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Abstract

Phase-based methods for extracting binocular dispar-
ity are discussed, including phase-difference methods
and phase-correlation. A third method is also described
that combines some of their properties, and appears
consistent with recent physiological data.

1 Introduction

This paper outlines a method for extracting binocu-
lar disparity. It borrows from two existing approaches,
namely, phase-difference methods [15, 5, 2, 16], and
phase-correlation methods [8, 4, 13], and was designed
to be consistent with recent physiological data [12].

We begin with a review of phase-difference and
phase-correlation methods. They are both shown to
be instances of the same basic approach, differing
in the form of band-pass filters, stability constraints,
and the control strategy, where phase-correlation looks
more like a voting scheme than a coarse-to-fine ap-
proach. From this perspective, noting the advan-
tages and disadvantages of both methods, we outline
a new model that combines desirable properties of
both, namely, the robustness and reliability of wavelet-
based phase-differences, and the voting strategy of
phase-correlation. The approach is also computation-
ally simple, being composed primarily of linear opera-
tions throughout, with no explicit coarse-to-fine control
strategy.

2 Phase-Difference Methods

Central to phase-based methods are the filters that
decompose the images into band-pass signals. Perhaps
the easiest way to extract phase is to use complex-
valued quadrature-pair filters, the real and imaginary
parts of which are 7/2 radians out of phase, with iden-
tical amplitude spectra. Often one assumes that the
real and imaginary parts of the kernel are even and
odd-symmetric, but this is not strictly necessary.

*This paper was presented at IEEE International Conference
on Systems, Man and Cybernetics, San Antonio, October 1994,
pp. 48-56

Let K;(z) be the impulse response of the j" filter,*
and let the complex-valued outputs of its convolution
with the left and right images, I;(#) and I.(z), be

Oi(z) = Re[Oi(x)] + ¢Im[O;(x)]
O,(x) = Re[O,(z)] + iIm[O, ()]

where Re[z] and Im[z] denote the real and imaginary
parts of z. Amplitude p and phase ¢ constitute a polar
representation of the real and imaginary parts in the
complex plane,

Oi(x) = pi(w) P Op(x) = py(w) €717 (1)

where amplitude is the magnitude of response, pi(x) =
|Oi(x)|, and the phase denotes the argument of the com-
plex response, ¢;(x) = arg[O;(z)]. Here, ¢(z) and p(z)
are often called instantaneous phase and amplitude to
emphasize their local nature. Also useful for phase-
difference methods is the concept of instantancous fre-
quency, usually defined as the derivative of instanta-
neous phase with respect to spatial position [14]:
dé(x) d, ()
d

wi(e) = ——, @n(r)=—— (2)

This provides the frequency of the band-pass signal at
each spatial position.

Phase-based matching methods define disparity as
the shift necessary to align the phase values of band-
pass filtered versions of the two signals in (1). To un-
derstand the reasons for the use of phase it is helpful
to examine the typical behaviour of band-pass signals.
Fig. 1 shows the real part of the output of a one octave
Gabor filter applied to a sample of white noise, along
with its amplitude and phase components. Not surpris-
ingly, such outputs are well modelled in local regions by
a sinusoidal signal with a slowly varying amplitude and
a slowly varying frequency that remains close to the
filter’s tuning frequency [1]. Among other things, as
shown in Fig. 1, this sinusoidal behaviour means that
phase is predominantly linear. With a purely sinusoidal
signal, phase will be perfectly linear.

TAlthough the mathematical development is presented in 1d
assuming epipolar lines, the implementation below is in 2d.
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Figure 1. Phase Linearity: (top) Response of cosine-
Gabor filter convolved with white noise. (bottom) Am-
plitude and phase parts of response.

The importance of phase linearity follows from the
fact that displacements of a linear function are easy
to estimate. For instance, with sinusoidal inputs and
disparity d, the filter outputs would be

O(x) = pie™ | Oy(x) = po==H . (3)

The left and right phase functions are then ¢;(#) = wox
and ¢,(2) = wo(x — d), so disparity is given by

L Bile) = 6n(x)

wo

(4)

Of course, phase is only uniquely defined in the interval
(—m,w]. It is expected to wrap around from 7 to —=x
every wavelength, and therefore we can only measure
disparities to half a wavelength.

