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Abstract—We describe a geometric-flow-based algorithm for computing a dense

oversegmentation of an image, often referred to as superpixels. It produces

segments that, on one hand, respect local image boundaries, while, on the other

hand, limiting undersegmentation through a compactness constraint. It is very fast,

with complexity that is approximately linear in image size, and can be applied to

megapixel sized images with high superpixel densities in a matter of minutes. We

show qualitative demonstrations of high-quality results on several complex

images. The Berkeley database is used to quantitatively compare its performance

to a number of oversegmentation algorithms, showing that it yields less

undersegmentation than algorithms that lack a compactness constraint while

offering a significant speedup over N-cuts, which does enforce compactness.

Index Terms—Superpixels, image segmentation, image labeling, perceptual

grouping.
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1 INTRODUCTION

SUPERPIXELS [18] represent a restricted form of region segmenta-
tion, balancing the conflicting goals of reducing image complexity
through pixel grouping while avoiding undersegmentation. They
have been adopted primarily by those attempting to segment,
classify, or label images from labeled training data [8], [9], [10],
[16], [18]. The computational cost of the underlying grouping
processes, whether probabilistic or combinatorial, is greatly
reduced by contracting the pixel graph to a superpixel graph.
For many such problems, it is far easier to merge superpixels than
to split them, implying that superpixels should aim to oversegment
the image. Region segmentation algorithms which lack some form
of compactness constraint, e.g., local variation [6], mean shift [3], or
watershed [7], can lead to undersegmentation in the absence of
boundary cues in the image. This can occur, for example, when
there is poor contrast or shadows. Algorithms that do encode a
compactness constraint, including N-Cuts [27] and TurboPixels (the
framework we propose), offer an important mechanism for coping
with undersegmentation. Fig. 1 shows the oversegmentations
obtained using these five algorithms; the effect of a compactness

constraint in limiting undersegmentation can be clearly observed
in the results produced by TurboPixels and N-Cuts.

The superpixel algorithm of Ren and Malik [18] is a restricted
graph cut algorithm, constrained to yield a large number of small,
compact, quasi-uniform regions. Graph cut segmentation algo-
rithms operate on graphs whose nodes are pixel values and whose
edges represent affinities between pixel pairs. They seek a set of
recursive bipartitions that globally minimize a cost function based
on the nodes in a segment and/or the edges between segments.
Wu and Leahy [26] were the first to segment images using graph
cuts, minimizing the sum of the edge weights across cut
boundaries. However, their algorithm is biased toward short
boundaries, leading to the creation of small regions. To mitigate
this bias, the graph cut cost can be normalized using the edge
weights being cut and/or properties of the resulting regions.
Although many cost functions have been proposed (e.g., [5], [11],
[19], [25]), the most popular normalized cut formulation, referred
to widely as N-Cuts, is due to Shi and Malik [21] and was the basis
for the original superpixel algorithm of [18].

The cost of finding globally optimal solutions is high. Since the
normalized cut problem is NP-hard for nonplanar graphs, Shi and
Malik proposed a spectral approximation method with (approx-
imate) complexity OðN3=2Þ, where N is the number of pixels. Space
and runtime complexity also depend on the number of segments,
and become prohibitive with large numbers of segments. In [20], a
further reduction in complexity by a factor of

ffiffiffiffiffi
N
p

is achieved,
based on a recursive coarsening of the segmentation problem.
However, the number of superpixels is no longer directly
controlled nor is the algorithm designed to ensure the quasi
uniformity of segment size and shape. Cour et al. [4] also proposed
a linear time algorithm by solving a constrained multiscale N-Cuts
problem, but this complexity does not take the number of
superpixels into account. In practice, this method remains
computationally expensive and thus unsuitable for large images
with many superpixels.

There are fast segmentation algorithms with indirect control
over the number of segments. Three examples include the local

variation graph-based algorithm of Felzenszwalb and Huttenlocher
[6], the mean-shift algorithm of Comaniciu and Meer [3], and
Vincent and Soille’s watershed segmentation [7]. However, as
mentioned earlier, since they lack a compactness constraint, such
algorithms typically produce regions of irregular shapes and sizes.

