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Abstract—We propose a framework for learning robust, adaptive, appearance models to be used for motion-based tracking of natural

objects. The model adapts to slowly changing appearance, and it maintains a natural measure of the stability of the observed image

structure during tracking. By identifying stable properties of appearance, we can weight them more heavily for motion estimation, while

less stable properties can be proportionately downweighted. The appearance model involves a mixture of stable image structure,

learned over long time courses, along with two-frame motion information and an outlier process. An online EM-algorithm is used to

adapt the appearance model parameters over time. An implementation of this approach is developed for an appearance model based

on the filter responses from a steerable pyramid. This model is used in a motion-based tracking algorithm to provide robustness in the

face of image outliers, such as those caused by occlusions, while adapting to natural changes in appearance such as those due to

facial expressions or variations in 3D pose.

Index Terms—Motion, optical flow, tracking, occlusion, EM algorithm, adaptive appearance models.
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1 INTRODUCTION

ONE of the main factors that limits the performance of
visual tracking algorithms is the lack of suitable

appearance models. This is true of template-matching
methods that do not adapt to appearance changes, and it
is true of motion-based tracking where the appearance
model can change rapidly, allowing models to drift away
from targets.

This paper proposes a robust, adaptive appearance
model for motion-based tracking of complex natural objects.
The model adapts to slowly changing appearance, and it
maintains a natural measure of the stability of the observed
image structure during tracking. By identifying stable
properties of appearance, we can weight them more heavily
for motion estimation, while less stable properties can be
proportionately downweighted.

The generative model for appearance is formulated as a
mixture of three components, namely, a stable component
that is learned with a relatively long time-course, a two-
frame transient component, and an outlier process. The
stable component adapts to slowly varying properties of
image appearance, thereby encoding properties that remain
reasonably stable over long time frames. This allows the
stable model to identify the most reliable structure for
motion estimation, while the two-frame constraints provide
additional information when the appearance model is being
initialized or when appearance is changing too quickly
compared to the slow adaptation of the stable component.
The parameters of the mixture model are learned efficiently
with an online version of the EM algorithm.

The appearance model and the tracker formulated here
can be used with a wide variety of different types of image
properties. These include image gradient, image features,
and multiscale pyramid coefficients. Here, we consider an
appearance model based on the complex-valued coefficients
of a steerable pyramid. This wavelet-based model allows for
stability at different scales or in different spatial neighbor-
hoods to be assessed independently. This is useful for
tracking objects where some regions of the object may be
stable while others are not, like faces where the mouth may
be less stable if someone is talking or changing expression
during tracking. Moreover, the use of these complex-valued
wavelet responses affords significant insensitivity to
changes in lighting conditions.

Together, these components yield a robust motion
estimator that naturally combines both stable appearance
constraints and two-frame motion constraints. The ap-
proach is robust with respect to partial occlusions, sig-
nificant image deformations, and natural appearance
changes, like those occurring with facial expressions and
clothing. The appearance model framework supports
tracking and accurate image alignment for a variety of
possible applications, such as localized feature tracking,
and tracking models for which relative alignment and
position is important, such as limbs of a human body.

2 PREVIOUS WORK

Although, not always described as such, every motion
estimation and tracking method embodies some represen-
tation of image appearance. The common, image-based
appearance models include templates [12], [24], [25], [27],
view-based subspace models [2], [6], [13], the most recent
frame in two-frame flow estimation [28], [29], temporally
filtered, motion-compensated images [14], [33], [35], and
global statistics [1], [4]. There are several other approaches
to visual tracking, such as 3D model-based methods (e.g.,
[3], [20], [29]) and curve-based methods (e.g., [15], [22], [26])
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that are less directly relevant to the approach taken here,
and we therefore omit a discussion of them below.

Tracking with fixed templates can be reliable over short
durations, but it copes poorly with appearance changes
over longer durations that occur in most applications. One
can improve the robustness of such trackers by representing
the variability of each pixel in the template [12], [18]. This
allows one to track objects against cluttered backgrounds
without specifying the detailed support of the object. A
learning stage is required prior to tracking in which one
estimates the variance of image brightness at each pixel
over the training ensemble.

Robustness can be further enhanced with the use of
subspace models of appearance [2], [6], [13]. Such view-
based models, usually learned with Principal Component
Analysis, have the advantage of modelling variations in
pose and lighting. They can also be used for search as well
as incremental tracking. But, they also have the disadvan-
tage that they are object specific and they require training
prior to tracking in order to learn the subspace basis.

The use of local and global image statistics, such as color
histograms, have been popular for tracking [1], [4]. These
methods offer robustness under image distortions and
occlusions. Moreover, the models are fast to learn and can
be used for search as well as tracking. Their primary
disadvantage is their lack of expressiveness which limits
their ability to accurately register the model to the image in
many cases. Moreover, these coarse appearance models can
also fail to accurately track regions that share similar
statistics with other nearby regions.

Motion-based trackers integrate motion estimates through
time. With two-frame motion estimation, the appearance
model is, implicitly, just the most recently observed image.
This has the advantage of adapting rapidly to appearance
changes, but it suffers because models often drift away from
the target. This is especially problematic when the motions of
the target and background are similar.

Motion estimation can be improved significantly by
accumulating an appearance model through time. Indeed,
optimal motion estimation can be formulated as the
estimation of both motion and appearance simultaneously
[35]. In this sense, like the learned subspace approaches
above, optimal motion estimation is acheived by registering
the image against an appearance model that is acquired
through time. For example, from the estimated motion, a
stabilized image sequence can be formed to learn the
appearance model. The stabilized sequence can be
smoothed with an IIR low-pass filter, for example, to
efficiently remove noise and to weight the most recent
frames more heavily than past frames in constructing the

appearance model [14], [33]. Our approach bears some
similarity to this, but with online adaptation of a mixture
model that captures the stable components of image
appearance. The use of the adaptive mixture model for
foreground appearance also bears some similarity to the
Gaussian mixture model used by Stauffer and Grimson for
background modeling [32].

This paper describes a robust appearance model that
adapts to changes in image appearance. The three key
contributions include:

1. an appearance model that identifies stable or slowly
varying structure, and naturally combines this stable
structure with more transient image information;

2. an online version of EM for adapting the model
parameters; and

3. a tracking algorithm which incrementally estimates
both motion and appearance.

Like all adaptive appearance models, there is a natural
trade off that depends on the time-course of adaptation.
Faster time courses allow rapid adaptation to appearance
change, while slower time courses provide greater persis-
tence of the model, which allow one to cope with occlusions
and other outliers. Here, we find a balance between
different time courses with a natural mixing of both two-
frame motion information and stable appearance that is
learned over many frames.