With general inputs we still expect phase to be pre-
dominantly linear [1], and hence reliable approxima-
tions to disparity are available from phase differences
and the instantaneous frequency of the signal. The cor-
responding disparity estimator may take the form [2]

_ [o(x) = ¢ (2)]2n
4= @) + o (2) 5)

where [t)]a2, denotes the principal part of ¢ that lies
The size of the neighbourhood
within which phase is monotonic determines the range
of disparities that can be measured uniquely by the es-
timator. Filter outputs containing short wavelengths

between —7 and 7.

can measure only small disparities while those with
longer wavelengths can handle larger disparities.? This
typically leads to some form of coarse-to-fine strat-
egy, in which an initial guess is provided from coarser
scales with which the images at the current scale are
preshifted (warped) to bring them into registration
within the appropriate domain of convergence (e.g.
[11, 5, 7]). The wavelength at the coarsest scale should
be more than twice the largest expected disparities.

There are several ways to measure phase differences.
One can compute them explicitly, or one can take the
complex-valued product of left output and the complex
conjugate of the right [7]:

C(2) = Oi(x)05(x)
= pi(x)pr(x) [cos Ag(x) + isin Ag(z)] (6)

where A¢(z) = ¢1(x) — ¢r(x). The real and imaginary
parts of C'(x) can be computed directly from the real-
valued filter outputs as follows:

pipr cos A¢ = Re[O)] Re[O,] + Im[O;] Im[O,] (7a)

piprsin A¢ = Tm[O] Re[O,] — Re[0]Im[O,]  (7b)

Interestingly, physiological data suggest that the terms
on the right side of (7) may model the basic binocular
interaction of simple cells, while their sums in (7a) and
(7b) model complex-cell responses [12].

A second major reason for the success of phase-based
methods is the stability of phase with respect to ge-
ometric deformations and contrast variations between
left and right views [1]. Although most methods for
estimating disparity are derived from a model of image
translation, the importance of robustness with respect
to affine deformations, like those that occur regularly
with 3d surfaces, should not be overlooked.

Although usually stable, it can also be shown that
phase exhibits a common form of instability where it is
very sensitive to changes in spatial position and scale
between the left and right signals. This instability oc-
curs in the neighbourhoods of phase singularities, where
the amplitude of the signal goes through the origin
in the complex plane, and may be detected with con-
straints on the instantaneous frequency and the ampli-
tude derivative of the filter output [1]. The detection
and removal of measurements that occur in regions of
phase instability is an important ingredient of current
phase-difference methods [2, 6].

?Note that gradient-methods applied to the real-valued filter
output directly (effectively linearizing the outputs) have an even
narrower disparity range since the filter outputs are linear only
in narrow regions about the zero-crossings.



3 Phase-Correlation

Phase-correlation methods use Fourier phase for sig-
nal registration [8, 4, 13]. The method is often derived
assuming pure translation between two images:

I(x) = Ii(x — d) . (8)

The Fourier shift theorem tells us that their Fourier
transforms satisfy I, (w) = Il( Je~%  Their amplitude
spectra are identical, 4;(w) = A, (w ), and their phase
spectra differ by dw, i.e., ¢, (w) = ¢1(w) —

Taking the product of the left Fourier spectra and
the complex conjugate of the right, and then dividing
by the product of their amplitude spectra, we obtain

L(w)Ir(w)  Alw)A,(w)elW@)=velwn o)
= = €

Ar(w)Ar (w) Ar(w)Ar (w)

Here, ¢*¥? is a sinusoidal function in the frequency do-

main, and therefore its inverse Fourier transform is an
impulse, located at the disparity d, that is, §(x + d).
Thus, in short, phase-correlation methods measure dis-
parity by finding peaks in

(10)

In practice, it is desirable to measure disparity lo-
cally. Accordingly, it is common to use windowed re-
gions of the left and right images rather than the orig-
inal images. The windows must be considerably larger
than the expected displacements if no initial registra-
tion information is available. The large windows ensure
that there is sufficient information in common in the
two windows that can then be used for matching.

