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Abstract

This paper describes a method for optimizing the parameters of a
physics-based controller for full-body, 3D walking. Amodified ver-
sion of the SIMBICON controller [Yin et al. 2007] is optimized for
characters of varying body shape, walking speed and step length.
The objective function includes terms for power minimization, an-
gular momentum minimization, and minimal head motion, among
others. Together these terms produce a number of important fea-
tures of natural walking, including active toe-off, near-passive knee
swing, and leg extension during swing. We explain the specific
form of our objective criteria, and show the importance of each term
to walking style. We demonstrate optimized controllers for walking
with different speeds, variation in body shape, and in ground slope.

Keywords: Physics-based animation, controller synthesis, human
motion, optimization.

1 Introduction

Locomotion is an essential skill for simulated characters, but one
for which designing controllers is particularly difficult. The control
space is high-dimensional, the dynamics are nonlinear and discon-
tinuous due to contact, and infeasible controllers (i.e., that trip and
fall) are all too common. While robust walking controllers have
recently been designed [Kim et al. 2007; Yin et al. 2007], they pro-
duce gaits that appear unnatural. Indeed, it remains extremely chal-
lenging for either humans or computers to define robust controllers
for natural-looking walking.

This paper introduces a parameter optimization procedure for full-
body, 3D walking controller synthesis. Controllers may be op-
timized for characters of varying body shape, and, optionally, to
achieve user-specified walking speeds and/or step lengths. The re-
sulting gaits exhibit key properties of natural walking, including,
for example, energy efficiency, a strong toe-off as support is trans-
fered from one foot to the other, a nearly passive knee during leg
swing, leg extension prior to heel-strike, torso lean, and the anti-
symmetric phase of arm swing. We advance the state-of-the-art
by demonstrating results that both capture these important features
and are robust enough to tolerate minor environmental disturbances.
Unlike many previous methods, the system does not require any
motion capture data nor reference trajectories.

The control parameterization is a version of SIMple BIped CONtrol
(SIMBICON) [Yin et al. 2007], with modifications to allow more
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realistic motion. The objective function is a weighted sum of sev-
eral terms, many of which are inspired by biomechanical properties
of human walking. We demonstrate how each of these terms con-
tributes to creating human-like qualities of motion. The optimiza-
tion is initialized with a walker that is unstable, but roughly cap-
tures observed features of human walking. Because the approach
does not rely on motion capture data, there is no restriction that the
styles of walking follow any particular mocap database.

2 Related Work

Many applications of controllers in graphics have been based on
hand-tuned state machine models, including full-body walking
(e.g., [Laszlo et al. 1996; Faloutsos et al. 2001]). Perhaps the most
important such model is the recent SIMBICON controller by Yin et
al. [2007]. While remarkably robust, and capable of producing sev-
eral styles, it produces motions that differ in several key ways from
human walking. For example, it relies significantly on the hip to
generate forward momentum, while normal human walking relies
heavily on the ankle, with a near-passive knee [Novacheck 1998].
As a consequence, SIMBICON produces a marching-like gait.

The original control optimization methods in animation were ap-
plied to low-dimensional virtual characters [van de Panne and
Fiume 1993; Sims 1994; van de Panne and Lamouret 1995],
where the search space is much smaller than full-body walking.
Grzeszczuk et al. [1995; 1998] demonstrate control optimization
for high-dimensional marine animals, where smooth dynamics
(without ground contacts) lead to smoother objective functions than
for ground-based locomotion. Sharon and van de Panne [2005] op-
timize planar humanoid characters to match the style of reference
motion, but their results suggest that this approach has pros and
cons similar to Yin et al. [2007]. Inspired by passive dynamic walk-
ing, Collins et al. [2005] demonstrate low-energy robots that pro-
duce human-like walking gaits. The controller for one such robot is
designed by online optimization [Tedrake et al. 2004], but its phys-
ical design is stable and its control input space is low-dimensional.

For 3D humanoid models, Hodgins and Pollard [1997] adapt stable
controllers from one character to different characters by searching
over a small number of high-level control parameters. More re-
cently, optimization-based methods are used to adapt walking con-
trollers for more difficult tasks [Yin et al. 2008], or to create solu-
tions for constrained terrain navigation [Coros et al. 2008]. In both
cases, a hand-tuned robust walker is available as initialization, only
a relatively small subset of task-relevant parameters are optimized,
and the basic style of motion is not modified. In contrast, our focus
is on the style of walking with a smaller set of tasks. We begin with
a rough, unstable controller and show how to significantly improve
walking style and robustness.