3 WSL APPEARANCE MODEL FRAMEWORK

As a motivational example, consider tracking a region, such
as the face in Fig. 1 (see also [36]), using a simple parametric
motion model. As the subject’s head moves, the local
appearance of the stabilized image can be expected to vary
smoothly due to changes in 3D viewpoint and to changes in
the subject’s facial expression. We also expect the occasional
burst of outliers caused by occlusion and sudden appear-
ance changes, such as when the subject’s glasses are
removed.

These phenomena motivate the components of our
appearance model, which we introduce in the context of a
single real-valued data observation, say dt, at each frame t.
The first component of the appearance model is the stable
model, S. The purpose of this component is to capture the
behavior of temporally stable and slowly varying image
observations, when and where they occur. Conditioned on
the generation of observation dt by the stable component,
we model the probability density for dt by the Gaussian
density psðdt j�s;t; �2

s;tÞ. Here, �s;t and �2
s;t are piecewise,
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Fig. 1. These are cropped images from a 1,150 frame sequence that was taken with handheld video camera. The ellipse shows the tracking region in

which the motion and appearance are estimated.



slowly varying functions of time, specifying the mean and

variance of the Gaussian model.
The second component of the model accounts for data

outliers, which are expected to arise due to failures in

tracking, occlusion, or noise. We refer to the corresponding

random process as the “lost” component, and denote it by

L. The probability density for L, denoted by plðdtÞ, is taken

to be a uniform distribution over the observation domain.
The synthetic signal depicted in Fig. 2a provides an

idealized example of these generative processes. The

smooth (dashed) curve represents the piecewise slowly

varying appearance signal. The observed data (thin noisy

curve) has been corrupted by long-tailed noise, formed

from a mixture of the Gaussian density psðdtj�s;t; �2
s;tÞ and

the broad distribution plðdtÞ for the lost component. In

accordance with our discussion of Fig. 1, we have also

included an appearance discontinuity at frame 600, and a

burst of outliers representing an occluder between frames

300 and 315.

The third component of our appearance model is
motivated by the desire to blend the appearance model
with an image-based tracking algorithm. In this context, we
wish to be able to track a given image region even before we
are able to learn a model for the dominant, stable image
structure within the target region. We also want to be able
to cope with sudden changes of image appearance like
those in Figs. 1 and 2. The problem exists because initially,
or after a sudden appearance change, we have neither a
good stable appearance model, nor a model for how the
object is expected to move. In these cases, rather than rely
on the stable component, it makes sense to have a third
component of the appearance model which adapts with a
short time-course, as in a two-frame tracker. This third
component of the appearance model is called the wander-
ing component W. In effect, the wandering component
permits the tracker described in Section 6 to gracefully
degrade to a two-frame motion tracker when the appear-
ance model does not account for enough past data
observations.
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Fig. 2. Estimation using online EM. (a) The original data (thin noisy curve) with true signal (dashed) and the estimated mean of the stable process
(solid thick line). The noise is a mixture of Gaussian and uniform densities, with mixing probabilities (0.9, 0.1), except for 15 frames at 300 which are
pure outliers. (b) Mixing probabilities for S (black),W (dashed), and the L (solid light gray). (c) The output of an adaptive IIR filter (solid thick curve)
applied to the data is shown in addition to the noiseless signal and the stable mean estimate. The time constant of the IIR filter was identical to that of
the temporal window used for estimation of the stable component of the mixture model.



The wandering component needs to allow both for more
rapid temporal variations and shorter temporal histories
than are required for the reliable estimation of the stable
model parameters. It should therefore adapt to the local
properties of image appearance on a much shorter time
course than the stable model. As such, we model the
probability density for dt, given that it is generated byW, to
be the Gaussian density pwðdt j dtÿ1Þ. Here, the mean is
simply the observation from the previous frame, dtÿ1, and
the variance is fixed at �2

w.
The three components, W, S, and L, are combined in a

probabilistic mixture model for dt,

pðdt jqt;mt; dtÿ1Þ ¼ mwpwðdtjdtÿ1Þ þmspsðdtjqtÞ þml plðdtÞ;
ð1Þ

where m ¼ ðmw;ms;mlÞ are the mixing probabilities, and
qt ¼ ð�s;t; �2

s;tÞ contains the mean and variance parameters
of the stable component of the model. Our goal is to use this
probabilistic mixture model as a prediction density for new
observations dt, given the recent observation history (under
a sliding window of temporal support). As such, the mixing
probabilities reflect the fraction of recent observations
explained by the different model components.

4 PARAMETER ESTIMATION WITH ONLINE EM

Our goal is to estimate the parameters of the generative
model in (1), namely, the mean and variance of the data
prediction by the stable process, q ¼ ð�s; �2

sÞ, and the
mixing probabilities m ¼ ðmw;ms;mlÞ. Since we plan to
apply this mixture model estimation scheme to high-
dimensional appearance data, like the responses of a
wavelet filter bank, it is very important that we find an
efficient computational algorithm that requires a small
amount of memory for each temporal stream of data
observations.

Anticipating a recursive formulation, and allowing for
temporal adaptation of the model parameters, we consider
data observations under an exponential envelope located
at the current time, StðkÞ = �eÿðtÿkÞ=� , for k � t. Here,
� ¼ ns= log 2, where ns is the half-life of the envelope in
frames, and � ¼ 1ÿ eÿ1=� , so the envelope weights StðkÞ
sum to 1. With this envelope, we can express the log-
likelihood of the observation history, dt ¼ fdkgtk¼0, accord-
ing to the mixture model density in (1) as

Lðdt jmt;qtÞ ¼
Xÿ1
k¼t

StðkÞ log pðdk jmt;qt; dkÿ1Þ; ð2Þ

where mt and qt denote parameters relevant to the data
under the temporal support envelope StðkÞ. Although these
parameters change slowly through time, we first consider
an EM-algorithm [5] for estimating mt and qt, that assumes
they are approximately constant under the temporal
window. The form of these EM-updates provides the basis
for an online nonlinear estimator.

As with a typical EM iteration, given an initial guess for
the state variables mt and qt, the E-step provides the
ownership probabilities for each observation dk:

oi;tðdkÞ ¼
mi;t piðdk; qt; dkÿ1Þ
pðdk; mt;qt; dkÿ1Þ

; ð3Þ

for i 2 fw; s; lg (see [5]). Conditioned on these ownerships,
the M-step then computes new maximum likelihood
estimates for the parameters mt and qt. To this end, first
the updated mixture probabilities, mt, are given by

mi;t ¼
Xÿ1
k¼t

StðkÞ oi;tðdkÞ; ð4Þ

for i 2 fw; s; lg (we have reused the notation mi;t to denote
the updated values). Similarly, the M-step for the mean and
variance are

�s;t ¼
M1;t

M0;t
; �2

s;t ¼
M2;t

M0;t
ÿ �2

s;t; ð5Þ

where Mj;t are the ownership weighted, jth-order data
moments defined by

Mj;t ¼
Xÿ1
k¼t

StðkÞ djk os;tðdkÞ: ð6Þ

It is worth noting here that the zeroth data moment, the
time averaged ownerships of the stable process, is precisely
the mixing probability for the stable component of the
appearance model, M0;t ¼ ms;t. The standard EM-algorithm
then consists of iterating the steps outlined in (3), (4), (5),
and (6).

