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Abstract

A promising approach to approximate infer-
ence in state-space models is particle �lter-
ing. However, the performance of particle
�lters often varies signi�cantly due to their
stochastic nature. We present a class of al-
gorithms, called lattice particle �lters, that
circumvent this diÆculty by placing the par-
ticles deterministically according to a Quasi-
Monte Carlo integration rule. We describe a
practical realization of this idea, discuss its
theoretical properties, and its eÆciency. Ex-
perimental results with a synthetic 2D track-
ing problem show that the lattice particle �l-
ter is equivalent to a conventional particle �l-
ter that has between 10 and 60% more par-
ticles, depending on their \sparsity" in the
state-space. We also present results on in-
ferring 3D human motion from moving light
displays.

1 Introduction

The Particle Filter (PF) has become a popular method
for approximate inference in dynamical systems, with
applications such as visual tracking [1, 11, 15, 18, 20]
and robot localization [8]. The PF approximates a
marginal probability distribution over unknown state
variables with a weighted particle set, and thereby
provides a convenient approach to dealing with multi-
modal distributions, and nonlinear dynamics and ob-
servation equations [6, 9, 11, 14]. But despite its suc-
cesses, the PF can be unstable. Statistically speak-
ing, even though the PF produces properly weighted

samples, the random variation of predictions based on
these samples may be excessive and therefore the pre-
dictions may be unreliable. For visual tracking, this
results in poor estimates of object location; in some
situations it causes the algorithm to lose track of the
object altogether.

This paper proposes the Lattice Particle Filter (LPF)
as an alternative, where particles are placed deter-
ministically according to a lattice rule. Lattice rules
are a subclass of Quasi-Monte Carlo (QMC) meth-
ods, which have been used successfully for high-
dimensional integration in computer graphics and �-
nance [2, 12, 17]. An important theoretical advan-
tage of QMC methods is that for N samples the error
converges at the rate O(N�1 logsN), where s is the
state space dimension, versus O(N�1=2) for conven-
tional Monte Carlo (MC). From a practical viewpoint,
randomized QMC methods can be used to construct
unbiased estimators that have smaller variance than
MC estimators.

After a brief introduction to the PF, we introduce
QMC methods and then describe the lattice particle
�lter. We show quantitative results on two problems,
namely, tracking 2D image patterns, and the inference
of 3D human pose from a 2D binocular sequence of
projected limb positions.

2 Previous Work

In Bayesian �ltering we are interested in computing a
probability distribution over the unknown state vari-
able xt at time t, conditioned on the observation his-
tory, Yt � (yt; :::;y1). This distribution, denoted
p(xt jYt), is called the �ltering distribution. The PF
is a method for approximating p(xt jYt) with a set of
weighted states (or particles). This approximation is
updated recursively from one time step to the next as
new observations become available. Gordon et al. [9]
provide a clear description of the method which they
call the Bootstrap Algorithm. In computer vision it is
often called the Condensation Algorithm [11]. Other
descriptions of the method, along with some important
generalizations are given by Liu et al. [14], Doucet et
al. [6], and Pitt and Shepard [19].

The goal of the particle �lter is to approximate the �l-
tering distribution p(xt jYt) with a set of samples. In
many applications it is diÆcult to sample directly from
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p(xt jYt). Instead, using Bayes' rule and a Markov
assumption, one can use the fact that p(xt jYt) is
proportional to the product of a likelihood function,
p(yt jxt), and a prediction distribution that summa-
rizes the information from previous �ltering steps,
p(xt jYt�1). There are numerous variants of the PF
that address speci�c shortcomings of the basic algo-
rithm [14, 19]. In its simplest form the PF draws
random proposals (states) from the prediction distri-
bution, and evaluates the likelihood function at each
proposal; normalized likelihood values serve as impor-
tance weights to account for the discrepancy between
the �ltering and the proposal distribution from which
states were sampled.