The TurboPixels algorithm introduced in this paper segments an
image into a lattice-like structure of compact regions (superpixels)
by dilating seeds so as to adapt to local image structure.
Computationally, the approach is rooted in the early curve
evolution techniques in computer vision (e.g., [1], [13], [14]). In
an approach that is similar in philosophy to the one we develop in
this paper, in [28] properties of the medial axis are used to modify
the evolution of two simultaneously evolving contours, in
application to carpal bone segmentation. In the reaction-diffusion
space of [13], a constant motion (reaction) term was played off
against a curvature term (diffusion) for shape analysis. This flow
was subsequently adapted to the problem of segmentation in [14]
and [1] via the inclusion of a multiplicative image gradient
stopping term. These methods led to active contour models that
could handle changes in topology in a natural way. Formal
theoretical justification, as the gradient flows associated with
particular weighted length or area functionals, followed [2], [12],
[23]. A reaction-diffusion space of bubbles was further developed in
[24], where instead of a single contour, multiple bubbles were
simultaneously placed and grown from homogeneous regions of
the image.

While there are many variations on the theme of dilating seeds
using geometric flows (e.g., this idea has been used for segmenting
vasculature in medical imaging [29]), none of these methods have
been applied thus far to superpixel segmentation. Below we
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develop such a technique by combining a curve evolution model

for dilation with a skeletonization process on the background

region to prevent the expanding seeds from merging. We

demonstrate that this technique advances the state of the art in

compact superpixel computation by 1) being applicable to

megapixel size images, with very high superpixel densities, and

2) providing comparable accuracy to N-Cuts, but with significantly

lower runtimes.

2 SUPERPIXELS FROM GEOMETRIC FLOWS

The key idea in our approach is to reduce superpixel computation

to an efficiently solvable geometric-flow problem.
Our approach is guided by five basic principles:

. Uniform size and coverage: Superpixel segmentation

should partition an image into regions that are approxi-

mately uniform in size and shape (compactness), minimiz-

ing region undersegmentation, provided that superpixel

size is comparable to the size of the smallest target region.

We achieve this by designing a geometric flow that dilates

an initial set of uniformly distributed seeds, where each

seed corresponds to one superpixel. The seeds behave

initially like reaction-diffusion bubbles [24].
. Connectivity: Each superpixel should represent a simply

connected set of pixels. Our dilation-based flow combined

with its level-set implementation, ensures that this

constraint is always satisfied.
. Compactness: In the absence of local edge information,

superpixels should remain compact. Our flow begins from

circular seeds and assumes no prior bias on the location of

superpixel boundaries. To maximize compactness, we

include a term that produces constant motion in the

direction of the outward normal in regions of uniform

intensity. This term maximizes the rate of area growth,

while retaining the minimum possible isoperimetric ratio,

which is 4� for a circular region.

. Smooth, edge-preserving flow: When growth stops,

superpixel boundaries should coincide with image edges.

This requires a geometric-flow formulation with three

properties: 1) It should slow down boundary growth in the

vicinity of edges, 2) it should be attracted to edges, and 3) it

should produce smooth boundaries. To do this, we borrow

ideas from work on geometric active contours [1], [2], [12],

[13], [14]. Such formulations provide an easy way to

incorporate image-based controls on boundary growth,

and include both a “doublet” term for attraction and a

curvature term for shape regularization.
. No superpixel overlap: A superpixel segmentation should

assign every pixel to a single superpixel. Therefore,

boundary evolution should stop when two distinct dilating

seeds are about to collide. To achieve this, we incorporate a

simple skeleton-based mechanism for collision detection in

the background.

These considerations lead to a geometric-flow-based algorithm,

that we call TurboPixels, whose goal is to maintain and evolve the

boundary between the assigned region, which contains all pixels

that are already inside some superpixel, and the unassigned region,

which contains all other pixels. At a conceptual level, the algorithm

consists of the following steps, as illustrated in Fig. 2:

1. place initial seeds;
2. iterate over the following basic steps until no further

evolution is possible, i.e., when the speed at all boundary
pixels is close to zero,

a. evolve this boundary for T time steps;
b. estimate the skeleton of the unassigned region;
c. update the speed of each pixel on the boundary and of

unassigned pixels in the boundary’s immediate
vicinity.

