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Abstract

In dimensionality reduction approaches, the
data are typically embedded in a Euclidean
latent space. However for some data sets this
is inappropriate. For example, in human mo-
tion data we expect latent spaces that are
cylindrical or a toroidal, that are poorly cap-
tured with a Euclidean space. In this paper,
we present a range of approaches for embed-
ding data in a non-Euclidean latent space.
Our focus is the Gaussian Process latent vari-
able model. In the context of human motion
modeling this allows us to (a) learn models
with interpretable latent directions enabling,
for example, style/content separation, and
(b) generalise beyond the data set enabling
us to learn transitions between motion styles
even though such transitions are not present
in the data.

1. Introduction

Dimensionality reduction is a popular approach to
dealing with high dimensional data sets. It is of-
ten the case that linear dimensionality reduction, such
as principal component analysis (PCA) does not ad-
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equately capture the structure of the data. For this
reason there has been considerable interest in the ma-
chine learning community in non-linear dimensionality
reduction. Approaches such as locally linear embed-
ding (LLE), Isomap and maximum variance unfold-
ing (MVU) (Roweis & Saul, 2000; Tenenbaum et al.,
2000; Weinberger et al., 2004) all define a topology
through interconnections between points in the data
space. However, if a given data set is relatively sparse
or particularly noisy, these interconnections can stray
beyond the ‘true’ local neighbourhood and the result-
ing embedding can be poor.

Probabilistic formulations of latent variable models do
not usually include explicit constraints on the embed-
ding and therefore the natural topology of the data
manifold is not always respected 1. Even with the cor-
rect topology and dimension of the latent space, the
learning might get stuck in local minima if the initial-
ization of the model is poor. Moreover, the maximum
likelihood solution may not be a good model, due e.g.,
to the sparseness of the data. To get better models in
such cases, more constraints on the model are needed.

This paper shows how explicit topological constraints
can be imposed within the context of probabilistic la-

1An exception is the back-constrained GP-LVM
(Lawrence & Quiñonero-Candela, 2006) where a con-
strained maximum likelihood algorithm is used to enforce
these constraints.
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tent variable models. We describe two approaches,
both within the context of the Gaussian process la-
tent variable model (GP-LVM) (Lawrence, 2005). The
first uses prior distributions on the latent space that
encourage a given topology. The second influences
the latent space and optimisation through constrained
maximum likelihood.

Our approach is motivated by the problem of model-
ing human pose and motion for character animation.
Human motion is an interesting domain because, while
there is an increasing amount of motion capture data
available, the diversity of human motion means that
we will necessarily have to incorporate a large amount
of prior knowledge to learn probabilistic models that
can accurately reconstruct a wide range of motions.
Despite this, most existing methods for learning pose
and motion models (Elgammal & Lee, 2004; Grochow
et al., 2004; Urtasun et al., 2006) do not fully exploit
useful prior information, and many are limited to mod-
eling a single human activity (e.g., walking with a par-
ticular style).

This paper describes how prior information can be
used effectively to learn models with specific topologies
that reflect the nature of human motion. Importantly,
with this information we can also model multiple ac-
tivities, including transitions between them (e.g. from
walking to running), even when such transitions are
not present in the training data. As a consequence,
we can now learn latent variable models with training
motions comprising multiple subjects with stylistic di-
versity, as well as multiple activities, such as running
and walking. We demonstrate the effectiveness of our
approach in a character animation application, where
the user specifies a set of constraints (e.g., foot loca-
tions), and the remaining kinematic degrees of freedom
are infered.