In many applications the evaluation of the likelihood
function dominates the computational cost of the algo-
rithm. As a consequence the number of particles, and
usually the dimensionality of the state space, should
be kept relatively small. For example, in estimating
3D human motion, it has been useful to design low-
dimensional subspaces of the state-space within which
to do the �ltering [20]. One can also learn better mod-
els of the body's dynamics. Of course, low dimensional
representations may not exist for unconstrained mo-
tions, in which case the principal way to improve the
performance of the PF is the eÆcient placement of
particles, e.g., with importance sampling [6, 15, 19],
or with MCMC sampling [3, 19].

This paper examines a Quasi-Monte Carlo (QMC)
method as a general way to further reduce the num-
ber of samples. Similar approaches have only recently
been suggested for �ltering [7, 18]. In [18], a non-
randomized QMC method is applied locally at each
time step, and in [7], a form of strati�ed sampling
with a QMC avor is used; however, this method can
only be applied in low dimensions. Here we use a
randomized QMC method. This allows us to obtain
properly weighted samples that can be used to con-
struct unbiased estimators in the same way the PF
does, and therefore a similar statistical analysis can
be performed.

3 Bayesian Filtering

Before describing the lattice particle �lter, we review
the particle �lter and the �ltering equations. Let xt
denote the unknown state variable at time t, and let
yt denote the image observation at time t. The tran-

sition model characterizes the state dynamics; with a
�rst-order Markov model it takes the form p(xtjxt�1).
The observation model speci�es the probabilistic rela-
tion between the state and the observations, providing
a likelihood function, p(ytjxt). Then, the �ltering dis-

tribution p(xtjYt) is given by

p(xtjYt)=

Z
:::

Z
p(xt; :::;x0jYt)dx1:::dxt�1

/

Z
:::

Z tY
k=1

p(yk jxk)p(xk jxk�1)dxk : (1)

The direct evaluation of (1) is diÆcult in practice be-
cause it involves an integral whose dimension grows
with t. Hence it is advisable to solve (1) recursively
using the prediction and �ltering equations:

p(xtjYt�1) =

Z
p(xtjxt�1)p(xt�1jYt�1)dxt�1 (2)

p(xtjYt) / p(ytjxt)p(xtjYt�1) : (3)

If the transition and observation models are linear with
Gaussian noise, then (2) and (3) are also Gaussian and
can be updated using the Kalman �lter [10]. Other-
wise, the representation and computation of (2) and
(3) can be diÆcult. In this case, one approach is to
approximate p(xtjYt) with a weighted set of particles,

St = f(xt;i; wt;i)g
N

i=1
: (4)

This idea can be made precise by requiring that St be
properly weighted [14] in the sense that

NX
i=1

wt;if(xt;i)
N!1
�! E[f(xtjYt)] (5)

for arbitrary integrable functions f .

The PF generates properly weighted samples [14] and
it encourages the exploration of paths (x1;i; : : : ;xt;i)
that appear likely given Yt, discarding particles with
small weights from (4). The PF is described by:

a(i) � multinomial(wt�1;1; : : : ; wt�1;N ) ; (6)

xt;i := g(ut;i;xt�1;a(i)) ; (7)

wt;i :=
p(yt j xt;i)P
N

j=1 p(yt j xt;j)
: (8)

The index sequence generated in step (6) speci�es the
\surviving" particles, xt�1;a(i); i = 1; :::; N . These
particles are propagated forward in step (7), and
step (8) speci�es the weights associated with each

new particle. The points ut;i are independent, and
g(ut;i;xt�1;i) is a transformation function that maps
the uniform vector ut;i and the previous state xt�1;i
onto an sample from p(xtjxt�1;i). This transformation
is a component of any computer simulation since ran-
dom variate generation for many continuous distribu-
tions are based on transformations of uniform random
numbers [5]. In the case of a univariate standard nor-
mal transition model, g(ut;i; 0) would be the inverse
standard normal distribution function.
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The LPF provides an improved way of executing the
�ltering steps (6) { (7). The idea is to draw points ut;i
from a lattice rule instead of using random sampling,
as we explain in the next section.

4 Lattice Particle Filter

The PF described in Sec. 3 produces properly weighted
samples that approximate the �ltering distribution (1).