See Algorithm 1 for a pseudocode summary of these steps, each of

which is discussed in detail below.
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Fig. 1. Oversegmentations obtained with five algorithms: (a) TurboPixels, (b) N-Cuts [27], (c) Local variation [6], (d) Mean shift [3], and (e) Watershed [7]. Each

segmentation has (approximately) the same number of segments. The second row zooms in on the regions of interest defined by the white boxes.
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3 THE TURBOPIXELS ALGORITHM

3.1 Level-Set Boundary Representation

Geometric flows of the type associated with the TurboPixels

algorithm are commonly implemented using level-set methods

[17]. The basic idea is to devise a flow by which curves evolve to

obtain superpixel boundaries. Let C be a vector of curve

coordinates parameterized by p, a parameter which runs along

the curve, and t, a parameter to denote evolution in time. Let N

represent its outward normal and let each point move with speed

S by a curve evolution equation @C
@t ¼ SN. This curve evolution

equation is implemented by first embedding C as a level set of a

smooth and continuous function � : R2 � ½0; �Þ ! R2 and then

evolving this embedding function according to

�t ¼ �S kr�k: ð1Þ

In practice, we define � over the image plane as the signed

euclidean distance of each image pixel to the closest point on the

boundary between assigned and unassigned (background) regions.

A pixel’s distance is positive if it is in the unassigned region and

negative if it is not, with the boundary represented implicitly as the

zero level set of �. Since we are only interested in the zero level set of

�, we maintain an accurate representation of � only in a narrow

band around its current zero level set (typically 4 pixels wide on

each side of the boundary). This narrow band is computed using the

Fast Marching implementation in LMSLIB.1 The superpixel bound-

aries can be computed at subpixel resolution by interpolation.

3.2 Initial Seed Placement

One of our key objectives is to compute superpixels that are evenly

distributed over the image plane. Given a user-specified value K of

superpixels, we place K circular seeds in a lattice formation so that

distances between lattice neighbors are all approximately equal toffiffiffiffi
N
K

q
, where N is the total number of pixels in the image. This

distance completely determines the seed lattice since it can be

readily converted into a distance across lattice rows and columns.

In our implementation, the initial seed radius is 1 pixel.
The above strategy ensures that superpixels in a uniform-

intensity image will satisfy the uniform distribution objective

exactly. In practice, of course, images are not uniform and this

deterministic placement may cause some seeds to accidentally fall

on or close to a strong edge, inhibiting their early growth. To avoid

this, we perturb the position of each seed by moving it in the

direction of the image gradient as a function of the gradient

magnitude (see Section 3.5), with the maximum perturbation

determined by the seed density.

3.3 Numerical Level-Set Evolution

We use the following first-order discretization in time of (1):

�nþ1 ¼ �n � SISB k r�n k�t: ð2Þ

Each application of (2) corresponds to one “time step” �t in the

evolution of the boundary. We apply this equation until any point

on the evolving boundary reaches the edge of the narrow band.

The key term controlling the evolution is the product of two

speeds SISB, which lie at the heart of our TurboPixels algorithm.

The first term (SI ) depends on local image structure and

superpixel geometry at each boundary point, and the second

(SB) depends on the boundary point’s proximity to other

superpixels. We detail the computation of these velocities in

Sections 3.5 and 3.4, respectively.
In theory, the velocities in (2) are defined at every point on the

zero level set. In practice, we compute this term for a small band of

pixels in the vicinity of the zero level set at iteration n. We discuss

this process in Section 3.6. For notational simplicity, we omit the

parameter n from �n in the following sections, except where it is

explicitly needed.

3.4 Proximity-Based Boundary Velocity

The proximity-based velocity term ensures that the boundaries of

nearby superpixels never cross each other. To do this, we use a

binary stopping term that is equal to 0 on the 2D homotopic
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1. LSMLIB is a library of level-set routines written by K. Chu (http://
www.princeton.edu/~ktchu/software/lsmlib/).

Fig. 2. Steps of the TurboPixels algorithm. In Step 4a, the vectors depict the current velocities at seed boundaries. Where edges have been reached, the velocities are

small. In Step 4b, the magnitude of velocities within the narrow band is proportional to brightness.
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skeleton of the unassigned region and is equal to 1 everywhere
else, i.e., SBðx; yÞ ¼ 0 if and only if ðx; yÞ is on the skeleton. This
formulation allows the boundary of each superpixel to be guided
entirely by the underlying image until it gets very close to another

superpixel boundary.
Since the regions between evolving curves change at each

iteration of our algorithm, the skeleton must be updated as well.
We do this efficiently by marking all pixels in these unassigned
regions (i.e., those with �ðx; yÞ > 0) and then applying a homotopy

preserving thinning algorithm [22] on them to compute the
skeleton. The thinning algorithm removes pixels ordered by their
distance to the boundary of the region with the constraint that all
digital points that can be removed without altering the topology
are removed.