2. Gaussian Process Latent Variable
Models (GP-LVM)

We begin with a brief review of the GP-LVM
(Lawrence, 2005). The GP-LVM represents a high-
dimensional data set, Y, through a low dimensional
latent space, X, and a Gaussian process mapping
from the latent space to the data space. Let Y =
[y1, ...,yN ]T be a matrix in which each row is a single
training datum, yi ∈ ℜD. Let X = [x1, ...,xN ]T de-
note the matrix whose rows represent the correspond-
ing positions in latent space, xi ∈ ℜd. Given a covari-
ance function for the Gaussian process, kY (x,x′), the
likelihood of the data given the latent positions is,

p(Y |X, β̄) =
1

Z1
exp

(

−
1

2
tr

(

K−1
Y YYT

)

)

, (1)

where Z1 is a normalization factor, KY is known as
the kernel matrix, and β̄ denotes the kernel hyperpa-
rameters. The elements of the kernel matrix are de-
fined by the covariance function, (KY )i,j = kY (xi,xj).
A common choice is the radial basis function (RBF),

kY (x,x′) = β1 exp(−β2

2 ||x− x′||2) +
δ
x,x′

β3

, where the

kernel hyperparameters β̄ = {β1, β2, β3} determine the
output variance, the RBF support width, and the vari-
ance of the additive noise. Learning in the GP-LVM
consists of maximizing (1) with respect to the latent
positions, X, and the hyperparameters, β̄.

When one has time-series data, Y represents a se-
quence of observations, and it is natural to aug-
ment the GP-LVM with an explicit dynamical model.
For example, the Gaussian Process Dynamical Model
(GPDM) models the sequence as a latent stochastic
process with a Gaussian process prior (Wang et al.,
2008) , i.e.,

p(X | ᾱ) =
p(x1)

Z2
exp

(

−
1

2
tr

(

K−1
X XoutX

T
out

)

)

(2)

where Z2 is a normalization factor, Xout =
[x2, ...,xN ]T , KX ∈ ℜ(N−1)×(N−1) is the kernel matrix
constructed from Xin = [x1, ...,xN−1], x1 is given an
isotropic Gaussian prior and ᾱ are the kernel hyper-
parameters for KX ; below we use an RBF kernel for
KX . Like the GP-LVM the GPDM provides a gen-
erative model for the data, but additionally it pro-
vides one for the dynamics. One can therefore predict
future observation sequences given past observations,
and simulate new sequences.

3. Top Down Imposition of Topology

The smooth mapping in the GP-LVM ensures that
distant points in data space remain distant in la-
tent space. However, as discussed in (Lawrence &
Quiñonero-Candela, 2006), the mapping in the oppo-
site direction is not required to be smooth. While
the GPDM may mitigate this effect, it often produces
models that are neither smooth nor generalize well
(Urtasun et al., 2006; Wang et al., 2008).

To help ensure smoother, well-behaved models,
(Lawrence & Quiñonero-Candela, 2006) suggested the
use of back-constraints, where each point in the latent
space is a smooth function of its corresponding point
in data space, xij = gj (yi;aj), where {aj}1≤j≤d is
the set of parameters of the mappings. One possible
mapping is a kernel-based regression model, where re-
gression on a kernel induced feature space provides the
mapping,

xij =
N

∑

m=1

ajmk(yi,ym) . (3)
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(a) (b) (c) (d)
Figure 1. When training data contain large stylistic variations and multiple motions, the generic GPDM (a) and the
back-constrained GPDM (b) do not produce useful models. Simulations of both models here do not look realistic. (c,d)
Hybrid model learned using local linearities for smoothness (i.e., style) and backconstraints for topologies (i.e., content).
The training data is composed of 9 walks and 10 runs performed by different subjects and speeds. (c) Likelihood for the
reconstruction of the latent points (d) 3D view of the latent trajectories for the training data in blue, and the automatically
generated motions of Figs. 3 and 4 in green and red respectively.

This approach is known as the back-constrained GP-
LVM. When learning the back-constrained GP-LVM,
one needs to determine the hyperparameters of the ker-
nel matrices (for the back-constraints and the covari-
ance of the GP), as well as the mapping weights, {aj}.
(Lawrence & Quiñonero-Candela, 2006) fixed the hy-
perparameters of the back-constraint’s kernel matrix,
optimizing over the remaining parameters.