However, the PF's performance may vary considerably
in practice due to the random nature of the sampling.
This is sometimes particularly harmful in the context
of �ltering because, even though the approximation
error due to sampling at each step may be small, errors
can accumulate over time in an exponential manner.

To see this, consider a simple example where the tran-
sition density p(xtjxt�1) is uniform on the state-space
[0; 1) and independent of xt�1. Let the observations
be binary with P (yt = 1jxt), being 1 if xt < 0:2 and 0
otherwise. That is, the system states xt are placed in-
dependently on the unit interval, but only those states
in [0; 0:2) trigger the response yt = 1. Suppose fur-
thermore that the true state trajectory of xt happened
to evolve entirely within [0; 0:2) so that yt = 1 for all
t. And assume we use a PF with N = 10 particles
to recover the trajectory. At each time step the num-
ber of particles within [0; 0:2) is binomially distributed
with parameters 10 and 0.2. Hence the probability of
having no particles within [0; 0:2) in any one of k time
steps is (1� (1� 0:810)k), which converges to one ex-
ponentially with k. In other words, after a suÆciently
long time there almost certainly occurs one time where
the PF lost track of the object completely.

In this example, an alternative strategy would have
been to choose only one particle at random at each
time, and to place the remaining particles equidis-
tantly around that particle. Then there would always
be two particles in [0; 0:2). This deterministic place-
ment of particles according to a low-discrepancy rule

is a special case of a QMC method. We next provide
some general background on QMCmethods and lattice
rules, and then describe the LPF.

4.1 Quasi-Monte Carlo Methods

Consider a generic integration problem with respect
to the uniform measure over the domain [0; 1)s. There
are several ways to approach this task. MC integra-
tion averages the values of the integrand at N random,
uniform, independent points in [0; 1)s. Its error has a

convergence rate of O(N�
1

2 ) that is independent of s.
In many practical problems, this convergence rate is
too slow. A deterministic alternative might be to use
a Cartesian product of one-dimensional point sets, as
shown in Figure 1(left) for s = 2, but with this deter-
ministic approach the number of points N needed to
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Figure 1: Left: Rectangle rule. Right: Korobov lattice
rule with N = 256 and a = 25; the projection of the
points on each axis results in N distinct values.

preserve a constant level of integration accuracy grows
exponentially fast with the dimension s. This subopti-

mal behavior is related to the fact that such construc-
tions have low-dimensional projections containing less
thanN points; for example, note that in Figure 1(left),
the 256 points project to only 16 points along each axis
to integrate the x1 and x2 components of an integrand
of the form f(x1; x2).

By contrast, QMC methods aim to create point sets
whose di�erent projections onto coordinate subspaces
always contain N distinct points. An overview of ran-
dom number generation and QMC methods is given
in the book by Niederreiter [16]. An example of a 2D
QMC point set, called a Korobov lattice rule, is shown
in Figure 1(right).

A second goal of QMC methods is to create point
sets that are as close as possible to a uniform distri-
bution. More precisely, QMC methods are based on
so-called low-discrepancy point sets which give conver-
gence rates of O(N�1 logsN) for integration error, in

contrast to the MC method that is O(N�
1

2 ). In prac-
tice, the performance of QMC integration is intimately
related to the e�ective dimension of the integration
problem, i.e., the ability to approximate the integrand
by a sum of low-dimensional functions [2, 17]. Inte-
grands having a small e�ective dimension can be inte-
grated accurately by QMC point sets that have good
projections over subspaces of low dimension. Superior
performance of QMC over MC has been demonstrated

in numerous applications [2, 12, 17].

As a special case of QMC methods we consider lattice
rules here [13, 21]. By comparison to the Sobol and
Niederreiter sequences [16] used in [18], lattice rules
are easy to implement (only one parameter, the gen-

erator, is required for a given sample size), and can be
built so that their projections onto low-dimensional
subspaces are not only well distributed but also of
equivalent quality for di�erent subspaces. They can
also be randomized to produce unbiased estimators.
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log
2
N 4 5 6 7 8

al 3 5 11 13 25
ah 3 5 5 11 75
log

2
N 9 10 11 12 13

al 55 43 259 307 699
ah 51 139 519 1081 1289
log

2
N 14 15 16 17 18

al 2087 7243 11035 27891 18373
ah 2961 2149 21553 27383 3597

log
2
N 19 20 21

al 21643 201579 431119
ah 120079 172565 232501

Table 1: Generators for state-space dimensions up to
8 should use generators, al. Problems with dimensions
up to 32 use generator, ah.