This EM-algorithm requires that the data from previous
times be retained to compute os;tðdkÞ, which is impractical
for an online approach. Instead, we adopt an approximation
to (3), (4), (5), and (6). To this end, we first exploit a
recursive expression for the exponential support StðkÞ to
obtain,

Mj;t ¼ StðtÞ djt os;tðdtÞ þ
Xÿ1
k¼tÿ1

StðkÞ djk os;tðdkÞ ;

¼ �djt os;tðdtÞ þ ð1ÿ �Þ
Xÿ1
k¼tÿ1

Stÿ1ðkÞ djk os;tðdkÞ ;
ð7Þ

where, as above, � ¼ 1ÿ eÿ1=� . In order to avoid having to
retain past data, we approximate the current ownership of
past data by the ownerships at the times the data were first
observed. That is, we replace os;tðdkÞ by os;kðdkÞ, to obtain
the approximate moments

M̂Mj;t ¼ �djt os;tðdtÞ þ ð1ÿ�Þ
Xÿ1
k¼tÿ1

Stÿ1ðkÞ djk os;kðdkÞ ;

¼ �djt os;tðdtÞ þ ð1ÿ �Þ M̂Mj;tÿ1:

ð8Þ

We also approximate the mixing probabilities the same
way:

m̂mi;t ¼ � oi;tðdtÞ þ ð1ÿ �Þ m̂mi;tÿ1; ð9Þ

for i 2 fs; w; lg. One further deviation from (3), (4), (5), and
(6) is used to avoid singular situations; i.e., we impose a
nonzero lower bound on the mixing probabilities and �s;t.
We could also achieve the same effect straightforwardly
with priors on m and q.

In this approximation to the batch EM algorithm in (3),
(4), (5), and (6), as mentioned above, we do not update the
data ownerships of the past observations. Therefore, when
the model parameters change rapidly this online approx-
imation is poor. Fortunately, this typically occurs when the
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data are not stable, which usually results in a low mixing
probability and a broad variance for S, indicating that the
data is not well explained by the stable component.
Conversely, when the mean and variance drift slowly, the
online approximation is typically very good (see Fig. 2).

As with any nonlinear online estimator, this procedure
requires an initial guess for the optimization. It also requires
occasional restart guesses for times when the estimator
becomes trapped at local extrema. This occurs, for example,
when the stable component, S, loses track of the underlying
mean state because of sudden changes in appearance, or
because of unstable data over relatively long time periods.
Fortunately, we can detect such cases by monitoring the
stable mixing probability, ms;t, which measures the fraction
of the recent observations that are successfully explained by
the stable component. This mixing probability normally
remains high when there is stable structure. But, when S
fails to track the stable structure, or when there is no stable
structure, then ms;t usually becomes very small (e.g., see
Fig. 2). While there are many ways to detect the need for
restarts of the nonlinear estimator, in all the experiments
below, we simply initiate restarts (i.e., new initial guesses)
whenever ms;t falls below a threshold of 0.1. We find that
thresholds between 0.05 and 0.4 yield similar estimator
behavior.

To restart the estimator, we simply set the values of all
state variables to the initial guess. As with many nonlinear
estimators, the exact choice of the initial guess is not critical.
In the experiments reported below, we set the mixing
probabilities mi;t to 0.4, 0.15, and 0.45 for i ¼ w; s; l,
respectively. The small value for ms;t reflects an initial
uncertainty for the S model. In particular, initially, there is
no history of stable observations that the stable model has
explained. To the contrary, conditioned on a recent restart,
we should assume initially that the stable component has
not captured stable structure, and that the appearance
observations may be changing rapidly, or they may be
outliers. For this reason, our initial guess uses a larger value
for the wandering and lost mixing probabilities, mw;t and
ml;t. Finally, the initial values for the moments Mj;t for j ¼
0; 1; 2 are taken to be ms;t, dtms;t, and �2

s;0ms;t, respectively.
In effect, this starts the stable model with a mean given by
the current observation dt, and a variance given by the
constant �2

s;0. Here, we use �s;0 ¼ �w=1:5 so that there is
always some prior preference for optima in which the stable
model explains the coherent observations. These same
values are used for initialization in the first frame. The
performance of the estimator was found to be robust to
variations in these restart constants, and to various
alternative choices for the restart criterion [7].

Fig. 2 illustrates the EM procedure on our 1D example
with half-life ns ¼ 8. As shown in Fig. 2b, initially, the
W component owns most of the data because the mixing
probability of the stable component S remains small until it
has seen enough stable observations to have a high
probability of explaining subsequent observations. Since
the first 150 observations are constant, with occasional
outliers, the mixing probability of the stable component
grows steadily. Beyond frame 150, the signal is slowly
varying. Note that the mean of the stable component shown
Fig. 2a accurately tracks this slowly varying signal.

During the outlier burst that occurs at frame 300, Fig. 2b
shows that the outlier L component begins to own a much
greater share of the data, while the mixing probability for S
decays quickly. Similarly, after the step change in the signal

at frame 600, the stable component fails to provide good
predictions for the signal, so the mixing probability for S
again decays quickly. In this case, the stable component
exhibits the persistence we expect from a stable model, so
that it can remain stable when outliers are observed.
However, unlike the situation immediately after frame 300,
the signal undergoes a step change at frame 600, after which
it is slowly varying. Because the signal is coherent after
frame 600 and the predictions from the stable process are
poor, it is the wandering W component that best predicts
(explains) the data. Therefore, its mixing probability
increases rapidly. By frame 625, the S mixing probability
drops sufficiently low that a restart occurs, after which the
S component locks back onto the true state, and its mixing
probability rises.

This behavior illustrates an important property of the
model. Namely, the stable component adapts over a
relatively long time course and, therefore, it exhibits
persistence through bursts of outliers. Naturally, this
persistence comes at the cost of not being able to react
quickly to step changes in the appearance. In these cases, it
is useful to have another process that adapts over short time
courses, such as our W process, so it can quickly adapt to
coherence in the signal, giving the stable model more time
to adapt.