Nevertheless, when learning human motion data with
large stylistic variations or different motions, nei-
ther GPDM nor back-constrained GP-LVM produce
smooth models that generalize well. Fig. 1 depicts
three 3–D models learned from 9 walks and 10 runs.
The GPDM (Fig. 1(a)) and the back-constrainted
GPDM2 (Fig. 1 (b)) do not generalize well to new runs
and walks, nor do they produce realistic animations.

In this paper we show that with a well designed
set of back-constraints good models can be learned
(Fig. 1(c)). We also consider an alternative approach
to the hard constraints on the latent space arising
from gj (yi;aj). We introduce topological constraints
through a prior distribution in the latent space, based
on a neighborhood structure learned through a gener-
alized local linear embedding (LLE) (Roweis & Saul,
2000). We then show how to incorporate domain-
specific prior knowledge, which allows us to develop
motion models with specific topologies that incorpo-
rate different activities within a single latent space and
transitions between them.

3.1. Locally Linear GP-LVM

The locally linear embedding (LLE) (Roweis & Saul,
2000) preserves topological constraints by finding a
representation based on reconstruction in a low dimen-
sional space with an optimized set of local weightings.
Here we show how the LLE objective can be combined

2We use an RBF kernel for the inverse mapping in (3).

with the GP-LVM, yielding a locally linear GP-LVM

(LL-GPLVM).

The locally linear embedding assumes that each data
point and its neighbors lie on, or close to, a locally
linear patch on the data manifold. The local geome-
try of these patches can then be characterized by lin-
ear coefficients that reconstruct each data point from
its neighbors. This is done in a three step proce-
dure: (1) the K nearest neighbors, {yj}j∈ηi

, of each
point, yi, are computed using Euclidean distance in
the input space, dij = ||yi − yj ||

2; (2) the weights
w = {wij} that best reconstruct each data point
from its neighbors are obtained by minimizing Φ(w) =
∑N
i=1 ||yi−

∑

j∈ηi
wijyj ||

2; and (3) the latent positions
xi best reconstructed by the weights wij are computed

by minimizing Φ(X) =
∑N
i=1 ||xi −

∑

j∈ηi
wijxj ||

2.

In the LLE, the weight matrix w is sparse (only a small
number of neighbors is used), and the two minimiza-
tions can be computed in closed form. In particular,
computing the weights can be done by solving, ∀j ∈ ηi,
the following system,

∑

k

Csimkj wsimij = 1 , (4)

where Csimkj = (yi − yk)
T (yi − yj) if j, k ∈ ηi, and 0

otherwise. Once the weights are computed, they are
rescaled so that

∑

j wij = 1.

The LLE energy function can be interpreted, for a
given set of weights w, as a prior that forces each
latent point to be locally reconstructed by its neigh-
bors,i.e., p(X|w) = 1

Z
exp

{

− 1
σ2 Φ(X)

}

, where Z is
a normalization constant, and σ2 represents a global
scaling of the prior. Note that strictly speaking this is
not a proper prior as it is conditioned on the weights
which depend on the training data. Following (Roweis
& Saul, 2000), we first compute the neighbors based
on the Euclidean distance. For each training point yi,
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we then compute the weights solving Eq. (4).

Learning the LL-GPLVM is then equivalent to mini-
mizing the negative log posterior of the model, 3 i.e.,

LS = log p(Y|X, β̄) p(β̄) p(X|w)

=
D

2
ln |KY | +

1

2
tr

(

K−1
Y YYT

)

+
∑

i

lnβi

+
1

σ2

d
∑

k=1

N
∑

i=1

‖xki −

N
∑

j=1

wkijx
k
j ‖

2 + C , (5)

where C is a constant, and xki is the k-th component
of xi. Note that we have extended the LLE to have
a different prior for each dimension. This will be use-
ful below as we incorporate different sources of prior
knowledge. Fig. 2 (a) shows a model of 2 walks and 2
runs learned with the locally linear GPDM. Note how
smooth the latent trajectories are.

We now have general tools to influence the structure
of the models. In what follows we generalize the top-
down imposition of topology strategies (i.e. back-
constraints and locally linear GP-LVM) to incorporate
domain specific prior knowledge.