To build the LPF, we use a special construction of
lattice rule called a shifted Korobov lattice rule based
on N points U1; : : : ;UN given by

Ui =

�
i� 1

N
(1; a; : : : ; as�1) +�

�
mod 1 ; (9)

for i = 1; :::; N , where the modulo 1 is applied
component-wise. The integer a 2 [1; :::; N�1] is called
the generator of the rule; its choice is crucial for the
performance. Suitable values for a, depending on the
sample size N and the state dimension, are given in
Table 1 (see [13] for more details). The vector � is a
shift that is uniformly distributed over [0; 1)s, which
implies that the pointsUi are also uniform, but depen-
dent. This shift is important as a means of obtaining
error estimates via multiple simulations [4], and it is
necessary to guarantee that the resulting approxima-
tions are unbiased.

4.2 LPF Algorithm

The LPF algorithm propagates N particles following
the rules (6), (7), and (8). However, the uniform num-
bers ut;i in the forward propagation (7) become com-
ponents of the (shifted) lattice rule (9).

More precisely, we start with a shifted lattice rule
PN = fUi; i = 1; : : : ; Ng in sT dimensions, where s is
the dimension of the state at a single time, and T is the
number of time steps. We decompose PN into com-
ponents of the form ut;1;ut;2; : : : ;ut;N for each time
t. Note that, due to (9), these components can be
computed recursively for t = 1; :::; T , without storing
PN explicitly. Next, we use ut;1;ut;2; : : : ;ut;N for for-
ward propagation in step (7). An important issue is
the assignment of a particular uniform number ut;j
to the uniform variables ut;i in (7). There is a dan-
ger of assigning components to particles that might
depend on the outcome of the resampling, hence in-
troducing a serious bias. Our approach is to gener-
ate at each time t a uniform and random permutation
�t = (t;1; : : : ; t;N) of the integers [1 : : :N ], and then

assign the point ut;t;i to particle i. This implies that
the trajectory x1;i; : : : ;xt;i of the i

th particle from time
1 to t is generated by the point

~Ut;i = (u1;1;i ;u2;2;i ; : : : ;ut;t;i): (10)

Note that the point set f ~Ut;1; : : : ; ~Ut;Ng does not form
a lattice rule, which would be necessary to obtain
the O(N�1 logsN) convergence rate globally. How-
ever, the point set used at each time t forms a lat-
tice rule. In addition, it can be shown [13] that when
gcd(a;N) = 1, the point sets used at each time step
di�er in the implementation only because of the ran-
dom shift. Hence the quality of the sampling remains
the same throughout time, which is generally not the
case for other types of QMC point sets such as those
used in [18].

In summary, the LPF implementation only di�ers from
the PF in the use of the points ut;i used to generate
the state xt;i. Instead of calling a pseudorandom num-
ber generator s times to de�ne ut;i, the LPF instead

generates one random shift �, one random permuta-
tion �t = (t;1; : : : ; t;N) of the integers from 1 to N ,
and then use the point

�
t;i � 1

N
(1; a; : : : ; as�1) + �

�
mod 1

to generate the state xt;i of the i
th particle.

5 Theoretical Aspects

In this section we discuss some theoretical results and
we outline di�erences and similarities between the LPF
and the ordinary PF. In terms of search methods,
one can view the ordinary PF as an informed, ran-
dom search where di�erent nodes of a search tree are
expanded or truncated at di�erent time steps. Con-
versely, the LPF corresponds to an (almost) determin-

istic search algorithm. The observation model is used
as a heuristic function to determine which \node" (i.e.
branch of the �ltering tree) is expanded next, and the
transition model speci�es how to carry out this expan-
sion. In the LPF the expansion is designed to search
the state space as evenly as possible.