Another approach is to employ motion capture data to define the
desired controller [Sok et al. 2007; da Silva et al. 2008; Muico et al.
2009; Tsai et al. in press]. This frees the designer from specifying
the style of the motion, only requiring the maintenance of balance.
The use of mocap data allows for high-quality human-like results to
be simulated, as recently demonstrated by Muico et al. [2009] on an
impressive array of locomotion skills. However, such methods are
limited in their ability to generalize to situations where no mocap
data are available.



Trajectory optimization (of pose, torque, or muscle excitation) has
a long history in both graphics and biomechanics. The spacetime
constraints method [Witkin and Kass 1988] solves for a sequence
of poses subject to user constraints, while minimizing an approxi-
mation to energy consumption. By learning an objective function
from data, Liu et al. [2005] extend the method to generate full-
body walking motion given footstep constraints. More recently,
Wampler and Popović [2009] combine traditional spacetime con-
straints with Covariance Matrix Adaptation (CMA) [Hansen 2006],
a derivative-free optimization algorithm also used in this paper, to
generate plausible locomotion gaits for a variety of virtual crea-
tures. In biomechanics, Anderson and Pandy [2001] recover muscle
excitation trajectories during a walk cycle by minimizing metabolic
energy over distance travelled. A main difference between trajec-
tory optimization and our work is that we aim to recover controllers
that work beyond the duration for which they were optimized, pos-
sibly subject to minor environmental disturbances. In contrast, the
recovered forces from trajectory optimization are not generally ro-
bust to any change in environmental interactions if used to control
new simulations.

3 Character Model and Controllers

Our character model and control parameterization are based on
SIMBICON, with a few small but important differences. The
character model has 30 internal degrees-of-freedom (DOFs), 28 of
which are identical to Yin et al. [2007]. We add toe blocks, which
are connected to the feet by hinge joints. Toes provide more flexi-
bility during landing and ankle push-off (also called toe-off). The
link locations and mass distributions are based onWooten and Hod-
gins [1996]. We scale the links and masses according to the dimen-
sions of the character skeleton, and apply reasonable joint limits.

Single-state controller. As in SIMBICON, the walking con-
troller is a finite-state machine. Each state contains proportional-
derivative (PD) controllers for each joint and a balance feedback
controller. The controller for each joint DOF includes gain and
damping coefficients (kp, kd), as well as a target angle (θd). At
each simulation time-step, a torque (τ ) for each joint DOF is gen-
erated according to

τ = kp (θd − θ) + kdθ̇, (1)

where θ and θ̇ are the current joint angle and angular velocity.

The input angles (θ) to the PD controllers are expressed in local co-
ordinate systems, except for the hip and ankle. The hip angles op-
erate in the world frame and are mapped to control the torso orien-
tation, adjusted by balance feedback parameters (cd, cv) [Yin et al.
2007]1. The world frame orientation of a body part is defined by
measuring angles of their up and forward vectors projected in the
coronal, sagittal, and transverse planes. Unlike SIMBICON, our
controllers servo the ankles in the world frame, since world orien-
tation is crucial for ensuring ground clearance after toe-off, as well
as for landing at a good angle to allow weight transfer.

We couple the target angle of the arm DOF in the sagittal plane to
the hip angles in the sagittal plane, so that the target angle is

θlarm = αarm(θrhip − θlhip) , θrarm = −θlarm, (2)

where αarm is a scale factor. This allows the model to synchronize
arm swing with the legs, but good arm swing still depends on a
good selection of αarm and arm spring-damper constants.

1Since the stance hipz DOF serves to rotate the body towards the desired

facing angle, we only enable it when the stance foot is firmly planted (more

than 3 points in contact on the foot or toe), otherwise it is servoed to zero.

Left Heel-Strike Right Toe-Off

Figure 1: Comparison of our model to human and SIMBICON
from the left heel-strike to right toe-off stages of walking. Top:
Man walking [Muybridge 1887]. Middle: One of our optimized
controllers. Bottom: Our implementation of SIMBICON. Note the
more conservative style in the bottom row, which keeps the right
foot relatively flat, whereas our result and the human show signifi-
cant rotation. Also note that the left leg in the left column does not
reach full extension in the bottom row.