Finally, by way of comparison, conventional adaptive
templates typically use a recursive (IIR) linear filter to
average the data observations. It is well-known that such
filters are very sensitive to outliers and, therefore, we expect
them to produce noisier signals as compared to the mean of
the stable component of the mixture model. For example,
Fig. 2c compares the mean of the stable component to the
reponses of an IIR filter applied to the data observations.
Computed over the first 600 frames (i.e., before the step
change in the signal), the RMS error of the IIR estimate is
approximately 65 percent higher than that of the stable
mean. Furthermore, when there are sudden changes in
appearance, like that at frame 600, adaptive IIR filters will
tend to produce a signal that averages the signal before and
after the step, representing neither accurately. By compar-
ison, with the mixture model used here, with a long time-
course for the S component and a short time-course for the
W component, the S component exhibits persistence,
continuing to represent the stable component of the signal
before the step, while the W component quickly begins to
track the coherent signal structure immediately after the
step. In this way, theWSLmixture model achieves our goal
of capturing the structure of slowly varying signals having
both outliers and occasional sudden changes in appearance.

5 WAVELET-BASED APPEARANCE MODEL

There are many properties of image appearance that one
could learn for tracking and object search. Examples include
local color statistics, multiscale filter responses, and localized
edge fragments. Here, we wanted to be able to detect stable
properties of appearance that might be localized spatially, or
restricted to certain scales or orientations. This will be useful
for objects in which some local regions are stable while others
are not, or with motion blur in which coarse scales might be
more stable than finer scales, for example. Accordingly, we
used the WSL appearance modeling framework to adap-
tively model the responses of a steerable pyramid [31], [30]. In
particular, we focus on the time-varying behavior of the
phase structure of the filter responses.
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We chose phase as the basis for the appearance model
because of its useful properties for estimating optical flow
and stereo disparity [8], [9], [10]. Phase provides a significant
degree of amplitude and illumination independence. It
allows for robust image matching when there are significant
scale changes between views, and it has been shown that
phase gradients can be used for estimating significantly
larger disparities and image velocities than gradients of
images smoothed with similar spatial support [8], [9]. A final
benefit of phase is that, based on a scale-space singularity
analysis of band-pass signals, one can detect probable outliers
in phase responses [9], much like intensity gradient magni-
tudes can be used to detect unstable gradient-based motion
constraints. Clearly, it is preferable to identify outliers
explicitly where possible, rather than to rely solely on the
robustness of the estimator. The primary disadvantage of
using only the phase of the complex-valued wavelet
responses are: 1) we are discarding the amplitude of the
responses and therefore not using all the available informa-
tion, and 2) the extra computational overhead involved in
computing the wavelet pyramid transform, compared to a
gradient-based approach, for example. While phase offers
this trade off, it is important to note that the online WSL
estimator could be applied to other image properties such as
image intensity or image gradients.1

In summary, given an image pyramid and a target region

N t, let fdðx; tÞgx2N t
denote the set of phase observations, one

from each filter within the region, at time t. We then apply a

1D WSL appearance model to the phase signal from each
filter output. Accordingly, let At¼fðmðx; tÞ; qðx; tÞgx2N t

denote the collective appearance model of the phase at each
orientation, scale, and spatial location in N t. For the

experiments below, we used a steerable pyramid based on
theG2 andH2 filters of [11]. In particular, we used these filters

to decompose each image into two scales (tuned to
wavelengths of 8 and 16 pixels, subsampled by factors of 2

and 4), each of which is further decomposed into 4 orienta-
tions. With the use of phase, the WSL model then involves

four parameters:

. The half-life of the exponential temporal support,
StðkÞ, set to ns ¼ 20 frames for all experiments
reported below. More generally, we have used a
wide range of time-constants, from 4 to 40, with very
good success.

. The phase outlier density in the mixture model is
taken to uniform on ½ÿ�; �Þ, and, hence, the
probability is simply 1=2�.

. The standard deviation of the W process on phase
differences, based on our experience with phase-
based optical flow and disparity estimation [8], [9], is
taken to be mean-zero Gaussian with �w ¼ 0:35�.

. The minimum standard deviation of the stable
process is set to �s;0 ¼ 0:1�. This reflects our prior
experience with phase variability under near ideal
conditions with natural images [8].

6 MOTION-BASED TRACKING

We demonstrate the behavior of the adaptive, phase-based
appearance model in the context of tracking nonrigid
objects. Beginning with an elliptical region, N 0, at time 0,
the tracking algorithm estimates the image motion and the
appearance model as it tracks the stable image structure
within the convected target region N t over time. The
motion is represented in terms of frame-to-frame para-
meterized image warps, wðx; cÞ. In particular, given the
warp parameters ct, a pixel x at frame tÿ 1 corresponds to
the image location xt ¼ wðx; ctÞ at time t. We use similarity
transforms here, so ct ¼ ðut; �t; �tÞ is a 4-vector describing
translation, rotation, and scale changes, respectively. We
specify translations in pixels, rotations in radians, and the
scale parameter denotes a multiplicative factor, so ~�� �
ð0; 0; 0; 1Þ is the identity warp. By way of tracking, the target
neighborhood is convected forward at each frame by the
motion parameters. That is, given the parameter vector ct,
N t is just the elliptical region provided by warping N tÿ1 by
wðx; ctÞ. Other parameterized image warps and other
parameterized region representations could also be used
(e.g., see [17], [23], [33], [24]).

Our goal is to determine the optimal image warp from
the stable properties of image appearance. These are the
properties that we believe will enable accurate alignment of
coherent structure over long durations. Toward that end,
we need to identify stable structure, and we need to use that
structure to estimate image warp parameters ct.

For notational convenience in what follows, let the

appearance (phase) data from the previous frame be denoted

by Dtÿ1 � fdx;tÿ1gx2N tÿ1
, where an individual datum is

dx;tÿ1 � dðx; tÿ1Þ . Similarly, given the warp parameters ct,

let the current data Dt warped back to the previous frame of

reference be denoted by d̂dx;t � dðwðx; ctÞ; tÞ . Then, condi-

tioned on the correct warp, ct, and on the appearance model

from the previous time, Atÿ1, the log observation density for

Dt is simply

LðDt j Atÿ1; Dtÿ1; ctÞ ¼X
x2N tÿ1

log mspsðd̂dx;t jqÞ þmwpwðd̂dx;t j dx;tÿ1Þ þmlpl

h i
: ð10Þ

(Here, we have abused the notation in omitting the explicit
dependence of ms, mw, ml, and q on both x and tÿ 1.) Then,
as in a standard E-step of an EM iteration [16], the expected
ownership probabilities for a single datum d̂dx;t are given by

oiðd̂dx;tÞ ¼
mipiðd̂dx;t jqtÿ1Þ

pðd̂dx;t j Ax;tÿ1; dx;tÿ1Þ
; ð11Þ

for i ¼ w; s; l. These quantities provide the probabilities that
the current phase response d̂dx;t arises from the correspond-
ing components of the WSL model, and can be used to
assess the stability of the corresponding motion constraints.