From a mathematical perspective, we can show that
the samples generated by the LPF are properly
weighted in the sense of (5). This is suggested by the

fact that the updating of the weights wt;i and the sam-
pling with replacement in the LPF are done exactly as
in the PF. The only di�erence is that the particles
xt;1; : : : ;xt;N are not independent. We formalize this
intuition in the following theorem, which covers the
LPF as a special case:
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Theorem 1 If each particle xt;i is generated by a

point ut;i that has a uniform distribution over [0; 1)s

and such that ut;i and ur;j are independent for 1 � r <

t � T , 1 � i; j � N , and if the resampling step at time

t is done by sampling with replacement using weights

wt;i proportional to p(ytjxt;i), then St = fxt;i; wt;ig
N

i=1

is a properly weighted sample, for t = 1; : : : ; T .

The proof is omitted due to space limitations; it
proceeds by showing that each xt;i follows the dis-
tribution p(xtjYt�1) as in (2), and then, that
E[f(xt;i) p(ytjxt;i)] / E[f(xtjYt)] for any function f ;
from there, applying the ergodic theorem yields the re-
sult. Hence, at least asymptotically, the LPF produces
a correct approximation of the �ltering distribution
(3), and furthermore, the quantity

PN

i=1 wt;if(xt;i) is
an unbiased estimator of E[f(xtjYt)]. Note that the
random shift in (9) is essential to this result and is
a principal di�erence between the LPF and previous
work on QMC-based �ltering where samples are gen-
erated deterministically, e.g. [18].

6 Experiments

To test the LPF we compare it to a conventional PF
that uses residual sampling [14]. Both �lters had the
same observations, the same temporal dynamics, and
the same likelihood function. Our goal is to compare
the di�erent �lters in how well they approximate the
�ltering distribution (3). The quality of the approx-
imation is measured by computing the error covari-
ation in the estimation of the mean of the �ltering
distribution across many runs of the �lters. By ap-
plying the �lters with varying numbers of particles we
can also analyze the relationship between estimation
errors and the computation time required by both al-
gorithms. Computational requirements in both algo-
rithms scale similarly with the number of particles.

6.1 Disk Tracking

The �rst experiment involves a circular disk undergo-
ing a random walk in an image sequence. The disk
position at time t, xt 2 IR2, is given by

xt = xt�1 + �t ; (11)

where �t is 2D i.i.d. zero-mean Gaussian noise; i.e.,
�t � N(�0; �2

x
I2), where I2 is the 2�2 identity matrix.

The standard deviation was �x = 3 pixels.

The e�ective scene model m(r; t) is 1 if pixel location
r is within a disk of radius 16 pixels, centered at xt:

m(r; t) �

�
1 for kr� xtk � 16
0 otherwise :

(12)

The image observation is obtained by adding i.i.d.
zero-mean Gaussian noise �t;r � N(0; �2

�
), with �� =

Figure 2: Root mean-squared errors (RMSE) in the esti-

mated disk location for a PF with residual sampling and

for the LPF. (TOP) RMSE with con�dence levels based

on 64 samples. (BOTTOM) RMSE for PF's with di�er-

ent sample sizes; with 50% more samples, the PF produces

errors similar in magnitude to the LPF.

0:25, to m(r; t):

I(r; t) � m(r; t) + �t;r : (13)

The model transition density is

p(xtjxt�1) � N(xtjxt�1; �
2
d
I2) : (14)

We misspeci�ed the model (14) by setting �d = 5,
which is about 60% larger than the standard deviation
in the \true" transition model (11). This is because
such model parameters are typically unknown in prac-
tice, and hence a relatively large value must be chosen
to search a suÆciently large neighborhood of xt.

We created 1000 image sequences, each with 40 frames,
by simulating (11), (12), and (13). We applied the PF

and the LPF to each sequence, initialized by setting
x0 to the true disk location at time 0. The disk lo-
cation was estimated by taking the weighted mean of
the particles, according to (5). The error at each time
step is the Euclidean distance between the estimated
and the true disk location. As a summary statistic,
we compute the root mean-squared estimation error
(RMSE) of the 1000 trials at each time step.