State machine and transitions. The finite state machine con-
tains four states, corresponding to basic phases of walking (Figure
2). State 0 begins at foot strike, and continues as the swing leg
lifts off and swings forward. The transition to state 1 occurs when
the signed horizontal distance (in the sagittal plane) between the
center-of-mass (COM) of the body and the ankle of the stance foot
exceeds a threshold ctrans . This is motivated by our observations of
when stance ankle push-off appears to occur. Notably, this differs
from SIMBICON which uses a time-based transition.

During state 1, the swing leg prepares for landing, and the stance
ankle push-off begins. The transition to state 2 occurs when the
swing foot makes contact with the ground, provided that the swing
ankle global orientation (in the sagittal plane) exceeds 0.1 radians.
Without this condition, the controller must lift the swing leg to an
artificial height to ensure ground clearance. State 0 may also tran-
sition directly to state 2 if contact occurs (although this usually in-
dicates a poor controller). States 2 and 3 are left/right reflected
versions of states 0 and 1, with mirrored parameters.
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Figure 2: The state machine for the walking controller consists of
four states, corresponding to ground contact and swing phases. The
transition from state 0 to state 1 occurs approximately when the left
foot passes the right foot, and the transition to state 2 occurs when
the left foot makes contact with the ground. The states are left/right
symmetric, with states 2 and 3 mirroring states 0 and 1.

Start state. The start state of the physical simulation is specified
by 6 global DOFs, 30 joint DOFs, and their generalized velocities
(72 DOFs in total). The start state is optimized along with the con-
troller, and is manually initialized (see Table 2) to when the left leg
is in the middle of its swing phase, prior to the transition from state
0 to state 1.

In principle, the start state and the controller parameters total over
200 DOFs in the system. However, since we focus on straight walk-
ing in the positive x direction in this paper, we fix DOFs and other
parameters that are unlikely to contribute to the task. More specif-
ically, joint DOFs (including PD control target angles) that rotate
with respect to the local x and z axis are fixed to zero, to discourage
unnecessary motion in the coronal and transverse planes. The back
joint is an exception, where rotation with respect to z-axis is free
to be optimized, which is necessary for trunk rotation in the gait.
The target angles for the toe joints are fixed to zero except for the
stance foot during states 1 and 3. For the global DOFs in the start
state, x and y positions can naturally be set to any value. Since the
controller would not be walking straight if it deviates away from
the y-z plane, we fix the start state global rotation (and angular
velocity) with respect to x and z axis, as well as velocity in the
y-direction to zero. With these constraints, the start state and the
control parameters comprise a 184 dimensional search space.

4 Controller Optimization

Optimizing a controller involves searching for control parameters
and a start state that together produce good character simulations.
The quality of the generated motion is measured with an objective
function that evaluates simulations of duration 10 seconds (T sim-
ulation time-steps). The objective function comprises a weighted
combination of terms motivated by task constraints and biomechan-
ical features of human walking.

4.1 Objective Function

An obvious way to define an objective function is with a weighted
sum of quadratic penalty terms on quantities such as total power
consumption and deviation from a target speed. In practice, finding
suitable weights for such terms is extremely difficult. For example,
if chosen poorly, then even when the target speed is nearly achieved,
optimization might continue to ignore the energy term in favor of
imperceptible speed refinements. Instead, we employ a weighted
combination of objectives that do not penalize small differences
from targets. Specifically, we define a thresholded quadratic as

Q(d; ǫ) =

(

d2, if |d| > ǫ

0, otherwise
(3)

This objective assigns a penalty of zero when the distance d is be-
low a threshold ǫ, but applies steep penalties beyond this threshold.
This formulation is akin to specifying hard constraints on the mo-
tion to optimize power and stability related terms, subject to con-
straints that speed and other quantities fall within ǫ of target values.
Unlike hard constraints, however, including the soft penalty com-
ponent allows us to avoid the difficult problem of finding a feasible
initialization (and ensuring that it exists).

User gait constraints. A user may specify high-level require-
ments on the average forward speed (vx) or step length (s) of the
simulation. This is done by penalizing the differences between
these values and user-specified targets (v̂x, ŝ, respectively):

Euser = Q(vx − v̂x; ǫvel) + Q(s − ŝ; ǫstep), (4)

Both of these terms are optional.

