2 MDS solutions have no inherently “correct” orientation because it is only the 
distances between points in the solution that are relevant to the fit to the data.  
Thus, it may seem odd that the solutions for all three subjects require no rotation to 
bring them into alignment.  In part this may be because for all three subjects the first 
dimension accounts for a very large proportion of the variance in the data and 
hence tends to anchor the solutions.
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For notational convenience we let Y = [y1, y2, y3] and let X = [x1, x2, x3].  We can now 
solve for the columns of X simultaneously by minimizing

|| Y - A X ||2. [2]

Let Xs denote the least squares estimate of the transformation from stimuli to MDS 
coordinate positions for subject s.  Accordingly, let Ys = AXs denote the predicted 
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Figure 2.  Stereo-pairs depicting the three-dimensional, MDS solutions for each of the three 
subjects (top, RG; middle, DF; bottom, FP).  These three dimensional solutions accounted for 90% 
of the variability in the original similarity matrices.  Please note that these depictions 
deviate slightly from the actual solutions.  This was done to ensure minimal overlap between 
patches that are close together in the solution space.



MDS coordinates for subject s given this transformation.

Figure 3 provides a visualization of the columns of Xs that map the spatial 
frequency components of each stimulus to its position on the three solution axes,    
for each of the three subjects.  There is remarkable agreement in the form of the 
coefficients.  For the left panel the averaged r2 between coefficient vectors is 0.96, for 
the centre panel it is 0.89, and for the right panel it is 0.83.  The left panel shows that 
predicted position on the first dimension of the MDS solution can be obtained from a 
weighted sum of the frequency components that pits high frequencies against low 
frequencies.  That is, a stimulus will map to one end of the first dimension if it 
contains predominantly low frequencies and to the other end if it contains 
predominantly high frequencies.  The centre panel shows that the second 
dimension tends to contrast the second and third frequency components in the 
stimulus (6.54 and 10.68 cycles per patch) with the remaining frequency components, 
although almost zero weight is given to the fourth component (17.44 cycles per 
patch).  The right panel shows that the third dimension contrasts the fourth 
component with the fifth and sixth components.

Using Ys as a model of the internal representation of the textures for subject s, 
the distance between all texture pairs within the model can be computed and 
compared with the original similarity judgments.  Correlations between model 
distances and similarities yielded r2s of 0.75, 0.75, and 0.73 for subjects RG, DF and FP 
respectively, thus accounting for an average of 74% of the variability in the original 
similarity scores.  Because of the high negative correlation between the model 
distances and similarity scores, the models may be taken as reasonable hypotheses 
about the internal representation of textures in the current sample.  The models fall 
short, however, of the MDS solutions themselves, which accounted for an average of 
89% of the variability in the original similarity scores.  On the other hand, the 
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Figure 3.  A depiction of the coefficients that map textures to from their frequency components to 
their internal representations.  Each panel shows the coefficients for three subjects.  The inner 
product of the coefficients and the frequency components in a texture map that texture to its 
position on one of the MDS solution axes.  DF open circles, RG filled circles, FP open squares.
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models correlate as well with the similarity scores as subjects correlate with each 
other. Thus, each MDS solution may involve a certain amount of idiosyncratic 
variance that is not well captured by this version of the simple linear model.

The preceding analysis represented each stimulus as a binary code that indicated 
which frequency components were present in the stimulus (see Figure 1).  If the 
visual system consisted of a large number of very narrowly tuned filters, then the 
preceding analysis might indicate how the outputs of those filters are combined to 
define the perceptual space containing the textures that we have examined.  
However, it is clear that the visual system employs a relatively small set of broadly 
tuned filters rather than many tightly tuned filters.

At this point, we turn our attention to a more realistic computational account of 
the similarity data.  In particular, we ask if the energy responses of band-pass filters 
can be mapped to the 3D MDS solutions.  Energy responses were computed by 
convolving each stimulus with a filter then taking the square root of the sum of 
squared responses.  The filters were band-pass, with Gaussian amplitude spectra on a 
log frequency axis, i.e.,

f(d) = e
-[log(cf) - log(d )]2

σ [4]