The reason for reviewing phase-correlation here is to
first show its relationship to phase-difference methods,
and to borrow some of its properties in designing a new
approach. In comparing phase correlation to phase-
difference methods, note first that a windowed Fourier
transform is in fact a set of linear band-pass filters. To
see this, consider the windowed Fourier transform of a
signal I(x), with the window centred at xy:

FW (e —zo)(x)] = /W (x — xo)I(x)e™ " dx
= = R(ag) (1)
where R(z) = H(x)® I(x) is the convolution of the in-
put with a filter H(z) = W(—z)e’“®. The Fourier coef-

ficient, at frequency w, of the windowed Fourier trans-
form is equal to the output of the filter H(x) tuned to
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Figure 2. Wavelets and Windowed FT: (top) Typi-
cal kernels from a wavelet transform. (bottom) Typical
kernels from a windowed Fourier transform.

the same frequency w, at the location of the window.
The filter is a sinusoidally modulated window (like a
Gabor function).
filters typically used in phase-difference methods, with
constant octave bandwidths, the spatial extent of the
implicit filters here does not depend on the frequency
of the modulation as illustrated in Fig. 2, and thus they
have a constant linear bandwidth [9].

However, in contrast to the wavelet

By viewing the windowed Fourier transform as a set
of filters, one can then see that the phase differences im-
plicit in (10) are analogous to those provided in phase-
difference methods in (6). But the product in (10) is
a function of frequency; in effect, it represents a set of
phase differences, one for each filter. If one were to ex-
tract these phase differences explicitly from the product
n (10), divide by frequency, and obtain disparity esti-
mates, then this would be a phase-difference method,
but with a particular set of filters.

However, phase-correlation does not involve explicit
phase differences, instantaneous frequencies, explicit
disparity estimates, nor does it appear to involve a
coarse-to-fine strategy which is common to many dis-
parity techniques. Instead, phase-correlation uses a
voting scheme to find the disparity. If one views the
Fourier transform as a decomposition of a function
into a sum of sinusoids, then the inverse Fourier trans-
form amounts to the reconstruction of the function as
a weighted sum of sinusoids. Here, the inverse Fourier
transform is a sum of phase-shifted sinusoidal functions,
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Figure 3. Voting Scheme: Phase-shifted sinusoids in
the inverse Fourter transform act as voting functions
(top), where the peaks coincide in the sum to form a
single peak (bottom).

each of which has unit magnitude owing to the normal-
ization in (10):

Ft [em‘z’(w)] = /em‘z’(w)e“‘w dw

= /[cos(wx + Ag(w)) +
isin(we + A¢(w))]dw  (12)

One can view this as a voting scheme in which each
band-pass channel votes in a sinusoidal manner, where
the locations of the peaks are determined by the inte-
rocular phase differences. Ideally, as in Fig. 3, there
will be a single disparity at which peaks coincide across
a wide range of frequencies to form a distinct peak.

Finally, it may be interesting to note that phase-
correlation also resembles a correlation technique in
which the magnitude of the cross-correlation at each
frequency is normalized to unity [13]. In other words,
the product of the Fourier spectra in (10) is equiva-
lent to the cross-correlation of the two inputs, but here
they have been prewhitened by normalizing the ampli-
tude spectra. This effectively enhances the influence of
the higher frequencies in the cross-correlation, yielding
a sharper peak in ideal cases.

4 Discussion

Phase-difference approaches have a variety of appeal-
ing properties, many of which are the result of research
in recent years. Some of the main advantages result
from the use of local wavelet filters and the stability
constraints that significantly improve the robustness of
the measurements. The coarse-to-fine control strategy,
although common, is often thought to be somewhat un-

satisfactory. If the coarsest scale yields a poor estimate,
or if phase at intermediate scales is unstable, then finer
channels may receive a poor initial guess, in which case
the rest of the process may converge to an incorrect dis-
parity. In addition, the warping required at each level
is not always convenient for parallel computation.

As a biological model there are further difficulties
with phase-difference methods. Although the Ohzawa-
DeAngelis-Freeman model [12] appears to compute the
terms of the complex-valued product in (6) according
to the receptive field combinations in (7a) and (7b),
there is little or no physiological evidence for explicit
representations of phase differences, instantaneous fre-
quency, or disparity for that matter. In addition, there
is growing evidence against coarse-to-fine control strate-
gies in the psychophysical literature (eg. [10]).

Phase-correlation, by comparison, offers an interest-
ing alternative. In particular, the voting scheme de-
termines disparity based on the consistency of informa-
tion at different scales and orientations. This does away
with the coarse-to-fine strategy, and allows matches in
which all band-pass channels are shifted by more than
7/2 radians. Thus, this approach could in principle
succeed where a coarse-to-fine approach might fail.