Required gait constraints. There are several properties of gait
that we find essential to the style and stability of the simulated walk-
ing motions. First, because we optimize for walking in the positive
x direction, significant deviations in the y and z directions of mo-
tion are undesirable. Accordingly, they are penalized with the fol-
lowing objective:

Evel = Q(vy; ǫvel) + λvel [Q(v0x − vx; ǫvel) + Q(vz; 2ǫvel)] ,
(5)

where vy and vz are the average simulation velocities (per second)
of the COM in the y and z directions, respectively, and v0x is the
velocity of the start state in the +x direction. This constraint en-
courages vy and vz to be small, and the start velocity v0x to be

similar to the average x velocity of the simulated motion.2

Since we only optimize the controller for simulations of a fixed du-
ration (10 seconds), we need to encourage solutions that are more
likely to lead to stable walk cycles when simulated beyond that du-
ration. Two major sources of instability are swing foot toe-stubbing
and toe-off before the stance foot is firmly planted on the ground.
We discourage these situations with the following objective:

Eland =
1

T

T
X

t=1

(stancet + stubbed t), (6)

where the summation is over all simulation steps t. If, during state
1 or 3 (toe-off), neither the stance toe nor the stance foot have 3 or
more points of contact with the ground, then stancet = 1; it is set
to zero otherwise. We set stubbed t = 1 at any time when the top
of the swing toe is in contact with the ground.

Similarly, we define

Efail =
1

T

T
X

t=1

failed t, (7)

where for all states, if the COM falls below 0.7 m (i.e., the simulated
character has fallen down) then failed t = 1. With the exception
of character “long arm” (see Figure 8(bottom)), which fails if the
COM falls below 0.4 m.

Our fourth gait objective encourages left-right symmetric timing of
the controller, i.e.,

Esym = Q(∆t0 − ∆t2; ǫt) + Q(∆t1 − ∆t3; ǫt), (8)

where ∆ti is the average duration of state i during the walk. This
term,Esym, requires left and right strides to have approximately the
same duration. This helps to avoid spurious local minima producing
asymmetric gaits.

2We replace vx with v̂x if the latter is available.



Head and body constraints. The angular momentum of the
body about its COM is typically very small in human walking [Herr
and Popović 2008], and has been shown to assist with balancing
[Kudoh et al. 2006; Macchietto et al. 2009]. In particular, a me-
chanical effect of arm swing is to reduce torso torques about the
vertical axis induced by the lower body [Li et al. 2001]. Motivated
by this, we include the following objective:

avgL =
1

T

T
X

t=1

L̇2
t , (9)

Eang = Q(
p

avgL;
√

ǫang), (10)

where L̇t is the derivative of the normalized angular momentum
[Herr and Popović 2008] about the COM in the vertical direction
at time step t, computed using finite differences. We find that this
term helps to prevent unnatural arm swing, where the arms and legs
are badly out of phase.

In natural human walking, the lateral and vertical motions of the
head are typically smooth with small amplitudes. This helps to
stabilize the visual and vestibular systems [Pozzo et al. 1990].
We include an objective that encourages the head to exhibit a
fixed orientation and a constant forward velocity. Let Θi =
[θcor, θsag, θtrans] represent the head world frame orientation at
simulation step i. The objective to stabilize the head motion is then

Ehead = Q(
√

σhead;
√

ǫhead) +
λhead

T

T
X

t=1

orientt, (11)

where σhead is the standard deviation of the head velocity in the x
direction during the walk, orientt is a binary variable which is set
to 1 when ‖Θt‖2

> 0.1.

Efficiency and power terms. One notable biomechanical prop-
erty of human walking is its efficiency [Alexander 2003; Collins
et al. 2005]. Indeed, the nearly-passive nature of leg and arm swing
are characteristic of a natural walking gait. To encourage an ef-
ficient gait, we penalize the sum of the squared torques over the
duration of the simulation:

Epower =
1

T

T
X

t=1

m
X

j=1

τ2
tj , (12)

where τtj is the torque output at time step t for joint DOF j. If

the target velocity is unspecified, we replace Epower with
Epower

vx
, to

approximate the cost of transport [Collins et al. 2005].

It is also well-known that, unlike human running, human walking is
powered more by the ankle than the hip [Novacheck 1998]. To en-
courage a natural distribution of torques in the hip, knee and ankle,
we encourage the ratio of power outputs from these joints to match
those observed in humans. Specifically, let ~r be the relative magni-
tudes of the power output from the hip, knee, and ankle, produced
by the controller; i.e.,

~r =
[Phips ,Pknees ,Pankles ]
Phips+Pknees+Pankles

, (13)

where

PDOF = 1

T

PT

t=1

P

j∈DOF
τ2

tj . (14)

We penalize the deviation of ~r from the empirical power ratio (hip
to knee to ankle), ~rwalk = [0.43, 0.04, 0.53], observed in humans
[Novacheck 1998].