where d  is distance from the origin of the 2D Fourier transform, cf = N/ω is the 
centre frequency of the filter (N is the size in pixels of the window containing the 
texture patch and ω is the wavelength in pixels) and σ is the bandwidth of the filter.  
These are lognormal filters with a constant octave bandwidth; on a linear frequency 
axis the bandwidth increases with frequency.  Obviously our ability to fit the data 
will be affected by the number of available filters, but the number of filters required 
is unclear.  Therefore, eight filters banks were created.  The filters in each bank had 
“centre-wavelengths” ranging from 2min to 2max pixels (m i n  = 1, max  = 5).  The step 
size from m i n  to max  was s-1 with s in [0.5, 1.0, 1.5, ... , 4].  The bandwidths of all 
filters in a bank were set to σ = s-1; that is, as the number of filters increased their 
bandwidths narrowed proportionately.

In each analysis, A (see equation 1) was a 20 by n  array of energy responses; n  = s * 
(max  - m i n ) + 1.  The analysis was conducted exactly as with the binary coded 
frequencies except that each row of A corresponded to energy responses from a set of 
n  filters.  Three related questions were addressed.  First, is it possible to combine the 
energy responses to account for a significant amount of the variability in the 
original similarity data.  This can be answered by determining the correlation, and 
hence r2, between the original similarities and the model distances.  (Recall that the 
r2s for the models shown in Figure 3 averaged 0.74.)  Second, are the 
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transformations that account for the original data similar for each of the three 
subjects.  Recall that for the coefficients in Figure 2, the averaged r2 values were 0.96, 
0.83, and 0.89 for panels 1 to 3 respectively.  Third, are there simple characterizations 
of these transformations as there appear to be for the coefficients shown in Figure 3?  
The answer to this question requires visual inspection.

Figure 4 plots the average agreement (r2) between the original similarity data and 
model distances as a function of the number of filters in the filter bank.  Agreement 
improves as the number of filters increases and begins to asymptote when there are  
seven filters in the bank.  With seven filters the average r2 was 0.78 and for 17 filters 
it was 0.85.  These correlations represent improvements over the 74% explained 
variance when the analysis was applied to binary coded frequency components.  
These results are very encouraging because they indicate that a simple linear 
combination of energy responses provides an excellent account of the original 
similarity data.  That is, the original similarity judgments can be almost entirely 
explained by the pattern of activity that the textures elicit within a set of neural 
images.

Figure 5 depicts the coefficients that map energy responses (in this case, 9 filters) 
to each of the MDS solution axes.  (Although we have shown just one instance of 
the obtained coefficients, the characteristics that we discuss are independent of the 
number of filters employed.)  In answer to the second question, the coefficients 
show little similarity across subjects in any of the three panels.  In answer to the 
third question, there is no simple characterization of these transformations as there 
was for the coefficients shown in Figure 3.  Therefore, the good news is that these 
coefficients do as good a job of explaining the the original similarity data as do the 
MDS solutions themselves.  The bad news is that there is nothing pretty about the 
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Figure 4.  Summary of changes in average explained variance (squared correlation between 
subject similarity judgments and some function of the filter outputs) as a function of the number of 
bandpass filters.  Open circles depict variance explained by the model (averaged over three 
subjects).  Closed circles depict  variance explained by the cross-correlation of filter responses.
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coefficients.

The simplicity and regularity of the coefficients in Figure 3 provided a promising 
picture of how the spatial frequency content of the texture patches may relate to 
their perceptual similarities.  These coefficients might be seen as analogous to the 
opponent colour mechanisms underlying colour appearance and colour naming.  
This simplicity and regularity is lost however, when textures are described more 
realistically in terms of energy responses (see Figure 5).  The most inelegant feature 
of the coefficients in Figure 5 is their high frequency oscillations from positive to 
negative.  It is particularly odd that these oscillations produce a high degree of 
correlation in the coefficients that map energy responses to the uncorrelated MDS 
solution axes (see Table 1).  These correlated oscillations suggest that the coefficients  
are performing, in part, a function that is independent of the particular dimension 
of the MDS solution to which they map energy responses.

One possibility is that the coefficients shown in Figure 5 represent a 
transformation that both decorrelates filter responses and explains the structure of 
perceptual texture similarities as arranged in MDS space.  Because the filters are 
broadly tuned, they overlap in frequency space, and hence their responses contain 
uninformative sources of correlated variation.  Such unwanted sources of variance 
can be eliminated by a linear transformation of the filter responses that decorrelates 
their outputs while retaining that structure in the responses owing to the stimuli.  
This kind of transformation whitens the filter responses to uncorrelated white 
noise.