The stable motion constraints are those arising from
S components in (10) with high ownership probabilities os.
In particular, a high ownership probability means that the
filter channel has a good history of stable observations, and
that the current datum is consistent with the current stable
model. Accordingly, to determine the optimal warp para-
meters, we introduce an energy function for ct that
emphasizes constraints from S components of the WSL
model with large ownership probabilities.
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1. Since our initial publication of this research at CVPR 2001, the method
has been successfully applied to image brightness [21]. Nevertheless, we do
not expect brightness to yield as robust an appearance model as phase
information because of the many sources of significant brightness variations
in natural images.



Considering the basic dynamic phenomena illustrated in

Fig. 2, we also expect that there are sometimes not enough

stable constraints to reliably determine the warp para-

meters. This occurs at frame 0 and during rapid appearance

changes for example. To deal with these cases, we want to

ensure that the stable appearance-based tracker degrades

gracefully to a two-frame tracker and, therefore, we wish to

include motion constraints from the W components of the

appearance model. Finally, when the target is completely

occluded the motion will not be sufficiently constrained by

the S or theW components (i.e., most of the data are owned

by the L process, see Fig. 2). In this most desperate

situation, we need to resort to a priori expectations of the

motion in order to regularize the motion estimates.

In combination, these considerations suggest an objective

function that is the sum of three energy terms, one for each

of the S and W components, and one for the prior motion

expectations. We consider each of these three terms below.
For the contribution of S components to the objective

function, we use the negative log likelihood of warp

parameters ct þ �ct , for small updates �ct to the current

estimate ct,

Esð�ct j ctÞ � ÿ
X

x2N tÿ1

osðd̂dx;tÞ log psðdðwðx; ct þ �ctÞ; tÞ jqÞ:

ð12Þ

Here, the log-likelihood terms log ps are weighted by the

data ownerships osðd̂dx;tÞ derived for the current warp
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Fig. 3. Each row shows, from left to right, the tracking region, the stable component’s mixing probability msðx; tÞ, mean �sðx; tÞ, and ownership

probability osðx; tÞ. In each case, of the mixing probability, the mean phase and the ownership probabilities, the images show the orientation channel

with the highest ownership by the stable process. The different rows of images correspond to frames 244, 259, 274, and 289, top to bottom. Note

both the model adaptation and persistence, along with the drop in data ownership within the occluded region.



estimate ct. A natural condition on the optimal warp
parameters ct is for the expected log-likelihood of the
S constraints to be maximal for the current ct. That is, we
want to converge to a ct such that there is no nonzero
update, �ct , that will decrease the energy Esð�ct j ctÞ.

Similarly, the contribution from the W components is
taken to be

Ewð�ct j ctÞ �
ÿ �

X
x2N tÿ1

owðd̂dx;tÞ log pwðdðwðx; ct þ �ctÞ; tÞ jdx;tÿ1Þ: ð13Þ

The scaling factor � 2 ½0; 1� controls the relative influence of

the W motion constraints. When � is zero, they have no

influence, leaving the motion estimation to the stable

constraints and the prior. When � ¼ 1, W constraints are

taken to be as informative as S constraints. In practice, there

may be many more W constraints within the tracking

region N t than there are S constraints, which tends to bias

the motion estimate. For example, in the complex

3D motions in Figs. 3, 4, 5, 6, 7, 8, and 9, regions that are

well fit by a similarity transform and stable through time

may be relatively small. In these cases, one should expect

that the W constraints in other neighborhoods of N t will

then act as a source of structured noise that will usually bias

the motion away from the optimal warp dictated by the

S constraints.2 Accordingly, one should use a value of � less

than 1 to reduce the effect of this bias. In all experiments in

Section 7, we use a value of � ¼ 1=20 which roughly matches

the ratio of S constraints toW constraints, and we leave the

automatic selection of � to future research.
Finally, the third term in the objective function repre-

sents the negative log prior probability for ct þ �ct ,

E0ð�ct j ct; ctÿ1Þ � ÿ log pðct þ �ct j ctÿ1Þ: ð14Þ

For this prior model, we take the stochastic dynamics of the

motion parameters, ct ¼ ðut; �t; �tÞ, to be a simple random

walk with a small bias toward slow motions [34]. Condi-

tioned on the previous state, ctÿ1, the prior density over

states at frame t is given by a product of Gaussian densities:

pðct j ctÿ1Þ ¼ Gðct; ~��; V1ÞGðct; ctÿ1; V2Þ: ð15Þ
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Fig. 4. Adaptation of the model during tracking is illustrated at frames 200, 300, and 480. (a) The three columns show the target region, (b) the mixing

probability of the stable component, and (c) the mean of the stable component for the selected frames.

2. For example, to understand the source of the bias, consider tracking a
3D object such as a human head, with stable features being identified within
a relatively small patch on the head. As the head rotates around an axis
perpendicular to the viewing direction, the motion of this patch can be
approximated by a similarity transform. However, the image motion of the
rest of the the head will be biased toward one side of the axis of rotation.



The first Gaussian factor prefers slow motions, with its
mean equal to the identity warp ~�� and its covariance
denoted by V1. The second Gaussian has its mean centered
at ctÿ1 to prefer slow changes in motion (i.e., smooth
motion), with its covariance denoted by V2. This prior
density (15) corresponds to a stochastic dynamical model
for ct in the form of a Brownian random walk in an energy
well:

ct ¼ ctÿ1 þ ~��ðctÿ1Þ; ð16Þ

where the noise ~�� is Gaussian, independent from one time
to the next, but biased away from ctÿ1 toward the identity
warp ~��. Since we want the bias in the stochastic dynamics to
be relatively weak, we want a broad energy well, and so we
set the variances in V1 to be significantly larger than those
in V2. While the specific values do not greatly affect the
behavior of the tracker, in the experiments reported below,
we set the covariances to be V1 � diagð82; 82; 0:052; 0:012Þ
and V2 � diagð1; 1; 0:022; 0:012Þ.

Given an initial estimate for ct, we compute an update �ct

which approximately minimizes the sum of the three
energy terms,

Eð�ctÞ ¼ Esð�ct jctÞ þEwð�ct jctÞ þE0ð�ct jct; ctÿ1Þ: ð17Þ

This step is described in detail in the Appendix. It is a
straightforward variant of the maximization step used in
the EM-algorithm for optical flow described in [16]. Given
an update �ct , we recompute the ownership probabilities
using the updated warp parameters, ct þ �ct , in place of the
previous values ct. Given these new ownership probabil-
ities, we return to compute a new update, by minimizing
the new energy function (17). This process is iterated until
the warp update �ct is sufficiently small. Finally, in order to
increase the domain of convergence of this iterative method,
we have also found it useful to use a coarse-to-fine
framework with deterministic annealing (see the Appendix
for details).