Eratio = ‖~r − ~rwalk‖2
(15)

Note that this term encourages a nearly passive knee.

Complete objective. The complete objective function for walk-
ing is given by

E =
X

s

wsEs , (16)

where s ∈ {user , vel , land , fail , sym, ang , head , power , ratio}.
We use the following parameters for all experiments: wuser = 100,
wvel = 100, wland = 1.2, wfail = 120000, wsym = 100, wang =
10, whead = 100, wpower = 10−5(70/mass), wratio = 1, λvel =
0.01, λhead = 0.012, ǫvel = 0.025 m/s, ǫstep = 0.025 m, ǫt =
0.025 s, ǫang = 0.05 /s2, ǫhead = 0.1 m/s.

4.2 Simulation

Simulation is performed using the Open Dynamics Engine (ODE,
version 0.9), with a simulation frequency of 2400Hz. Ground con-
tact is modeled using the default collision detector with a maximum
of 4 points on the toe and 4 points on the foot. Both the toe and foot
are modeled as boxes, and the ground is modeled as a plane. The
contact parameters are adjusted to simulate a spring-damper system
with kp = 75000, kd = 2000. We set the coefficient of friction to
µ = 10, which is higher than physically realistic, but necessary to
prevent lateral slipping during toe-off.

4.3 Optimization Algorithm

The optimization problem is high-dimensional, discontinuous, and
subject to many local minima. Moreover, each function evalua-
tion involves a simulation in ODE, which runs in approximately
real-time. It is important for the method to use as few function
evaluations as possible, without the need to evaluate gradients. We
tested several different optimization algorithms, and found Covari-
ance Matrix Adaptation (CMA) [Hansen 2006] to work best.

CMA is an iterative algorithm that maintains a Gaussian distribu-
tion over parameter vectors. The Gaussian is initialized with a mean
(discussed below), and a spherical covariance matrix with diagonal
elements equal to σ2, where σ is a problem-dependent step size
parameter. M random samples are drawn from the Gaussian, and
the objective function is evaluated for each. A new Gaussian is
constructed using the best N samples, based on a function of these
samples and the old mean. The process is repeated, as the Gaussian
converges to a low-objective region. It is assumed that the parame-
ters are scaled to lie roughly between 0 and 1.

We chose σ = 0.0025 experimentally. For the number of samples,
we use default parameters that are automatically chosen by CMA
based on the dimension of our optimization problem. In particular,
M = 19, N = 9. The 19 simulations are computed in parallel
using a cluster of 19 Intel Xeon 3.8GHz CPUs. In total, 1000 CMA
iterations take approximately 3 hours. Heuristically, we stop the
optimization either when no better values are discovered for 300
iterations, or when the total number of iterations exceed 3000.

We initialize the CMA optimization with a hand-tuned controller
that generates significant ankle push-off in the stance leg during
states 1 and 3. The parameters for the initial simulation state
(start state) and the PD controllers are included in Table 2. Ad-
ditionally, the coronal balance feedback parameters are initialized
to cd = 0.2, cv = 0.2, the sagittal ones are initialized to zero.
The arm swing and state transition parameters are initialized to
αarm = 1.0, ctrans = 0.01. Note that this controller is only tuned
to take a few steps in one of the character skeletons (“stocky” in
Figure. 8(bottom)). It is not stable and does not walk in a straight
line, but is sufficient for initialization. The initial values of kp and
kd are scaled for very heavy and light characters, in proportion to
the character’s weight ratio relative to the default character.



Figure 3: Top: Optimization of “short” (Figure 8(bottom)) walk-
ing in 1.0 m/s. Bottom: Optimization without Eratio . The lack of
the power ratio term leads to a semi-crouching style.

5 Experiments

We now describe experiments that demonstrate the approach and
test the effects of its various elements; results can be seen more
clearly in the accompanying video. Characters used are depicted in
Figure 8(bottom).

Features of human walking. Our model captures a number of
features of normal human walking. Figure 1 shows images of a
walking human, frames from a walker generated with our system,
and frames from our implementation of SIMBICON [Yin et al.
2007], which represents the state-of-the-art in full-body controllers
without mocap. The SIMBICON model employs a hip push-off
strategy, whereas our model uses an ankle push-off more similar to
human walking. The body synchronization approximates that of the
human as well: stance foot heel-off occurs just before swing foot
heel-strike. Furthermore, our model captures the passive knee and
leg extension of the swing leg, as well as the foot rotation.