The RMSE results of an experiment with 64 particles
are shown in Figure 2 as a function of time. The cir-
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# particles 16 32 64 128 256 512
Var di�erence 20% 21% 19% 11% 11% 10%
eÆciency gain 50% 60% 50% 15% 20% 20%

Table 2: Experimental results in disk tracking task

cles represents the RMSE of the LPF and the other
curves represent the performance of the ordinary PF
for di�erent numbers of particles. Figure 2 (top) com-
pares the LPF to the PF with identical numbers of
particles, showing RMSE and standard error bars that
provide a measure of our con�dence in this expected
deviation from the true disk location. The LPF pro-
duces location errors that are approximately 20% less
than the PF with the same number of samples. This
supports our hypothesis that the deterministic place-
ment of particles improves the average performance of
the estimate. In addition, although diÆcult to discern
from this plot, the standard error bars from the LPF
are also smaller.

Figure 2 (bottom) shows the same RMSE results for
the LPF but compared against RMSE results for PFs
with di�erent numbers of particles. This allows one to
assess the computational gains due to the LPF. One
can see that we need to increase the number of parti-
cles, and hence the computation time, for the PF by
approximately 50% in order to produce errors as small
as those obtained with the LPF. Even with 50% more
particles the performance of each individual trial may
still be worse for the PF due to the larger error bars.

These results hold over a wide range of particle set
sizes. Figure 3 shows other experiments with from 16
particles up to 512 particles. The experimental setup
is identical to that in Figure 2. Note that the average
prediction error of both methods, as well as the vari-
ability of the predictions, decreases with an increasing
number of particles. A summary of the results from
the complete set of experiments is given in Table 2.

Note that the LPF consistently outperforms the PF by
a margin of at least 15%. The performance improve-
ment seems to be less pronounced in the cases where
we have relatively many particles (128, 256, and 512).
This is to be expected because an optimized parti-
cle placement seems particularly relevant in the case
where there are relatively few particles. Regarding the
percentage of additional particles needed by the PF to
match the performance of the LPF, which is reported
in the third row of the table, the maximum di�erence
of 60% occurs at a sample size of 32 particles for the
LPF. Again, this di�erence becomes less pronounced
as the overall number of particles increases.

6.2 Human Motion Tracking

In our second set of experiments, we apply both the
LPF and the PF using residual sampling to a human

Figure 3: Root mean-squared errors (RMSE) in the es-

timated disk location for PF's with residual sampling and

for the LPF. The number of samples for the di�erent �lters

are show in the legends in each plot.

motion tracking problem. The task is to recover the
lower portion of a human body from 2D projections.
Rather than using camera images as observations, we
used 2D projections of body markers (on the joints)
obtained from a commercial motion capture system.
This �ltering problem is challenging because the lower
body (legs and hips) is described in a 10D space.
Tracking occurs directly on this space without �rst
applying algorithms for dimensionality reduction like
principal component analysis [20].

The image observations are labeled 2D positions cor-

responding to markers on a human subject, the 3D
locations of which were found with a commercial mo-
tion capture system. The 6 markers used for track-
ing the lower body are shown in Fig. 4. The observa-
tion model involves the perspective projection of the
3D points onto the image plane plus additive Gaus-
sian noise. Given a camera center at (Xc; Yc; Zc), with
the optical axis parallel to the Y-axis, a marker point
(Xm; Ym; Zm) produces the observation

d =

�
Xm �Xc

Ym � Yc
;
Zm � Zc

Ym � Yc

�
+ � (15)

where � is isotropic 2D mean-zero Gaussian noise
with variance �2. In the experiments below we used
� = 0:002, which is approximately 2% the length of an
upright spine projected into the image plane.
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Figure 4: Locations of 6 markers on the lower body.

The body is modeled as an articulated linkage. The
state vector for the lower body model has 10 angular
degrees of freedom (DOF): 2 for the pelvis, 3 for each
hip, and 1 for each knee. Given a state, x, and the
known spine location, one can traverse the kinematic
tree, from the spine to the pelvis, and then to each
leg, to generate the 3D marker locations. These 3D
locations are then projected into the image to generate
predicted observations from the model. Let d̂j(x) be
the 2D location for the jth marker that is predicted by
state x. Then the likelihood function for state s and
observations D = fdjg

6
j=1 is

p(D jx) =

�
1

2��2

�6

exp

�
�

P6
j=1 jjdj � d̂j(x)jj

2

2�2

�
; (16)

where �2 is the variance of the image noise.