4. Reflecting Knowledge in Latent
Space Structure

A problem for modeling human motion data is the
sparsity of the data relative to the diversity of natu-
rally plausible motions. For example, while we might
have a data set comprising different motions, such as
runs, walks etc., the data may not contain transitions
between motions. In practice however, we know that
these motions will be approximately cyclic and that
transitions can only physically occur at specific points
in the cycle. How can we encourage a model to re-
spect such topological constraints which arise from
prior knowledge?

We consider two alternatives to solve this problem.
First, we show how one can adjust the distance metric
used in the locally linear embedding to better reflect
different types of prior knowledge. We then show how
one can define similarity measures for use with the
back-constrained GP-LVM. Both these approaches en-
courage the latent space to construct a representation
that reflects our prior knowledge. They are comple-
mentary and can be combined to learn better models.

3When learning a locally linear GPDM, the dynamics
and the locally linear prior are combined as a product of po-
tentials. The objective function becomes LS + d

2
ln |KX |+

1

2
tr

`

K−1

X
XoutX

T

out

´

+
P

i
ln αi, with LS defined as in (5).

(a) (d)

(b) (e)

(c) (f)
Figure 2. First two dimensions of 3–D models learned
using (a) LL-GPDM (b) LL-GPDM with topology (c)
LL-GPDM with topology and transitions. (d) Back-
constrained GPDM with an RBF mapping. (e) GPDM
with topology through backconstraints. (f) GPDM with
backconstraints for the topology and transitions. For the
models using topology, the cyclic structure is imposed in
the last 2 dimensions. The two types of transition points
(left and right leg contact points) are shown in red and
green, and are used as prior knowledge in (c,f).

4.1. Prior Knowledge through Local

Linearities

We now turn to consider how one might incorporate
prior knowledge in the LL-GPLVM framework. This is
accomplished by replacing the local Euclidean distance
measures used in Section 3.1 with other similarity mea-
sures. That is, we can modify the covariance used to
compute the weights in Eq. (4) to reflect our prior
knowledge in the latent space. We consider two exam-
ples: the first involves transitions between activities;
with the second we show how topological constraints
can be placed on the form of the latent space.

Covariance for Transitions Modeling transitions
between motions is important in character animation.
Transitions can be infered automatically based on sim-
ilarity between poses (Kovar et al., 2002) or at points
of non-linearity of the dynamics (Bissacco, 2005), and
they can be used for learning. For example, for mo-
tions as walking or running, two types of transitions
can be identified: left and right foot ground contacts.
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To model such transitions, we define an index on the
frames of the motion sequence, {ti}

N
i=1. We then define

subsets of this set, {t̂i}
M
i=1, which represents frames

where transitions are possible. To capture transitions
in the latent model we define the elements for the co-
variance matrix as follows,

Ctranskj = 1 −
[

δkj exp(−ζ(tk − tj)
2)

]

(6)

with ζ a constant, and δij = 1 if ti and tj are in the
same set {t̂k}

M
k=1, and otherwise δij = 0. This covari-

ance encourages the latent points at which transitions
are physically possible to be close together.

Covariance for Topologies We now consider co-
variances that encourage the latent space to have a
particular topology. Specifically we are interested in
suitable topologies for walking and running data. Be-
cause the data are approximately periodic, it seems
appropriate to have a non-Cartesian topology. To this
end one can extract the phase of the motion4, φ, and
use it with a covariance to encourage the latent points
to exhibit a periodic topological structure within a
Cartesian space. As an example we consider a cylindri-
cal topology within a 3–D latent space by constraining
two of the latent dimensions with the phase. In partic-
ular, to represent the cyclic motion we construct a dis-
tance function on the unit circle, where a latent point
corresponding to phase φ is represented with coordi-
nates (cos(φ), sin(φ)). To force a cylindrical topology
on the latent space, we specify different covariances for
each latent dimension

Ccosk,j = (cos(φi) − cos(φk)) (cos(φi) − cos(φj)) (7)

Csink,j = (sin(φi) − sin(φk)) (sin(φi) − sin(φj)) , (8)

with k, j ∈ ηi. The covariance for the remaining di-
mension is constructed as usual, based on Euclidean
distance in the data space. Fig. 2 (b) shows a GPDM
constrained in this way, and in Fig. 2 (c) the covari-
ance is augmented with transitions.