Effects of individual terms. Next we compare optimizing our
walker with and without various energy terms. For example, we op-
timize the “short” character (Figure 8(bottom)) to walk in 1.0 m/s
without a specified step length. Figure 3 compares the model opti-
mized with and without the power ratio term (Eratio). Without this
term, the power ratio between hip, knee, and ankle in the result-
ing motion is [0.38, 0.21, 0.41]; the knee takes a much heavier load
than in human walking. This effect can be observed in the anima-
tion as a semi-crouching style which appears unnatural and tiring.
In contrast, our model discovers a more relaxed gait, with a power
ratio of [0.43, 0.05, 0.52], close to our optimization target.

Figure 4 shows our model optimized with and without the angular
momentum objective (Eang ). In this example, we optimized the
“stocky” character (Figure 8(bottom)) to walk at 1.8 m/s with a
step length of 0.7 m. The resulting motion correctly exhibits in-
phase arm-swing, with the arms counter-oscillating with respect to
the legs. Without the angular momentum term, the arms are in-
phase with the wrong legs, and the walker is unstable. Indeed, the
controller does not walk successfully much beyond the optimized
duration of 10 seconds, whereas the controller learned with Eang

walks for at least 100 seconds.

We find that optimizing without the head stabilization term (Ehead )
leads to jerky upper-body motion (see video). We test optimizing
without the Elanding term, which prefers the stance foot to be stably

Figure 4: Top: Optimization of “stocky” (Figure 8(bottom)) walk-
ing in 1.8 m/s, step length 0.7 m. Bottom: Optimization without
Eang . Note the difference in arm swing.

planted before push-off. Without this term, foot landing and roll is
jerky and abrupt, whereas including the Elanding term makes the
foot land and roll forward smoothly. The Epower term serves to
constrain DOFs that are not directly influenced by the other terms
to behave in a relaxed fashion. This is particularly relevant to the
upper body; as shown in the video, omitting this term leads to jerky
arm motion.

Comparison with motion capture data. We further evaluate our
results by comparing our optimized controller output with motion
capture data. The data comprise a walk cycle from each of 115 sub-
jects, all asked to walk at a comfortable speed. Figure 6 compares
the thigh orientation, knee flexion/extension, and foot orientation
for 7 of our optimized controllers and the mean curve from the mo-
cap dataset. We see that the minimum hip orientation (Figure 6(a))
in the mocap data is smaller than both of the physically simulated
gaits. A similar, though less pronounced, effect occurs in the knee
flexion/extension plot (Figure 6(b)) as well, where the optimized
controllers tend to both flex and extend less than the mocap aver-
age. Figure 5 visually compares one of the optimized controllers
with a similar mocap walk cycle. The smaller range of hip and
knee motions seem to lead to a smaller step length. Two major
differences between our optimized controllers and SIMBICON are
knee extension at heel-strike (i.e., Figure 6(b) at 0 and 100%), and
the foot trajectories plotted in Figure 6(c). In both cases, motions
generated by the optimized controllers are much closer to mocap.
However, the foot orientation plot shows our optimized controllers
tend to push-off with the ankle earlier than the mocap.

Optimizing SIMBICON. In order to separate the effects of our ob-
jective function from those of our body model, we apply our opti-
mization to the SIMBICON body model and parameterization. The
control parameters that generated the bottom row of Figure 1 is
used as initialization. We do not specify the target speed. Instead

we penalize the approximate cost of transport (
Epower

vx
) in the ob-

jective. We find that our optimization process improves the motion
in two ways. First, the optimization discovers anti-symmetric arm
swing, even though this control parameterization does not explic-
itly couple arm swing to leg motion as our model does. Second, the
character makes some use of ankle push-off. However, compared
to our results, the swing leg does not extend as far, and the ankle
push-off is still lacking. Despite the low percentage of knee torque
output in the lower body, the knee still appears active.



Figure 5: Top: Motion capture data for a full walk cycle. Bottom: Motion generated by one of the optimized controllers (character “tall”
(Figure 8(bottom)), no user gait constraints).

(a)

(b)

(c)
% Walk Cycle

Figure 6: Sagittal plane angle versus percentage walk cycle plots.
(a) Thigh orientation w.r.t. down vector. (b) Angle between thigh
and shin. (c) Ankle orientation w.r.t. front vector. The solid curve
and orange region represent the mean and standard deviation of
115 mocap walk cycles. Dashed blue and red curves represent 7
optimized walkers and SIMBICON, respectively.