3.5 Image-Based Boundary Velocity

Our image-based speed term combines the reaction-diffusion-
based shape segmentation model of [1], [14], [24] with an
additional “doublet” term provided by the geodesic active contour
[2], [12] to attract the flow to edges:

SIðx; yÞ ¼ ½ 1� � �ðx; yÞ � �ðx; yÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
reaction-diffusion term

�� ½ Nðx; yÞ � r�ðx; yÞ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
00doublet00 term

: ð3Þ

The reaction-diffusion term ensures that the boundary’s
evolution slows down when it gets close to a high-gradient region
in the image. It is controlled by three quantities: 1) a “local affinity”
function �ðx; yÞ, computed for every pixel on the image plane, that
is low near edges and high elsewhere; 2) a curvature function
�ðx; yÞ that expresses the curvature of the boundary at point ðx; yÞ
and smoothes the evolving boundary; and 3) a “balancing”
parameter � that weighs the contribution of the curvature term.

Intuitively, the doublet term ensures that the boundary is
attracted to image edges, i.e., pixels where the affinity is low.
Specifically, when a point ðx; yÞ on the boundary evolves toward a
region of decreasing affinity (an image edge), its normal Nðx; yÞ
will coincide with the negative gradient direction of �, and the
term acts as an attractive force. If the boundary crosses over an
edge these two vectors will point in the same direction and cause a
reversal in the boundary’s direction of motion.

Local affinity function. Our algorithm does not depend on a
specific definition of the function �, as long as it is low on edges
and is high elsewhere. For almost all the experiments in this paper,
we used a simple affinity measure based on the gray-scale
intensity gradient:

�ðx; yÞ ¼ e�Eðx;yÞ=�; Eðx; yÞ ¼ k rI k
G	�k rI k þ 


: ð4Þ

Our affinity function � produces high velocities in areas with low
gradients, with an upper bound of 1. Dividing the gradient
magnitude in Eðx; yÞ by a local weighted sum of gradient
magnitudes provides a simple form of contrast normalization.
The support width of the normalization, controlled by 	, is
proportional to the expected initial distance between seeds. This
normalization allows weak but isolated edges to have a significant
effect on speed, while suppressing edge strength in dense texture.

The constant 
 ensures that the effect of insignificant signal
gradients remains small. We note that whereas our Eðx; yÞ is a
simple measure of gray-scale image gradient, the implementation
of N-Cuts we use for comparison [27] in our experiments in
Section 4 employs a more complex measure of intervening
contours computed using a texture-based edge map.

Normal and curvature functions. The outward normal of the
zero level set of � at a point ðx; yÞ is given by the derivatives of �,
i.e., N ¼ r�=k r� k. The curvature of the zero level set, at a point
ðx; yÞ, is given by [17]:

� ¼
�xx�

2
y � 2�x�y�xy þ�yy�

2
x�

�2
x þ�2

y

�3
2

: ð5Þ

As is standard for diffusive terms, the derivatives of � used for �
are computed using central difference approximations. Central
difference approximations are also used for all other calculations
with the exception of k r�n k in the level set form for the reaction
term (�ðx; yÞ) in (3), for which upwind derivatives [17] must be
used since it is a hyperbolic term.

Balancing parameters. The balancing parameters � and � in (3)
control the relative contributions of the reaction-diffusion and
doublet terms. Higher values of � prevent “leakage” through
narrow edge gaps, but also prevent sharp superpixel boundaries
that may be sometimes desirable. High values of � cause better
stopping behavior of seeds on weak edges, but also slow down the
evolution of seeds elsewhere.2

3.6 Speed Extension

The velocity terms SI and SB have meaning only on the current
superpixel boundaries, i.e., the zero level set of �. This leads to
two technical difficulties. First, the zero level set is defined
implicitly and, hence, it lies “in between” the discrete image
pixels. Second, each time we invoke a level-set update iteration (2),
the boundary must move by a finite amount (i.e., at least a sizeable
fraction of a pixel).