Note that the use of different distance measures for
each dimension of the latent space implies that the
neighborhood and the weights in the locally linear
prior will also be different for each dimension. Here,
three different locally linear embeddings form the prior
distribution.

4.2. Prior Knowledge with Back Constraints

As explained above, we can also design back-
constraints to influence the topology and learn useful

4The phase can be easily extracted from the data by
Fourier analysis or by detecting key postures and interpo-
lating the phases between them. Another idea, not further
explored here, would be to optimize the GP-LVM with re-
spect to the phase.

transitions. This can be done by replacing the ker-
nel of Eq. (3). Many kernels have interpretations as
similarity measures. In particular, any similarity mea-
sure that leads to a positive semi-definite matrix can
be interpreted as a kernel. Here, just as we define
covariance matrices above, we extend the original for-
mulation of back constraints by constructing similarity
measures (i.e., kernels) to reflect prior knowledge.

Similarity for Transitions To capture transitions
between two motions, we wish to design a kernel that
expresses strong similarity between points in the re-
spective motions where transitions may occur. We can
encourage transition points of different sequences to
be proximal with the following kernel matrix for the
back-constraint mapping:

ktrans(ti, tj) =
∑

m

∑

l

δmlk(ti, t̂m)k(tj , t̂l) (9)

where k(ti, t̂l) is an RBF centered at t̂l, and δml = 1
if t̂m and t̂l are in the same set. The influence of the
back-constraints is controlled by the support width of
the RBF kernel.

Topologically Constrained Latent Spaces We
now consider kernels that force the latent space to have
a particular topology. To force a cylindrical topology
on the latent space, we can introduce similarity mea-
sures based on the phase, specifying different similarity
measures for each latent dimension. As before we con-
struct a distance function in the unit circle, that takes
into account the phase. A periodic mapping can be
constructed from a kernel matrix as follows,

xn,1 =

N
∑

m=1

acosm k(cos(φn), cos(φm)) + acos0 δn,m,

xn,2 =

N
∑

m=1

asinm k(sin(φn), sin(φm)) + asin0 δn,m,

where k is an RBF kernel function, and xn,i is the ith

coordinate of the nth latent point. These two map-
pings project onto two dimensions of the latent space,
forcing them to have a periodic structure (which comes
about through the sinusoidal dependence of the kernel
on phase). Fig. 2 (e) shows a model learned using
GPDM with the last two dimensions constrained in
this way (the third dimension is out of plane). The
first dimension is constrained by an RBF mapping on
the input space. Each dimension’s kernel matrix can
then be augmented by adding the transition similarity
of Eq.(9), resulting in the model shown in Fig. 2 (f).

4.3. Model Combination

One advantage of our framework is that covariance ma-
trices can be combined in a principled manner to form
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new covariance matrices. Covariances can be multi-
plied (on an element by element basis) or added to-
gether. Similarly, similarities can be combined. Mul-
tiplication has, loosely speaking, an ‘AND gate effect’,
i.e. both similarity measures must agree that an ob-
ject is similar for their product to express similarity.
Adding them produces more of an ‘OR gate effect’, i.e.
if either representation expresses similarity the result-
ing measure will also express similarity.

The two sections above have shown how to incorpo-
rate prior knowledge in the GP-LVM by means of 1)
local linearities and 2) back-constraints. In general,
the latter should be used when the manifold has a
well-defined topology, since it has more influence on
the learning. When the topology is not so well defined
(e.g., due to noise) one should use local linearities.
Both techniques are complementary and can be com-
bined straightforwardly by including priors over some
dimensions, and constraining the others through back-
constraint mappings. Fig. 1 shows a model learned
with LL-GPDM for smoothness and back-constraints
for topology.