To create an appropriate decorrelator, we first find the correlation matrix, C, of 
the responses.  In particular, the components of C are given by
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Figure 5.  A depiction of the coefficients that map textures to from 9 responses to their positions 
on the MDS solution axes.  Each panel shows the coefficients for three subjects.    DF open circles, 
RG filled circles, FP open squares.
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Cij  =  Fi ’ * Fj [5]

where Fi  and Fj denote vectors containing the coefficients of the discrete-time 
Fourier transforms of the filters’ impulse responses.  If v  is a vector of filter 
responses resulting from the application of the filters to white noise, then C = E[v v’] 
is their correlation matrix, where E[.] denotes mathematical expectation.  To 
decorrelate the filter responses one need only apply a linear transformation given by 
Q-1, where C = Q Q-1 is called the Cholesky decomposition of C.  One can show that 
if v  is mean zero with correlation matrix C, then Q-1 v  has a correlation matrix equal 
to the identity matrix.  The resulting transformation looks very much like a local 
form of linear inhibition between filters with nearby frequency tuning.

Proceeding with the analysis as above, we were interested in the structure of the 
transformation that mapped the decorrelated filter responses on to the MDS 
coordinate positions.  As above, this is obtained as a least squares solution to 

|| Y - A Q-1 X ||2. [6]

Figure 6 shows the coefficients of Xs obtained using equation 6 for each of the 
three subjects.  In this case A represents the responses from a bank of nine filters.  
The obtained coefficients explain an average of 80% of the variability in the original 
similarity data, which is an improvement over the model shown in Figure 3.  The 
most important point to note is that the coefficients in Figure 6 have lost their high 
frequency oscillations and are now quite similar in form to those in Figure 3.  As in 
Figure 3 the coefficients for each of the three subjects are very similar and they have 
the same simple structure.  We may conclude that the coefficients in Figure 5 
combine two processes, one that decorrelates filter responses and another that maps 
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Figure 6.  A depiction of the coefficients that map textures to from 9 decorrelated filter 
responses to their positions on the MDS solution axes.  Each panel shows the coefficients for 
three subjects.  DF open circles, RG filled circles, FP open squares.



the unique contribution of each filter to the MDS solution axes.

We have chosen to show the coefficients that map nine decorrelated filter 
responses in Figure 6 in part because they correspond approximately to the 
asymptotic level of explained variance (as shown in Figure 4) and partly because 
more than nine filters becomes biologically implausible.  If five or seven filters are 
employed then coefficients explain less of the original variance in the similarity 
scores but they have the same general form shown in Figure 6.  If eleven to 
seventeen filters are employed then more variance is explained in the similarity 
scores.  In these cases, when Xs is derived from the raw energy responses the 
oscillations are extremely pronounced and when Xs is derived from the decorrelated 
energy responses the oscillations are removed (as in Figure 6) but the pattern of 
coefficients become increasingly dominated by the responses of high frequency 
filters.  In this case much more weight is given to the high frequency filters thus 
flattening the remaining coefficients.  One reason for this is that there is relatively 
low gain on the high frequency filters so that more weight must be given to them to 
map to the MDS axes.  The coefficients can be made more regular by normalizing the 
filter responses on a per stimulus basis, and by changing filter bandwidths.  These 
operations reduce the high frequency coefficients but the patterns of coefficients 
become idiosyncratic as the number of filters increases.