Speed extension gives a way to solve both problems and is

common in existing curve evolution implementations [14]. Here,

we extend � and r�, the only image-dependent terms, in the same

narrow band we use to maintain an accurate estimate of � (see

Section 3.3). To each pixel ðx; yÞ in this narrow band, we simply

assign the � and r� values of its closest pixel on the boundary.3

3.7 Termination Conditions and Final Segmentation

The algorithm terminates when the boundaries stop evolving.
Since in theory the boundaries can evolve indefinitely with
ever-decreasing velocities, the algorithm terminates when the
relative increase of the total area covered by superpixels falls
below a threshold. We used a relative area threshold of 10�4 in
all our experiments.

After termination, the evolution results are postprocessed so
that the superpixel boundaries are exactly one pixel in width. This
is done in three steps. First, any remaining large unassigned
connected regions are treated as superpixels. Next, very small
superpixels are removed, making their corresponding pixels
unassigned. Finally, these unassigned regions are thinned, as in
Section 3.4, according to the algorithm in [22]. The thinning is
ordered by a combination of euclidean distance to the boundary
and a �-based term, in order to obtain smooth superpixel contours
that are close to edges.

3.8 Algorithm Complexity

The complexity of our algorithm is roughly linear in the total
number of image pixels N for a fixed superpixel density. At each
time step, all elements of the distance function � are updated (see
(2)). Each update requires the computation of the partial
derivatives of � and evaluation of SISB. Thus, each update takes
OðNÞ operations.

The speed extension and homotopic skeleton computations are
not linear in image size. Both actions areOðN logNÞ but can be made
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2. Based on empirical observation, the values � ¼ 0:3 and � ¼ 1 were
chosen. These values limit the amount of leakage during seed evolution,
without slowing down the evolution in other regions. In the future, we
intend to learn the optimal values for these parameters automatically by
evaluating the performance of the algorithm on a training set of images.

3. The algorithm that efficiently computes � for all pixels within the
narrow band provides their closest boundary pixel as a byproduct, so no
extra computations are necessary.

Authorized licensed use limited to: The University of Toronto. Downloaded on January 3, 2010 at 17:13 from IEEE Xplore.  Restrictions apply. 



faster in practice. If b is the number of pixels in the narrow band
(which is linear in the number of pixels that lie on zero crossings),
then the complexity of speed extension isOðNÞ þ Oðb log bÞ. While b
can approach N in theory, it is usually much smaller in practice.

The homotopic skeleton computation is OðNÞ þ Oðk log kÞ [22],
where k is the number of unassigned pixels. In practice, k� N ,
especially toward the end of the evolution when few unassigned
pixels remain.

It now remains to take into account the number of iterations of

the algorithm. Under ideal conditions, all the curves evolve with

maximal speed until they meet or reach an edge. Since the

expected distance between seeds is Dn initially (see Section 3.2), it

will take Oð
ffiffiffiffi
N
K

q
Þ iterations for the algorithm to converge. Hence,

the algorithm converges more slowly for larger images, and more

quickly as the superpixel density increases. Thus, for a fixed

superpixel density (keeping Dn constant), the number of iterations

will be constant, making the overall complexity roughly OðNÞ.

4 EXPERIMENTAL RESULTS

We evaluate the performance of the TurboPixels algorithm by
comparing its accuracy and running time to three other algorithms:
Normalized Cuts (N-cuts) and square blocks (Sb), both of which
encode a compactness constraint, and Felzenszwalb and Hutten-
locher (Felz), which does not. The TurboPixels algorithm was
implemented in Matlab with several C extensions.4 For N-cuts, we
use the 2004 N-cut implementation based on [27],5 while for Sb, we
simply divide the image into even rectangular blocks, providing a
naive but efficient benchmark for accuracy (other algorithms are
expected to do better). All experiments were performed on a quad-
core Xeon 3.6 GHz computer. We use the Berkeley database, which
contains 300 (481� 321 or 321� 481) images. In our experiments,
the image size is defined as the fraction of the area of the full image
size of 154,401 pixels. In all experiments, performance/accuracy is
averaged over at least 25 images and in most cases over a larger
number.6 Finally, the gradient-based affinity function of a gray-
scale image (4) was used for the TurboPixels algorithm, a
difference in image intensity was used as affinity in Felz, and a
more elaborate (intervening contours) affinity was used for N-cuts.