Once the warp parameters ct have been determined, we
convect the appearance model Atÿ1 forward to the current
time t using the warp specified by ct. To perform this warp,
we use a piecewise constant interpolant for the WSL state
variables mðx; tÿ 1Þ and �sðx; tÿ 1Þ. This interpolation was
expected to be too crude to use for the interpolation of the
mean �ðx; tÿ 1Þ for the stable process, so instead, the mean
is interpolated using a piecewise linear model. The spatial
phase gradient for this interpolation is determined from the
gradient of the filter responses at the nearest pixel to the
desired location x on the image pyramid sampling grid [10].
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Fig. 5. Adaptation to changes of expression is illustrated in frames 420, 455, and 490. (a) The three columns show the target region, (b) the mixing

probability for the stable component, and (c) the mean of the stable component for the selected frames. Note how the regions around the mouth and

eyebrows adapt, while others remain stable.



7 EXPERIMENTS

The phase-based WSL appearance model and tracker have
been implemented and tested on a wide variety of natural
image sequences. Without optimizing the code in any
significant way, the current implementation takes approxi-
mately 10 sec/frame on a 400MHz SUN workstation when
applied to images of size 720� 480. Approximately half that
time is used to compute the wavelet transform. While the
appearance model is currently computed over the entire
image, only the data obtained within the convected
elliptical region is used to compute the motion. The user
initializes the tracker manually by placing an elliptical
region in the image at frame 0.

The behavior of the tracking algorithm is illustrated in
Fig. 3, where we plot the elliptical target region N t, the
mixing probability msðx; tÞ, the mean �sðx; tÞ, and the data

ownership os;tðx; tÞ for the stable component, each overlaid
on the original images. In these and the following images,
we only show responses where msðx; tÞ is greater than a
fixed threshold. Thus, blank areas indicate that the
appearance model has not found stable structure. As is
expected, the significant responses (shown in black) for the
S component occur around higher contrast image regions.

For Fig. 3, the processing was started roughly 70 frames
prior to the frame shown in the top row [36]. The
significant responses for msðx; tÞ and osðx; tÞ demonstrate
that the appearance model successfully identified stable,
slowly varying structure, typically inside the object
boundary. On the second and third rows of Fig. 3, where
the person is partially occluded by the sign, note that
msðx; tÞ decays smoothly in the occluded region due to
the absence of data support, while the mean �sðx; tÞ
remains roughly fixed until msðx; tÞ falls below the
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Fig. 6. Robust tracking despite occlusion. Tracking results for frames 200, 205, 210, and 215 are shown, top to bottom. The elliptical tracking region,

and the stable model’s mixing probability, mean, and ownership are arranged left to right. Note that the model is misaligned during the occlusion (see

the second and third images on the second row), but that it promptly realigns. Also, note the stability and model persistence (left three columns),

along with the reduced data ownership on the hand (right column).



plotting threshold. This clearly demonstrates the persis-
tence of the appearance model. The third row depicts the
model after roughly 20 frames of occlusion (recall the
half-life of the model is ns ¼ 20), by which time the
weaker components in S have disappeared. However, the
model continues to track through this occlusion event and
maintains the stable model on the visible portion of the
subject. When the person emerges from behind the
occluder, the appearance model rebuilds the dissipated
stable model.

The ability to adapt to changing appearance is demon-
strated in Fig. 4 [36]. Here, despite the person turning to walk
in the opposite direction (at frame 300), the S component
maintains a reasonable model for the stable image structure.

One of our goals was to track and identify stable
properties in images of nonrigid objects, such as in the
example shown in Fig. 5. From the images of ms in Fig. 5a
(bottom), notice that the mouth region was initially
identified as stable, but after the person smiles, the stability
is weakened significantly. Once the new expression has
been held for about 20 frames, the structure is again
identified as stable. Other parts of the face, such as the
eyebrows, show similar behavior. Conversely, the values of

ms near the hairline and on nose continue to increase
through these events, indicating that they are consistently
stable and, overall, the head is being accurately tracked.

The behavior during a brief occlusion event is shown in
Fig. 6, where the person’s hand reaches up to brush his hair
back. The model persists, with ms and �s remaining
essentially constant despite the occlusion. By contrast,
notice how the data ownerships os;t reflect the presence of
the occluder. Also, note that the data ownerships are not
perfect; there are some false matches to the appearance
model in the area of the occluder. Presumably, these are a
result of “accidental” alignments of the phase responses
from the occluder with those of the appearance model.
Given that the minimum standard deviation for �s is 0:1�
(see Section 5), we should expect the false target rate to be
reasonably high. In fact, these false targets appear to drag
the model into misalignment during the occlusion (see the
caption in Fig. 6 for a pointer to this), but that the
appearance model is subsequently able to lock back on.
Such a misalignment would persist in any two-frame
tracking algorithm.

Fig. 7 shows the stability of the joint estimation of motion
and appearance, despite significant changes in size and
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Fig. 7. Tracking with partial occlusion along with variable lighting, appearance, and size. The camera was stationary and the sequences are each

roughly 250 frames. The highlighted target region for selected frames is superimposed on the last frame.

Fig. 8. Tracking failure (frames 440, 480, 520, 560, 600, and 640): When learning stable structure it is possible for the model to learn the structure of

the background whenever the background moves consistently with the foreground over a relatively long time. In this case, the model can drift off of

the target object, as occurs in this case when the observer slowly rotates their head to leave the target neighborhood stable on the background

surface.



lighting conditions. Even more challenging for the current
method are the (at times) small target regions, and the small
separation of the object and background motions (about a
pixel per frame). Also, roughly half the target region is
occluded by the bushes at times. The two runs in Fig. 7 are
close to the limit of our approach in terms of these latter
sources of difficulty.

7.1 Quantitative Performance

In order to quantiatively assess the accuracy of the tracking,
we generated ground truth data by manually locating seven
facial feature points (see Fig. 9) in each of the 1,145 frames in
the Dudek face sequence [36]. We estimate that the RMS error
in “mousing in” this ground truth data is 1:1� 0:1 pixel per
frame for each facial feature point.3 This error represents the
minimum tracking error we can expect to resolve using this
ground truth data.