The experiments simulate a binocular observer that
views the person from approximately 2.5m, with 6cm
between the two eyes. Assuming independent noise in
the two image views, the joint likelihood is the prod-
uct of the individual likelihoods. For a temporal prior
over these state variables, we make the simplistic as-

sumption that the state changes slowly over time. In
particular, the transition density for states xt, condi-
tioned on xt�1, is an isotropric, mean-zero Gaussian,
with a variance of �2a. Here, we �x �a = 0:1 radians.

Note that we do not impose limits on how far joints
can rotate. The tracker may draw high-likelihood pro-
posals that are anatomically impossible, but are con-
sistent with the 2D observations. Also, limb lengths

are determined from the dimensions of the human sub-
ject before tracking begins and are then �xed during
tracking. This is a source of error as real joints are
more complicated than our model, causing some parts
such as the pelvis to vary in width over time.

Comparing the performance of the LPF and PF is
more diÆcult in this case. In particular, the mean
of the �ltering distribution is not always equal to the
true state. As the �lters are attempting to approx-
imate the �ltering distribution, an appropriate mea-

sure of performance is the di�erence between the true
mean of the �ltering distribution and the mean states
computed using the approximations provided by the
LPF and the PF.

To obtain a ground truth measure of the true mean
of the �ltering distribution, we ran a PF on the input
sequences with 16 times the number of samples than
we used in the experiments. We then took the true
mean to be the sample mean from this large run. We
then ran the LPF and the PF 200 times on the same
input, with di�erent random seeds on every run. The
means on each run were computed according to (5).

Figure 5 summarizes the results for individual state
variables of the left leg, namely, two angles from the
left hip, and one for the left knee. Notice from Fig. 5
(top) that the average of the mean estimates obtained
over the 200 trials is very close to the true mean in
both cases. This is not surprising since both the LPF
and the PF produced unbiased estimates. The error
bars in Fig. 5 (top) show the standard deviation of the
ensemble of means for the 200 runs, which is where
we expect the LPF to show smaller variability of the
estimates about the true mean. Like the disk tracker
results, the standard deviation for the LPF is usually
5% - 20% below that for the particle �lter, with similar
gains in computational eÆciency.

Figure 5 (bottom) shows the expected (absolute) dif-
ference between the true mean and the mean estimates
obtained with the LPF and the PF. The error bars are
larger than in Fig. 2 because we have only 200 instead
of 1000 trials. The lower errors with the lattice method
are clear nonetheless.

7 Conclusions

We presented an algorithm called the lattice parti-
cle �lter to improve the reliability of particle �lters
in visual tracking. Speci�cally, the method places
the particles deterministically according to a randomly
shifted lattice rule. This reduces the variance of the
particle-based approximation. Experiments demon-
strate that the practical improvement from using the
LPF amounts to savings in the number of particles of
between 20% and 60%. The size of this e�ect depends
on the \sparsity" of the particles in the state-space,
being more pronounced when there are relatively few
particles as it is typical for real applications. In our
experiments involving a 10D human motion tracker,
the lattice particle �lter also led to similar reductions
in variance.

For future work, we plan alternative versions of the
LPF that are based on a global lattice rule in nT di-
mensions. We believe that the global lattice property
will be central to obtain exact convergence rates and to
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Figure 5: Summary of 200 trials of PF and LPF tracking of lower body. (Top) Individual state variables for the left leg,

for which the LPF means are generally is closer to the posterior mean, and have signi�cantly less variance. (Bottom)

Expected di�erence between the posterior mean and the means computed by the PF and the LPF.

optimize the practical performance of the LPF. How-
ever, it involves the creation of particles satisfying a
global lattice constraint. We will also explore alterna-
tive resampling methods that could, e.g., depend on
the variability of the likelihoods obtained at each time
step, such as those in [6, 14].
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