4.1 Undersegmentation Error

As stated in Section 1, algorithms that do not enforce a compactness
constraint risk a greater degree of undersegmentation. Given a
ground-truth segmentation into segments g1; . . . ; gK and a super-
pixel segmentation into superpixels s1; . . . ; sL, we quantify the
undersegmentation error for segment gi with the fraction

�P
fsj jsj\gi 6¼;g AreaðsjÞ

�
�AreaðgiÞ

AreaðgiÞ
: ð6Þ

Intuitively, this fraction measures the total amount of “bleeding”
caused by superpixels that overlap a given ground-truth segment,
normalized by the segment’s area.

To evaluate the undersegmentation performance of a given
algorithm, we simply average the above fraction across all ground-
truth segments and all images. Fig. 3a compares the four
algorithms using this metric, with undersegmentation error
plotted as a function of superpixel density. The inability of Felz
to stem the bleeding is reflected in the significantly higher
undersegmentation error over all three algorithms that encode a

compactness constraint. Of these three, the TurboPixels algorithm
achieves the least undersegmentation error.

4.2 Boundary Recall

Since precise boundary shape might be necessary for some
applications, we adopt a standard measure of boundary recall
(what fraction of the ground-truth edges fall within a small distance
threshold (2 pixels in this experiment) from at least 1 superpixel
boundary. As shown in Fig. 3b, Felz offers better recall at lower
superpixel densities, while at higher superpixel densities, Felz and
TurboPixels are comparable, with both outperforming N-cuts and
Sb. The fact that Felz does not constrain its superpixels to be
compact means that it can better capture the boundaries of thin,
noncompact regions at lower superpixel densities.

4.3 Timing Evaluation

With the exception of the naive and clearly inferior Sb algorithm,
the cost of enforcing a compactness constraint (N-cuts, TurboPix-
els) is significant; for example, Felz is, on average, 10 times faster
than TurboPixels. For our timing analysis, we therefore restrict our
comparison to TurboPixels and N-cuts, the two primary compe-
titors in the class of algorithms with a compactness constraint. For
any superpixel algorithm, it is appropriate to increase the number
of superpixels as the image size increases, so that the expected area
(in pixels) of each superpixel remains constant. Figs. 4a and 4b
show the running time of the two algorithms as a function of
increased image size. The expected size of a superpixel is kept
fixed at about 10� 10 pixels.

The TurboPixels algorithm is several orders of magnitude faster.
It is almost linear in image size compared to N-cuts, whose running
time increases nonlinearly. Due to “out of memory” errors, we were
unable to run N-cuts for all of the parameter settings used for the
TurboPixels results. Figs. 4c and 4d show running time as a function
of superpixel density, with the image size fixed at 240� 160 (one
quarter of the original size). The running time of N-cuts increases in
a nonlinear fashion whereas the running time of the TurboPixels
algorithm decreases as the density of the superpixels increases. This
is due to the fact that the seeds evolve over a smaller spatial extent
on average and thus converge faster.

4.4 Qualitative Results

Fig. 5 gives a qualitative feel for the superpixels obtained by the
TurboPixels algorithm for a variety of images from the Berkeley
database. Observe that the superpixel boundaries respect the salient
edges in each image, while remaining compact and uniform in size.7

Fig. 6 provides a qualitative comparison against the results obtained
using N-cuts. The TurboPixels algorithm obtains superpixels that
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Fig. 3. Undersegmentation error (a) and accuracy (boundary recall) (b) as a
function of superpixel density.

4. A beta-version of our code is available at http://www.cs.toronto.edu/
~babalex/turbopixels_supplementary.tar.gz; the default parameter values
are the same as those used for the experiments in this paper.

5. We use Version 7 from Jianbo Shi’s website http://www.cis.upenn.
edu/~jshi/software/files/NcutImage_7_1.zip.

6. Due to the long running time and large memory requirements of
N-cuts, using the entire database was prohibitively expensive.

7. Supplementary material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2009.96 (http://www.cs.toronto.edu/~babalex/turbopixels_
supplementary.tar.gz), contains additional results of the TurboPixels
algorithm on megapixel sized images with superpixel densities in the
thousands. Obtaining superpixels under such conditions using N-cuts
is prohibitively expensive.
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are more regularly shaped and uniform in size than those of N-

cuts.