In addition to inherent ground truth noise, we must also
quantify errors in the ground truth data due to modeling
assumptions. Specifically, the current tracker uses similarity
transformations to model the object poses. This assumes
that the positions of fixed object points in any given frame
can be approximated by mapping points from a single
canonical reference frame to corresponding points in each
image frame using 2D similarity transforms. In the Dudek
sequence, for example, this assumption is clearly violated
by 3D rotations of the head and changes in facial
expression. To compute the magnitude of the error due to
this modeling assumption, we jointly estimate the optimal
least squares positions for the seven image points in a fixed
canoncial frame, along with a similarity transformation for
each of the 1,145 frames of the sequence. The optimal
RMS error between the ground truth points and the

positions of the canonical points, was found to give a
baseline error of 3.1 pixels per frame per feature point. This
baseline error combines both the ground truth noise and the
positional variations that cannot be explained by similarity
transformations (see Fig. 9). Notice that this 3.1 pixel error
must be a lower bound for the RMS error evaluated on the
ground truth data for any tracker based on similarity
transformations.

Remember that the WSL tracker is required to auto-
matically identify and select stable image features for
tracking. Moreover, it is free to slowly adapt these features,
and to switch from one set of features to another. Therefore,
the WSL tracker is unlikely to be tracking just the image
data in the neighborhoods of the ground truth points. This
puts the WSL tracker at a disadvantage relative to the
baseline RMS error and, therefore, we should not expect our
appearance-based tracker to achieve this baseline error.
Nevertheless, we feel the baseline serves as a useful
yardstick.

In order to compare the results from the WSL tracker
with this baseline, we used the similarity transformations
computed by the WSL tracker and located the positions of
seven feature points in a canonical frame which, when
mapped under these similarity transformations, provide the
optimal RMS fit to the ground truth points.4 The results for
selected frames are shown in Fig. 9. The resulting tracking
error over the entire sequence for the WSL tracker is
5.2 pixels per frame per feature, which compares well with
the baseline error of 3.1.
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Fig. 9. The ground truth points (*) are shown for frames 0, 361, 540, 700, 795, and 1,140. The approximations provided by the points fit using the

WSL tracker (+) results, and those corresponding to the optimal similarity transforms (o), are also shown. Note the nonsimilarity deformations of the

ground truth data.

3. This RMS error estimate was obtained by fitting a PCA model to the
feature point positions and examining the decay rate of the residual
RMS error with increasing model dimension.

4. This measure is similar, but not identical to, the standard deviation of
the ground truth points when mapped to the canonical frame using the
computed similarity transformations. The reason for the difference is due to
the scale variations between the image data and the canonical frame. The
distance in the original image is a more natural metric than distance in a
canonical frame and, thus, write all errors in terms of distance in the
original images.



The differences in the parameters of the similarity
transformations computed by the WSL tracker and the
optimal transforms for the seven ground truth points are
displayed in Fig. 10. Despite the adaptive, open-loop nature
of the WSL appearance model, the drift in the tracking
appears to be well controlled. In particular, it is seen from
Fig. 10 that, even after 1,000 frames, there is no clearly
consistent bias in the center position, while the angle
parameter appears to consistently differ by about 5 degrees,
and the scale parameter differs by about 5 percent.

7.2 Failure Modes

In our tests, we have identified three failure modes [36]. The
first is caused by acceptance of nontarget constraints as
being consistent with the appearance model (see discus-
sions of Figs. 3, 6, and 7). These erroneous constraints
perturb the alignment of the model and, if this effect is
sufficiently large, a tracking failure can occur.

Second, when the tracked object consistently moves with
its background, then the appearance model also learns the
background structure (as in Fig. 8). Tracking can fail if the
object then moves independently. Failures of this sort can
usually be avoided if one also includes a background
appearance model, as in [17]. Unfortunately, simple back-
ground models are not always available, as in situations in
which the depth structure of the background is complex.
Therefore, in the experiments reported here, we chose to
focus attention on the WSL appearance model and tracker
alone.

Finally, tracking with this model of appearance will
certainly fail in most situations in which the object becomes
entirely occluded (see Fig. 11). This is caused by the
W constraints identifying the coherent motion of the
occluding object. In the absence of S constraints, the
estimated motion will be determined by the W constraints
that remain and, therefore, there is a tendency to begin
tracking the occluder. An interesting topic for future work
concerns the use of longer term memory and visual search
that would allow one to recover from such tracking failures.

8 CONCLUSIONS

This paper proposes a robust, adaptive appearance model

for motion-based tracking of complex natural objects. The

model adapts to slowly changing appearance, and it

maintains a natural measure of the stability of the observed

image structure during tracking. By identifying stable

properties of appearance, we can weight them more heavily

for motion estimation, while less stable properties can be

proportionately downweighted. The key contributions in

this paper include:

1. the WSL mixture model that combines predictive

density models of appearance with components that

adapt over long and short time courses,
2. an online version of EM for learning the parameters

of the WSL model,
3. an application in which we learn the time-varying

phase behavior of a steerable pyramid, and
4. a tracking algorithm which exploits this appearance

model to simultaneously estimate both motion and
appearance.

Possible topics for future work include the incorporation

of color and brightness data into the appearance model [7],

and the use of the stable appearance model for global image

matching to recover from tracking failures caused by total

occlusion.

APPENDIX

MOTION-BASED TRACKING USING WSL
Here, we present in detail the process for fitting motion

parameters ct when the WSL appearance model is used to

identify stable structure during tracking.

Our first task is to explain how approximate local

minima are computed for the objective function Eð�ctÞ
introduced in (17). Expanding the conditional distributions

ps, pw, and po yields

Eð�ctÞ ¼ �þ
X

x2N tÿ1

"
� owðd̂dx;tÞ

ðdcðx; tÞ ÿ dðx; tÿ 1ÞÞ2

2�2
w

þ

osðd̂dx;tÞ
ðdcðx; tÞ ÿ �sðx; tÿ 1ÞÞ2

2�sðx; tÿ 1Þ2

#
þ

1

2
ðctþ�ctÿ~��Þ

TVÿ1
1 ðctþ�ctÿ~��Þ þ

1

2
ðctþ�ctÿctÿ1ÞTVÿ1

2 ðctþ�ctÿctÿ1Þ;

ð18Þ

where � is a constant independent of �ct , dcðx; tÞ �
dðwðx; ct þ �ctÞ; tÞ, and �sðx; tÿ 1Þ, �sðx; tÿ 1Þ are the mean

and standard deviation estimates for the stable component

of the appearance model at ðx; tÿ 1Þ. The terms on the

second line in (18) arise from the logarithm of the prior (15).

From (18) it is clear that, due to the nonlinear dependence of

dc on �ct , the objective function Eð�ctÞ is not a quadratic

function of �ct .
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Fig. 10. The difference between the similarity transform parameters

computed by the WSL tracker and those for the optimal fit to the

moused in points.