4.4. Multiple Activities and Transitions

Once we know how to ensure that transition points are
close together and that the latent structure has the
desired topology, we still need to address two issues.
How do we learn models that have very different dy-
namics? How can we simulate dynamical models that
lie somewhere between the different training motions?
Our goal in this section is to show how latent mod-
els for different motions can be learned independently,
but in a shared latent space that facilitates transitions
between activities with different dynamics.

Let Y = [YT
1 , ..., Y

T
M ]T denote training data for M

different activities. Each Ym comprises several differ-
ent motions. Let X = [XT

1 , ..., X
T
M ]T denote the corre-

sponding latent positions. When dealing with multiple
activities, a single dynamical model cannot cope with
the complexity of the different dynamics. Instead, we
consider a model where the dynamics of each activity
are modeled independently5. This has the advantage
that a different kernel can be used for each activity.

To enable interpolation between motions with different
dynamics, we combined these independent dynamical
models in the form of a mixture model. This allows us
to produce motions that gracefully transition between
different styles and motion types (Figs. 3 and 4).

5Another interpretation is that we have a block diagonal
kernel matrix for the GP that governs the dynamics.

5. Results

We demonstrate the effectiveness of our approach with
two applications. First we show how models of multi-
ple activities can be learned, and realistic animations
can be produced by drawing samples from the model.
We then show an interactive character animation ap-
plication, where the user specifies a set of sparse con-
straints and the remaining kinematic degrees of free-
dom are infered.

5.1. Learning multiple activities

We first considered a small training set comprised of
4 gait cycles (2 walks and 2 runs) performed by one
subject at different speeds. Fig. 2 shows the latent
spaces learned under different prior constraints. All
the models are learned using two independent dynam-
ical models, one for walking and one for running. Note
how the phases are aligned when imposing a cylindrical
topology, and how the LL-GPDM is smooth. Notice
the difference between the LL-GPDM (Fig. 2 (c)) and
the backconstrained GPDM (Fig. 2 (f)) when transi-
tion constraints are included. Neverthess, both mod-
els ensure that the transition points (shown in red and
green) are proximal.

Fig. 1 (c) shows a hybrid model learned using LL-
GPDM for smoothness, and back-constraints for topol-
ogy. The larger training set comprises approximately
one gait cycle from each of 9 walking and 10 running
motions performed by different subjects at different
speeds (3 km/h for walking, 6–12 km/h for running).
Colors in Fig. 1 (a) represent the variance of the GP
as a function of latent position. Only points close to
the surface of the cylinder produce poses with high
certainty.

We now illustrate the model’s ability to simulate dif-
ferent motions and transitions. Given an initial la-
tent position x0, we generate new motions by sam-
pling the mixture model, and using mean prediction
for the reconstruction. Choosing different initial con-
ditions results in very different simulations (Fig. 1 (d)).
The training data are shown in blue. For the first
simulation (depicted in green), the model is initial-
ized to a running pose with a latent position not far
from walking data. The system transitions to walking
quite naturally. The resulting animation is depicted in
Fig. 3. For the second example (in red), we initialize
the simulation to a latent position far from walking
data. The system evolves to different running styles
and speeds (Fig. 4). Note how the dynamics, and the
strike length, change considerably during simulation.
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Figure 3. Transition from running to walking: The system transitions from running to walking in a smooth and
realistic way. The transition is encouraged by incorporating prior knowledge in the model. The latent trajectories are
shown in green in Fig. 1 (d).

Figure 4. Different running styles and speeds: The system is able to simulate a motion with considerably changes
in speed and style. The latent trajectories are shown in red in Fig. 1 (d).

Figure 5. Single activity 3D latent models learned from
(left) 5 jumps of 2 different subjects using local linearities,
(b) 7 walking cycles of one subject using back-constraints.