The TurboPixels algorithm is of course not restricted to

work with affinity functions that are based strictly on image

gradient, as discussed in Section 3.5, and hence more refined

measures can be used for superpixel boundary velocity. Fig. 7

shows the performance of the algorithm when the boundary

velocity incorporates the Pb edge detector [15]. Note how the

edge between the leopard and the background is captured much

better when a Pb-based affinity is used. Moreover, the shapes of

the superpixels inside the leopard are more regular for the latter

case.
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Fig. 4. Timing evaluation. (a) Running time versus image size. (b) An expanded version (a) to show the behavior of the TurboPixels algorithm. (c) Running time versus
superpixel density. (d) An expanded version of (c) showing the behavior of the TurboPixels algorithm.

Fig. 5. TurboPixels results on a variety of images from the Berkeley database, with a zoom-in on selected regions in the middle and right columns.
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Fig. 7. Qualitative results of the TurboPixels algorithm using gradient-based (a) and Pb-based (b) affinity functions.

Fig. 6. A qualitative comparison of TurboPixels results with gray-level gradient-based affinity compared to results with N-cuts.

Fig. 8. Image representation using superpixels. Each superpixel from the original image (a) is colored with: (b) The average color of the original pixels in it. (c) The best

linear fit to the color of the original pixels in it. (d) The best quadratic fit to the color of the original pixels in it.
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5 CONCLUSIONS

The task of efficiently computing a highly regular oversegmenta-

tion of an image can be effectively formulated as a set of locally

interacting region growing problems, and as such avoids the high

cost of computing globally optimal oversegmentations (or their

approximations), such as N-Cuts. Combining the power of a

data-driven curve evolution process with a set of skeletal-based

external constraints represents a novel, highly efficient frame-

work for superpixel segmentation. The results clearly indicate

that, while superpixel quality is comparable to the benchmark

algorithm, our algorithm is several orders of magnitude faster,

allowing it to be applied to large megapixel images with very

large superpixel densities.
The framework is general and, like any region segmentation

algorithm, is based on a user-defined measure of affinity between

pixels. While our experiments have demonstrated the use of

intensity gradient-based and Pb-based affinities, other more

complex affinity measures, perhaps incorporating information

from multiple scales, are possible. Selecting the appropriate

affinity measure is entirely task dependent. We offer no prescrip-

tion, but rather offer a general framework into which a domain-

dependent affinity measure can be incorporated.
It is also important to note that we have intentionally skirted

several important domain-dependent problems. One global issue

is the fact that our framework allows the user to control the

superpixel shape and density. On the issue of density, our

approach is very generic, and one could imagine that with domain

knowledge, seeds could be placed much more judiciously.

Depending on the task, seeds could be placed with varying

density at the cost of lower superpixel uniformity. In some

domains, varying seed density may be more desirable. In textured

images, for example, seeds could be placed to capture the

individual texture elements better (like the spots of the leopard

in Fig. 7). Moreover, our framework allows us to guide superpixels

to have a certain shape. Currently, in the absence of edges, the

superpixels would grow in a circular manner. However, one could

imagine growing superpixels to be elliptical instead. This could be

more useful for extracting superpixels in narrow structures. Still,

as shown in the experiments, the use of a compactness constraint

clearly minimizes undersegmentation at a significantly higher

computational cost. If both undersegmentation and irregularly

shaped superpixel boundaries can be tolerated, the Felz algorithm

is clearly the better choice, offering a tenfold speedup as well as

improved boundary recall at lower superpixel densities.
Perhaps the most important issue is what to do with the

resulting superpixels. The application possibilities are numerous,

ranging from image compression to perceptual grouping to figure-

ground segmentation. Currently, superpixels are mainly used for

image labeling problems to avoid the complexity of having to label

many more pixels. In the same manner, superpixels can be used as

the basis for image segmentation. In the graph cuts segmentation

algorithm, the affinity can be defined over superpixels instead of

over pixels, resulting in a much smaller graph. Superpixels can

also be considered as a compact image representation. To illustrate

this idea, in Fig. 8, each superpixel’s color is approximated by three

polynomials (one per channel). Note that, whereas the mean and

the linear approximations seem poor, the quadratic approximation

approaches the quality of the original image.
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