DISCUSSION

In the present experiment subjects’ similarity judgments are highly correlated 
and their 3D MDS solutions (which were very similar) explained most of the 
variability in their data.  If texture were not encoded by some basic visual process 
then we might have expected subjects’ judgments to be idiosyncratic and their MDS 
solutions to be unrelated.  In fact, subjects seem to rely on similar internal 
representations to judge the similarity of texture patches and this situation is a 
precondition to searching for simple architectures that are candidates for this 
internal representation.  The finding that three dimensions are sufficient to explain 
the majority of variability in the data agrees with the results of Harvey and Gervais 
(1981) even though different stimuli and a different sampling of the stimulus space 
were employed.  Our computational analysis extends that of Harvey and Gervais 
and shows that a sequence of biologically plausible transformations provides a 
coherent account of how subjects judge the similarity of textures under conditions 
in which edge-based strategies are impossible (Gurnsey & Laundry, 1992; Wolfson & 
Landy, 1995; Graham, 1991) and no obvious verbal labels are available (cf. Rao & 
Lohse, 1996; Heaps & Handle, 1999).  We have concluded that a linear 
transformation of decorrelated filter responses provides a reasonable hypothesis 
about the basis of texture space.  We next address the plausibility of this proposal.
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Number of filters.  Figure 4 (unfilled circles) shows that increasing the number of 
neural images provides the conditions for increasingly better fits to the similarity 
data.  Although increasing the number of filters might seem to be an obvious way to 
improve the fit, such an expectation requires accepting the assumption that filters 
are the basis for similarity judgments in the first place.  Figure 5 shows that model 
fits tend to asymptote at about 7 to 9 filters.  This is more filters than are usually 
assumed to subserve spatial vision (Wilson, McFarlane & Phillips, 1983) but does 
not seem to be an unreasonable number.  Thus we may conclude that seven to nine 
filters provide a reasonable basis for the present texture space.

Energy.  Recently, Heeger and Bergen (1995; Bergen, 1994) have suggested the 
distribution of responses within neural images characterize the appearance of many 
textures.  They have provided impressive illustrations that textures are often 
indistinguishable when forced to have the same distribution of responses in a set of 
neural images.  In some sense the two textures are metameric (Richards, 1979).  
Thus in many cases the first order statistics (in Julesz’s sense) within neural images 
determine the appearance of textures.  This might be seen as an alternative to the 
present proposal where energy responses are taken as the determinants of perceived 
similarity.  However, we will show that the two proposals are not different because 
energy is the only important feature of the distribution of responses within a neural 
image.

The band pass filters used here are zero-mean and therefore the expected 
response within all neural images will also be zero.  Energy is the sum of squared 
responses within a neural image and is therefore a measure of the variance within 
the neural image. Each panel of Figure 7 shows the distribution of responses within 
one neural image for each of the 20 stimuli in Figure 1.  The mean (µ) and standard 
deviation (σ) within a neural image were computed and all responses exceeding ± 
3σ were eliminated.  Of course µ was close to 0 in all cases and σ depended on the 
match of the filter to the frequency content of the display.  Filter responses within ± 
3σ of the mean were then normalized to integer values in the range -31 to 31 and 
frequency counts made.  The effect of these trivial computations is to normalize the 
distributions with respect to energy.  In other words, energy differences have been 
factored out of the response distributions.  Figure 7 shows that when energy 
differences are factored out the distributions become essentially independent of filter 
and image.  In fact, a scaled Gaussian distribution with a µ of 0 and σ of 10 explains 
99% of the variability in the means of each of the 9 panels of figure 6.  We conclude 
that the energy within a neural image is probably the most important feature of the 
response distribution and hence a reasonable statistic upon which to build and 
account of texture space.

Interpreting the Regression Coefficients.  If one accepts that energy responses in 
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seven to nine bandpass filters provides a reasonable foundation on which to build a 
theory of texture perception, one still needs to justify why a linear combinations of 
energy responses should be the determinant of texture perception.  The main 
response is that both the MDS solutions and the regression coefficients define spatial 
representations of texture and do an excellent job of explaining subjects’ similarity 
judgments.  The issue here is that many factors that can influence the pattern of 
coefficients obtained in the regression analysis.  These factors include the 
nonlinearity used in computing “energy,” the number of filters, the filter 
bandwidths, the filter sensitivities and whether or not the filter responses are 
decorrelated.  There are undoubtedly other factors that would affect the coefficients.  
Therefore, while one may accept that the linear model is useful and appropriate, any 
particular model is not unique and independent arguments must be made to 
support it.
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Figure 7.  Normalized response distributions.  Each panel plots the distribution of responses of a 
single filter applied to each of the twenty images shown in Figure 1.  Only responses within three 
standard deviations of the mean have been retained.  Those responses remaining have been 
normalized to the range -31 to 31, thus factoring out energy differences between the distributions.  
As a result, the response distributions are now independent of filter and image.