5.2. Character animation from constraints

A key problem in the film and game industry is the
lack of tools to allow designers to easily generate an-
imations. Traditional techniques such as keyframing
are time consuming; an expert can expend days in
generating a few seconds of animation. A very useful
tool would provide the user with a simple way of gen-
erating motions from constraints that she/he defined.
Typical constraints are keyframes (i.e., specification
of the position of the full body in a particular time
instant), or joint trajectories. Here we use the topo-
logically constrained motion models as priors over the
space of possible motions.

Our motion estimation formulation is based on a state-
space model with a GPDM prior over pose and motion.
Given the state, φt = (yt,xt), the goal is to estimate
the state sequence φ1:T = (φ1, · · · , φT ) that satisfies
the user constraints u1:J . Inference is performed in a
Batch mode, so that the state is infered all at once.
The posterior can be expressed as

p(φ1:T |u1:J ,M) ∝ p(u1:J |φ1:T )p(φ1:T |M) (10)

where we assumed that p(u1:J ) is uniformily dis-
tributed; all the user constraints are equally probable.
The prediction distribution p(φ1:T |M) can be further
factored as follows

p(φ1:T |M) = p(x1:T |M)
T

∏

t=1

p(yt|xt,M) (11)

Rather than approximating the entire posterior, we use
hill-climbing to find MAP estimates. Assuming that
the user constraints are noise-free, the minimization
can be expressed as

min
φ1:T

Lpose + Ldyn + Lsmooth

subject to ||u − f(yψ(u))|| = 0 (12a)

where f is a forward kinematics function (i.e., a
function that maps joint angles to positions in the
3D world), ψ(u) is a function that outputs the
frame where each constraint uj is defined, Lpose =
−

∑

i ln p(yt|xt,M) and Ldyn = − ln p(x1:T |M) are
the pose and dynamics likelihood from the GPDM
prior (Urtasun et al., 2006), and Lsmooth =
1
σ2

s

∑T−1
t=1

∑P
j=1

1
σ2

j

(yjt+1 − y
j
t )

2 is a term that encour-

age smooth motions, where yjt is the j-th component of
yt, and σ2

j is a constant that encounters from the fact
that each degree of freedom has a different variance.

Initialization is important since a large number of vari-
ables need to be optimised and our objective function
is non-convex. In particular, we sample the model
starting at each training point and use as initializa-
tion the sample that is closest to the user constraints.

To demonstrate the effectiveness of our approach we
learned models of two different motions, walking and
jumping (Fig. 5). We impose smoothness and cyclic
topologies using back-constraints for the walking and
local linearities for the jumping. We demonstrate the
ability of the model to generalize to unseen styles.

We first show how the model can produce realistic an-
imations from a very small set of user defined con-
straints. The user specifies the contact points of the
foot with the ground (first row of Fig. 6) for walking
and the foot trajectories for the jumping (third row
of Fig. 6), and the rest of the degrees of freedom are
infered producing very realistic animations.

The model can also generalize to styles very different
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Figure 6. Animations generated from a set of foot constraints (green). First row: Normal walk. Second row: Gener-
alization a different style by changing the user constraints to be separate in the coronal plane. Third row: Short jump.
Last row: Longer stylistic jump. See video at http://people.csail.mit.edu/rurtasun

from the ones in the training set, by imposing con-
straints that can be satisfied only by motions very dif-
ferent from the training data. In particular, the user
placed the foot constraints far in the coronal plane for
walking. Consequently the character opens the legs to
satisfy the constraints (second row of Fig. 6). In the
last row of Fig. 6 the user places the foot trajectories
to create a jump with a style very different from the
traning data (the character opens his legs and bends
his body and arms in an exaggerated way).

6. Conclusions

In this paper we have proposed a general framework
of probabilistic models that learn smooth latent vari-
able models of different activities within a shared la-
tent space. We have introduced a principled way to
include prior knowledge, that allow us to learn spe-
cific topologies and transitions between the different
motions. Although we have learned models composed
of walking, running and jumping, our framework is
general, being applicable in any data sets where there
is a large degree of prior knowledge for the problem
domain, but the data availability is relatively sparse
compared to its complexity.
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