Instead of dealing directly with Eð�ctÞ, we follow a
standard practice in optical flow estimation by approximat-
ing this objective function with a quadratic functional in �ct ,
namely, ~EEð�ctÞ. To get this quadratic functional, we linearize
the current observations about the current guess for the
motion parameters ct. In particular, we approximate
dðwðx; ct þ �cÞ; tÞ by its first order Taylor series taken about
�ct ¼ 0. More formally,

dcðx; tÞ � dðwðx; ct þ �cÞ; tÞ
¼ dðwðx; ctÞ; tÞ þ rdðwðx; ctÞ; tÞW �ct þOðjj�ct jj

2Þ;
ð19Þ

where rdðx; tÞ � ðdxðx; tÞ; dyðx; tÞÞ denotes the spatial par-
tial derivatives of the data observations, and where W ¼
@w=@ct denotes the 2� 4 Jacobian of the warp map at ct.
Using (19), we can rewrite the nonlinear differences
involving dcðx; tÞ as follows:

dcðx; tÞ ÿ dðx; tÿ 1Þ ¼ �dwðx; tÞ þ rdðwðx; ctÞ; tÞW �ctþ
Oðjj�ct jj

2Þ;
dcðx; tÞ ÿ �sðx; tÿ 1Þ ¼ �dsðx; tÞ þ rdðwðx; ctÞ; tÞW �ctþ

Oðjj�ct jj
2Þ;

where �dwðx; tÞ = dðwðx; ctÞ; tÞ ÿ dðx; tÿ 1Þ and �dsðx; tÞ =
dðwðx; ctÞ; tÞ ÿ �sðx; tÿ 1Þ are the temporal differences
between the data and the model at the corresponding
locations dictated by the current guess for the warp
parameters ct.

Finally, substituting these expressions into (18) and
isolating second order terms in �ct , we find

Eð�ctÞ ¼ ~EEð�ctÞ þOðjj�ct jj
2Þ; ð20Þ

where

~EEð�c; ctÞ ¼�þ
X

x2N tÿ1

"
�
owðd̂dx;tÞ

2�2
w

½�dw þrdT W �ct �
2þ

osðd̂dx;tÞ
2�2

s

½�ds þrdT W �ct �
2

#
þ

1

2
ðctþ�ctÿ~��Þ

TVÿ1
1 ðctþ�ctÿ~��Þþ

1

2
ðctþ�ctÿctÿ1ÞTVÿ1

2 ðctþ�ctÿctÿ1Þ:

ð21Þ

Notice that ~EEð�ctÞ is a quadratic function of �ct . Moreover,

notice that ~EE provides a second order approximation of E

in the neighborhood of �ct = 0, so ~EEð0Þ ¼ Eð0Þ and

r ~EEð0Þ ¼ rEð0Þ. Therefore, �ct = 0 is a local minimum of

Eð�ctÞ if and only if it is also a local minimum of the

quadratic objective function ~EEð�ctÞ.
Given this approximation property of ~EEð�ctÞ, we can

safely adopt the strategy of computing �ct to optimize the

quadratic functional ~EEð�ctÞ. This update will be zero if and

only if the orginal objective function has a local extrema at

�ct . Otherwise, the computed update provides a convenient

approximation for a value that minimizes the nonquadratic

objective function Eð�ctÞ.
The optimization of the quadratic functional ~EEð�ctÞ leads

to the linear system for the update �ct ,

ðAs þ �Aw þApÞ �ct ¼ bs þ �bw þ bp; ð22Þ

where each Ai is a 4� 4 matrix and each bi is a 4-vector, for

i ¼ w; s; p:
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Fig. 11. Tracking failure (frames 635, 640, 645, and 650 of the sequence used in Fig. 4): When the person becomes fully occluded by the tree,

tracking becomes impossible with the weak priors used here since there are no remaining S constraints, and the W constraints are consistent with

the motion of the tree.



Aw¼
X

x2N tÿ1

owðd̂dx;tÞ
�2
w

WTrdrdTW; bw¼ÿ
X

x2N tÿ1

owðd̂dx;tÞ
�2
w

�dw Wrd

As¼
X

x2N tÿ1

osðd̂dx;tÞ
�2
s

WTrdrdTW; bs¼ÿ
X

x2N tÿ1

osðd̂dx;tÞ
�2
s

�ds Wrd

Ap ¼ Vÿ1
1 þVÿ1

2 ; bp ¼ ÿVÿ1
1 ðct ÿ~��Þ ÿVÿ1

2 ðct ÿ ctÿ1Þ:

Each term in these sums over x are formed from a different
motion constraint, weighted by the ownership probabilities
for the W and S processes, respectively.

Notice that the usefulness of the approximate objective
function ~EEð�ctÞ depends on the range over which the linear
approximation in (19) is a good approximation for the data.
The fact that the bandpass phase is expected to be roughly
linear over a signficant range [8] provides another motiva-
tion for using phase properties. In addition, as mentioned in
Section 5, we use the method described by [9] to detect
probable outliers in the phase-based warp constraints due
to phase instability. That is, when a local phase observation,
dx;t, is deemed unstable, the corresponding gradient
constraints are undefined and not included in (22). When
an unstable observation at time tÿ 1 maps to a good
observation at time t under the current warp, then the
likelihood pwðd̂dx;t j dx;tÿ1Þ is undefined. Instead, we use pw ¼
0:05 when the previous observation was deemed unstable.
We also remove the corresponding W constraints from the
linear system (22).

In practice, as with most nonconvex optimizations to
estimate mixture model parameters, we find it useful to apply
this fitting procedure within a coarse-to-fine strategy, and use
deterministic annealing in estimating the motion parameters
to help avoid becoming stuck in local minima (e.g., see [16],
[19]). The initial guess for the warp parameters is based on a
simple, constant velocity model, so the initial guess is simply
equal to the estimated warp parameters from the previous
frame. By way of annealing, instead of using the variances �2

s;t

and �2
w in computing the ownerships and gradients (23) for

the S and the W processes, we use parameters �S and �W .
After each iteration in which (22) is solved, these values are
decreased according to the schedule

�S  minð0:95�S; �̂�SÞ
�W  minð0:95�W ; �̂�WÞ;

where �̂�S and �̂�S are the maximum likelihood variance
estimates of the S-process and W-process phase differences,
over the entire neighborhood, N t, given the motion
estimate obtained in the current iteration. Once the
variances reach a minimal value the annealling is turned
off and they are allowed to fluctuate according to the
current motion parameters. Moreover, as the variance of the
S process decreases according to the spatial ensemble of
data observations at each iteration, the variances used for
each individual observation in computing ownerships and
likelihood gradients are never allowed to be lower than the
corresponding variance of �2

s;t.
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