On the other hand, there are a variety of unappeal-
ing properties of phase-correlation. One problem arises
from the windowed Fourier transform as the initial set
of filters. Because the window size of the effective filters
is fixed, the higher frequencies will have very narrow
bandwidths compared to lower frequencies. From the
results in [1] this implies that higher frequency chan-
nels will be very sensitive to even small scale changes
between left and right images. Another concern with
such filters is that the spatial resolution does not im-
prove with high frequencies as it would with wavelet
filters. Because the window sizes in phase-correlation
methods are kept large to ensure enough structure for
reliable matching, the spatial resolution of the disparity
map will be coarse.

Two further problems with phase-correlation concern
the voting strategy: First, all frequencies are weighted
equally in (12), even though higher frequency channels
are likely to be more sensitive to geometric deforma-
tions between views and to signal-to-noise problems.
Unfortunately, phase-correlation methods do not ex-
ploit phase stability constraints like those used (at all
scales) in phase-difference methods. A second concern
with (12) is that the frequencies of the sinusoidal vot-
ing functions are determined by the tuning frequencies
of the implicit filters rather than the instantaneous fre-
quency of their responses. This implies significant er-



rors for larger disparities, and may cause the greatest
problems at low frequencies, where the bandwidths are
large, so that instantaneous frequency can differ signif-
icantly from the filter’s tuning frequency.

5 Local Weighted Phase-Correlation

In what follows we outline a local version of phase
correlation that combines the basic robustness of phase-
difference methods with the voting strategy of phase-
correlation. The initial Fourier transforms are replaced
with a family of quadrature-pair filters tuned in both
orientation and scale with a constant octave bandwidth.
The product of left and right filter outputs is used to ob-
tain the phase differences as in phase-correlation meth-
ods. However, instead of assuming purely sinusoidal
voting functions, we construct sampled versions of them
using a series of preshifts of one of the two images. The
voting functions are then summed across the different
filters, from which the disparity measurements are ex-
tracted. The following paragraphs describe these ideas
in more detail.

The initial quadrature-pair filters are currently im-
plemented with a Gaussian pyramid, each scale of which
is then decomposed using oriented quadrature-pair fil-
ters. We then have access to several oriented band-pass
filter responses at each scale of the pyramid.

Instead of taking the normalized product of left and
right outputs directly as in (10) or (6), here we intro-
duce a small amount of smoothing [6], yielding

W(z) @ [0i(x) O;(z+T)]
V() @ 101(@) P/ W (x) @ |0 (x+7)[?

where W(z) is a small, localized window, 7 acts as a
preshift of the right filter output, and the subscript j
refers to the j** filter, whose output is used to com-
pute C;(z, 7). Peaks in the real part of C;(z, 7) act as
votes for candidate disparities 7 between left and right
filter outputs at location x. Rather than assume per-
fectly sinusoidal voting functions as in (12) and Fig. 3,
preshifts 7 of the right signal are introduced so that
the effective voting function is sampled explicitly. Be-
fore considering the integration of functions Cj(z, 7)
and the extraction of disparity, we first outline some of
their properties.

The first important property of Cj;(z, 7) is that its
phase, like the phase of C'(z) in (6), is a phase difference
that encodes the shift required to match the phases of
the left and right band-pass signals. More precisely,
one can show that the phase of C;(x, 7) at location zg
and preshift 75, corresponds to the phase of the com-
plex scalar z needed to minimize the squared difference

Ci(e,7)= /13)

between the left signal and a phase-shifted version of
the right signal.

/W(l‘—l‘o)|Ol(l‘)—zor(l‘—|—7'0)|2 de  (14)

It is interesting to contrast this with the more tradi-
tional approach that minimizes the squared difference
between the left signal and a translated version of the
right,

/W(x—x0)|01(x) — O, (x + 5)|? d= (15)
the minimum of which occurs at the shift s that maxi-
mizes the normalized cross-correlation of O; and O,.

The second important property of C;(x, 7) is that
its magnitude (bounded between 0 and 1) provides a
confidence measure for the goodness of fit between the
phase-shifted left and right signals [6]. To see this,
rewrite the convolution in (13) at some location as a
local spatial average of vectors in the complex plane
(ignoring the window weights for convenience):

Zplpr
vava

where each vector has magnitude p;p, and orientation
A¢. This vector sum will be large in magnitude when
there is little or no orientation variation among the vec-
tors. It will be small when the orientations vary signif-
icantly, and therefore cancel one another when the vec-
tors are summed. In this way the magnitude of C;(z, 7)
depends on the local consistency of the phase differ-
ences within the window, and replaces the more explicit
stability constraints used in phase-difference methods.
When phase in one or both views varies rapidly as a
function of spatial position, so will the phase difference,
thereby causing the magnitude of C;(z, 7) to decrease.