We note that with the same optimization specification (same char-
acter, objective) using our model and initialization, we are able to
discover a gait with Epower = 12059, much lower than the SIM-
BICON solution’s Epower = 33392. Moreover, our solution walks
with a faster speed of 1.48 m/s versus 1.36 m/s.

Variation in body shape. Our optimization can be used to gen-
erate controllers for a wide rage of body types. We minimize the

approximate cost of transport (
Epower

vx
) to generate walks for all

characters in Figure 8(bottom), without specifying target speed and
step length. This allows the walker to identify its preferred speed
and step length. As shown in the accompanying video, the results
retain the qualities of human walking discussed above. A natural re-
lationship between body shape, speed and gait emerges; that is, the
tall subject’s preferred gait is much faster (1.79 m/s) than those of
the shorter subjects. The overweight subject appears to walk with a
more lumbering gait, and the long-armed humanoid keeps its heavy
arms still in order to maintain balance.

Robustness. We quantify the robustness of some of our con-
trollers via a pushing experiment (see e.g., Figure 7). For each con-
troller, we simulate forward for 40 seconds, and apply a push force
(Fx, Fy) for 0.4 seconds to the torso COM once every 4 seconds
(to allow for recovery time). The controller passes the experiment
if it is still walking forward (direction (1, 0)) after 40 seconds. The
maximum amount of tolerable push from 8 directions are summa-
rized in Table 1. We observe that the robustness of our controllers
varies greatly. The overweight controller is unstable when pushed
from the back, but is fairly robust to pushes from the front and sides.
All of the optimized controllers tend to be more robust to pushes
from the side, than to pushes from the front and back. The ex-
periment also shows that these controllers are less robust than our
implementation of SIMBICON, which can stand more than twice
as much force than the optimized controllers in some cases. Note
that SIMBICON has been reported to withstand force components
between 190 N and 340 N [Yin et al. 2007] in a related experiment.
We suspect fine tuning our implementation of it can lead to results
approaching those numbers as well.

Changing terrain. In the spirit of Yin et al. [2008], we obtained
uphill walkers for slopes of up to 12 degrees (see Figure 8(top)) by
optimizing for a sequence of walkers. This began with optimiza-
tion for a 3-degree slope, initialized with a walker on flat ground,
although it was not run to convergence. For both the uphill walker
and initialization, the target step length was set to 0.65 m. We then
repeated this process for a sequence of walkers, increasing the slope
until 12 degrees. As shown in the video, the controller successfully
walks up the slopes, leaning into the slope in a natural way, whereas
the level-ground walker fails at the 3-degree slope. Similarly, we
optimized a walker for a plane with a lower coefficient of friction.
Beginning with an initial walker, we optimized for µ = 0.8, and
then optimized for µ = 0.3. The resulting controller walks more
gingerly, at a slower rate.



Figure 7: Controller tall (Table 1) reacting to a 200 N, 0.4 s push to the torso in the (0, 1) direction. Our optimized controllers tend to be
more robust to pushes from the side, than to pushes from front and back.

direction short overweight tall short2 stocky simbicon

(1,0) 75 1 20 10 50 225

(1,1) 75 1 20 10 65 150

(0,1) 100 25 200 50 125 250

(-1,1) 50 50 70 40 75 100

(-1,0) 60 75 120 75 50 120

(-1,-1) 40 40 70 40 50 100

(0,-1) 100 20 200 75 125 275

(1,-1) 75 1 20 10 50 125

Table 1: Maximum disturbance force components (in Newtons) tol-
erance for some of our controllers and our implementation of SIM-
BICON, where (1,0) is the forward direction. Controller overweight
is optimized for a step length of 0.8 m, short2 for a step length of
0.65 m, and stocky for a step length of 0.7 m and a speed of 1.8 m/s.
The others are optimized without user gait constraints.

Other variations. As shown in the accompanying video, we can
create controllers to walk at specified speed and/or step lengths via
Euser , including specifying atypical speed and step length combi-
nations. Alternatively, either speed or step length or both can be
determined automatically. Our initial walker in Figure 8(top) is
generated by specifying a target step length of 0.65 m without a
target velocity. The accompanying video shows more examples of
controllers synthesized in this fashion as well as results obtained
by altering other terms in the objective function. If we redefine the
cost of transport term as 1/vx, thereby omitting the penalty for total
torque, then the objective function prefers motions that walk as fast
as mechanically possible, without regard to energy consumption,
yielding extremely fast walking.