The present results indicate that the most important dimension (dimension 1; 
see Figures 3 and 6) in the MDS solutions contrast high vs low frequency 
components in the stimulus.  This result is in agreement with the results of Harvey 
and Gervais (1981).  This contrast also appears to emerge in the Rao and Lohse (1996) 
paper; their third dimension seems to pick out a coarse vs fine distinction between 
stimuli.  All of these data are consistent with the intuition that the central tendency 
in the frequency content of textures should have a strong influence on perceived 
similarity.  In this sense, the coefficients in Figures 3 and 6 have some empirical and 
intuitive support.  The third dimension in the present solution appears to 
correspond to the second dimension in the Harvey and Gervais (1981, Figure 3) 
study in that it contrast mid-range frequencies against high and low frequencies 
(although the correspondence is not exact and analytical methods are  different).  As 
mentioned earlier, it is difficult to establish a correspondence between the second 
and third dimensions of our solutions with the solutions of Rao and Lohse (1996) 
and Heaps and Handel (1999) because in these latter cases the dimensions in 
question were derived from verbal labels that did not constrain the present results3.

In addition to finding some empirical and intuitive support, we can bootstrap  
support for the current regression weights through consistency arguments.  Figure 3 
shows that there is strong agreement across all three subjects about the mapping 
from the spatial frequency content of the stimuli to their positions in the MDS 
solution space.  The obtained regression coefficients define a functional or abstract 
correspondence between the physical descriptions of the stimuli and their 
psychological structure as revealed by MDS.  When the responses to the stimuli are 
more realistic (i.e., the outputs of bandpass filters) we find that the coefficients that 
map from response space to MDS space loose their coherence (agreement between 
subjects).  If we attach importance to the pattern of weights found in the “ideal case” 
(i.e., Figure 3) then these may act as a reference point or constraint when making 
choices about the structure of the model.  The use of energy and a decorrelation 
matrix are guided by this idea.  That is, these choices lead to a mapping function 
(Figure 6) that is in good agreement with the “idealized” situation described in 
Figure 3.

Fixed Architectures  The present conceptualization of texture space is in many ways 
similar to ideas about colour perception.  Although there may be cognitive or 
interpretational influences on colour perception most theorizing about colour is 
couched in terms of fixed transformations of the responses three initial filters (e.g., 

3 It would be interesting to relate the frequency content of the natural textures used 
by Roa and Lohse (1996) and Heaps and Handel (1999) to the MDS solutions they 
obtained.  It is conceivable that the frequency content of the stimuli in question 
provides a more coherent explanation of their MDS solutions than do groups of 
verbal labels.
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Wandell, 1995).  Our proposal shares much with this latter view.  A number of 
interesting question arise when drawing this comparison.  The first is whether our 
analysis has revealed the  fixed architecture underlying texture space.  Our 
conclusions must be tempered by a problem that confronts all MDS studies, namely, 
we have sampled only a small region of the space of visual textures.  If the region of 
texture space sampled been different our solutions may have changed.  Therefore, 
further experiments must be undertaken that expand the domain of sampled 
textures (e.g., manipulating orientation, phase and range of spatial frequencies) to 
determine if our current space remains a coherent sub space of a broadened 
sampling of texture.  A positive finding would suggest that we have indeed 
uncovered a fixed component in the architecture of the visual system.

There are, however, certain results that would be at once consistent with the 
current model yet require some modifications to it.  For example, it is likely that 
changing viewing distance--and hence the entire spatial frequency range covered by 
our stimuli--would have no effect on similarity data, MDS solutions or regression 
analyses.  Such a result would be inconsistent with the current proposal because the 
same pattern of weights would be required for many shifts up and down the 
frequency axis.  On the other hand, this result could be dealt with by a constancy 
mechanism that applies a fixed pattern of weights, normalized to the entire range of 
frequencies presented in the stimulus set.

Finally, a comment is in order concerning the relationship between the 
components of the present model and theories of colour.  Wandell (1995) suggests 
that wavelength opponent mechanisms may reflect mechanisms that decorrelate 
the responses of the three wavelength selective cone types which have overlapping 
sensitivity functions.  The decorrelation matrix Q-1 (eqn. 6) may be seen as 
performing an analogous function in the case of texture.  However, whereas the 
decorrelated filter output may provide a basis for perceptual colour space, this is not 
so for texture because the decorrelated filter responses do not map directly to the 
dimensions of the MDS solution.  Rather, we suggest that following the process of 
decorrelation, there is a linear combination of decorrelated filter responses that 
maps to perceptual texture space.
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