Furthermore, notice that when all phase differences
are the same, the magnitude of (16) equals the cross-
correlation coefficient between the two local amplitude
components of the filter output. Thus the magnitude
of C;(z, 7) depends on the cross-correlation of the am-
plitude components of the left and right filter outputs,
and on the local stability (consistency) of the phase dif-
ference. This means that the voting functions will not
all have unit magnitude.

A further point of interest is that C;(z, 7) is expected
to be band-pass in 7 and low-pass in x. As a conse-
quence it can be subsampled along both dimensions at
a rate that depends on their linear bandwidths, which
are expected to be similar. Coarse scales can be sam-
pled sparsely in 7 and in x. However, in order to inte-
grate information across different filter outputs it will

(16)

C]’(l‘o, To ~
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Figure 4. Behaviour of S(z, 7) (with random-dot-
stereograms):  Real (top) and imaginary (bottom)
parts of S(x, T), as functions of T, at 2 spatial positions,
with disparities of 1 pizel (left), and { pizels (right).

be convenient to interpolate the Cj(z, 7) at a common
set of positions z and disparities 7. Because Cj(x, 7)
is band-pass in 7 with frequencies close to the filter’s
tuning frequency, it is easiest to demodulate the signal,
then interpolate the corresponding low-pass signal, fol-
lowed by modulation to undo the initial demodulation.
Finally, as mentioned above, the 2d functions
C; (&, ) give us one voting function from each filter out-
put. Although there are several interesting ways to use
such functions to measure interocular disparity, here
we consider the simplest approach, which, like phase-
correlation methods, involves a simple summation:

S(e, 1) = ch(x, 7) (17)

Near the true disparity we expect to find a zero in the
imaginary part of S(x, 7) and a peak in its real part.
Away from the true disparity, we expect the magnitude
of the functions C;(x, 7) to decrease, and we expect the
phase differences to vary across the different scales and
orientations of the filters, so that the net result of the
sum should be relatively small. Examples of S(z, 1)
from our implementation, as a function 7 at two po-
sitions in a random-dot-stereogram are shown in Fig.
4.

6 Implementation Results

The results of a simple implementation are given be-
low. At present we use 3 scales of a Gaussian pyramid,
subsampled by a factor of 2 horizontally and vertically
at each level. Three quadrature-pair filters are then ap-
plied at each level, tuned to orientations 0°, +45° and
—45°, where 0 is vertical. The filters have an octave
bandwidth of about 1.2 octaves, and are sampled with
4 samples per wavelength of centre frequency.

The voting functions C;(z, 7) are computed using a
Gaussian window W(x) with a standard deviation of
one half a wavelength of the filter’s tuning frequency.
Preshifts are computed at one pixel intervals on the
subsampled lattice at each scale, which also means a
sampling rate of about 4 samples per wavelength of the
expected modulation in 7. Remember that Cj(z, 7)
will be low-pass in space and band-pass in disparity,
with similar linear bandwidths in each dimension.

To compute S(z, 7), the voting functions Cj(z, 7)
are interpolated back to the resolution of the original
image. The spatial interpolation is done by constant
interpolation (replicating pixel values), while interpola-
tion in 7 1s done using demodulation, linear interpola-
tion of the low-pass signal, followed by modulation.

Given S(z, 7), maxima (peaks) in its real part serve
as crude estimates of disparity (to pixel accuracy). Sub-
pixel accuracy is obtained using linear interpolation of
the zero-crossing in the imaginary part of S(z, 7) that
is nearest to the maxima in the real part.

Disparity estimates from two binocular pairs are
shown in Fig. 5 and 6. Fig. 5 is a random-dot stere-
ogram with 3 levels of disparity, namely, 1, 4, and 7
pixels. Fig. 6 shows one frame from the SRI Tree se-
quence (courtesy of SRI), and the disparities computed
using frames 2 and 4 from the sequence, involving dis-
placements up to 4 or 5 pixels.

7 Summary

We outline a new method for extracting binocular
disparity that combines the robustness of wavelet-based
phase-difference methods [15, 5, 2, 16], and the basic
control strategy of phase-correlation methods [8, 4, 13].
It is computationally simple, being composed primarily
of linear operations throughout, with no explicit coarse-
to-fine control strategy.
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Figure 5. Random-Dot Stereogram:
(right) Disparity estimates.

(left) Input.
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