6 Discussion

We have demonstrated a method for optimizing full-body 3D walk-
ing control that captures important features of natural walking with-
out relying on mocap data. While the basic idea of optimizing con-
trollers is an old one, our results show that achieving good walking
control requires careful choice of body parameterization, controller
parameterization, and objective function. In particular, the results
illustrate the importance of angular momentum minimization, rela-
tive magnitudes of lower-body joint torques, and head stabilization,
among others. We believe these observations will be useful for de-
signing more sophisticated controllers and objective functions, es-
pecially since our objective function and optimizer are independent
of the choice of control parameterization. Our work also illustrates
how subtle details in control parameterization — especially at the
foot — can make a significant impact on the style of motion.

There are a number of limitations of our method that provide op-
portunities for future work. Our method requires an expensive opti-
mization procedure, and depends on a reasonable initialization. As
our goal is natural-looking human locomotion, the controllers we
produce are not as stable as SIMBICON, which could be addressed
with a better control parameterization or explicit balance-recovery
controllers. The difference is most likely due to the more conserva-

Figure 8: Top: The short2 controller (Table 1) adapted to walk up
a 12 degree slope. Bottom: Characters used in the paper. From
left to right: “long arm” (127 cm, 65 kg) , “thin” (165 cm, 41 kg),
“short” (165 cm, 57 kg), “stocky” (165 cm, 70 kg), “overweight”
(161 cm, 86 kg), “tall” (196 cm, 79 kg).

tive, less human-like strategy taken by SIMBICON that keeps the
feet orientated parallel to the ground during the entire gait (Fig-
ure 6(c)), making toe-stubbing less likely. Another difference is
that, while the balance parameters are tuned for robustness in Yin
et al. [2007], our objective function does not explicitly encourage
robustness beyond the requirement of walking for 10 seconds.

As is evident from comparison with motion capture data, the mo-
tion generated by our controller still differs from human motion
in noticeable ways. Figure 6 indicates that the thigh and knee ro-
tation do not straighten as much as the data, especially when the
stance leg is behind the COM. Note that when we only specified
desired speed without desired step length, the resulting walker typ-
ically takes shorter steps than mocap data. This might be explained
by the lack of hind leg stretching in our controllers.

Finally, our method does require some parameter tuning in order
to achieve reasonable gaits and to achieve the desired style. We
believe that adjusting energy parameters will be more intuitive than
manually adjusting control parameters. Furthermore, we anticipate
that it may be possible to learn the parameters from mocap data.
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Start State

DOF q0 q̇0

globposx free 1.3

lhipy -0.4 0.3

lkneey 1.35 0.1

lankley 0.35 -15

rhipy -0.4 1.0

rkneey 0.6 2.0

rankley -0.2 -9

Controller

State 0 1

DOF kp θd kp θd

backxyz 300 0 300 0

rhipy 1000 -1 1000 -0.65

lkneey 300 -1.3 50 -0.55

lanklex 30 0 50 0

lankley 300 3 300 -0.35

rkneey 150 0.4 500 -0.5

rankley 300 -0.2 300 0.75

ltoey 20 0 20 0

rtoey 20 0 20 0.6

Table 2: Left: Initialization of position/angle, velocity in the start
state. Unspecified DOFs are initialized to zero. Right: Initializa-
tion of PD control parameters. Dampers kd are initialized to 0.1kp

in all cases. Additional DOFs for both states: kp = 1000, θd = 0
for {rhipxz , torsoxyz}, kp = 100, θd = 0 for {neckxyz , ranklex},
kp = 30, θd = 0 for {larmxz , lelblowyz , rarmxz , relblowyz}, and
kp = 30, θd = n/a for {larmy , rarmy}.

References

ALEXANDER, R. M. 2003. Principles of Animal Locomotion.
Princeton University Press.

ANDERSON, F. C., AND PANDY, M. G. 2001. Dynamic optimiza-
tion of human walking. J. Biomech. Eng. 123, 5, 381–390.

COLLINS, S., RUINA, A., TEDRAKE, R., AND WISSE, M. 2005.
Efficient bipedal robots based on passive-dynamic walkers. Sci-
ence 307, 1082–1085.

COROS, S., BEAUDOIN, P., YIN, K., AND VAN DE PANNE, M.
2008. Synthesis of constrained walking skills. ACM Transac-
tions on Graphics 27, 5 (Dec.), 113.

DA SILVA, M., ABE, Y., AND POPOVIĆ, J. 2008. Interactive
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