
Efficient Optimization for Sparse Gaussian Process
Regression

Yanshuai Cao1 Marcus A. Brubaker2 David J. Fleet1 Aaron Hertzmann1,3

1Department of Computer Science 2TTI-Chicago 3Adobe Research
University of Toronto

Abstract
We propose an efficient optimization algorithm for selecting a subset of train-
ing data to induce sparsity for Gaussian process regression. The algorithm esti-
mates an inducing set and the hyperparameters using a single objective, either the
marginal likelihood or a variational free energy. The space and time complexity
are linear in training set size, and the algorithm can be applied to large regression
problems on discrete or continuous domains. Empirical evaluation shows state-of-
art performance in discrete cases and competitive results in the continuous case.

1 Introduction

Gaussian Process (GP) learning and inference are computationally prohibitive with large datasets,
having time complexitiesO(n3) andO(n2), where n is the number of training points. Sparsification
algorithms exist that scale linearly in the training set size (see [9] for a review). They construct a
low-rank approximation to the GP covariance matrix over the full dataset using a small set of induc-
ing points. Some approaches select inducing points from training points [6, 7, 11, 12]. But these
methods select the inducing points using ad hoc criteria; i.e., they use different objective functions to
select inducing points and to optimize GP hyperparameters. More powerful sparsification methods
[13, 14, 15] use a single objective function and allow inducing points to move freely over the input
domain which are learned via gradient descent. This continuous relaxation is not feasible, however,
if the input domain is discrete, or if the kernel function is not differentiable in the input variables.
As a result, there are problems in myraid domains, like bio-informatics, linguistics and computer
vision where current sparse GP regression methods are inapplicable or ineffective.

We introduce an efficient sparsification algorithm for GP regression. The method optimizes a single
objective for joint selection of inducing points and GP hyperparameters. Notably, it optimizes either
the marginal likelihood, or a variational free energy [14], exploiting the QR factorization of a par-
tial Cholesky decomposition to efficiently approximate the covariance matrix. Because it chooses
inducing points from the training data, it is applicable to problems on discrete or continuous input
domains. To our knowledge, it is the first method for selecting discrete inducing points and hy-
perparameters that optimizes a single objective, with linear space and time complexity. It is shown
to outperform other methods on discrete datasets from bio-informatics and computer vision. On
continuous domains it is competitive with the Pseudo-point GP [13] (SPGP).

1.1 Previous Work

Efficient state-of-the-art sparsification methods are O(m2n) in time and O(mn) in space for learn-
ing. They compute the predictive mean and variance in time O(m) and O(m2). Methods based on
continuous relaxation, when applicable, entail learning O(md) continuous parameters, where d is
the input dimension. In the discrete case, combinatorial optimization is required to select the induc-
ing points, and this is, in general, intractable. Existing discrete sparsification methods therefore use
other criteria to greedily select inducing points [6, 7, 11, 12]. Although their criteria are justified,

1

each in their own way (e.g., [7, 11] take an information theoretic perspective), they are greedy and
do not use the same objective to select inducing points and to estimate GP hyperparameters.

The variational formulation of Titsias [14] treats inducing points as variational parameters, and gives
a unified objective for discrete and continuous inducing point models. In the continuous case, it
uses gradient-based optimization to find inducing points and hyperparameters. In the discrete case,
given the cost of evaluating the variational objective on all training points, Titsias [14] evaluates
the objective function on a small random subset of candidates at each iteration, and then select
the best element from the subset. This approximation is often slow to achieve good results, as
we explain and demonstrate below in Section 4.1. The approach in [14] also uses greedy forward
selection, which provides no way to refine the inducing set after hyperparameter optimization, except
to discard all previous inducing points and restart selection. Hence, the objective is not guaranteed
to decrease after each restart. By comparison, our formulation considers all candidates at each step,
and revisiting previous selections is efficient, and guaranteed to decrease the objective or terminate.

Our low-rank decomposition is inspired by the Cholesky with Side Information (CSI) algorithm for
kernel machines [1]. We extend that approach to GP regression. First, we alter the form of the low-
rank matrix factorization in CSI to be suitable for GP regression with full-rank diagonal term in the
covariance. Second, the CSI algorithm selects inducing points in a single greedy pass using an ap-
proximate objective. We propose an iterative optimization algorithm that swaps previously selected
points with new candidates that are guaranteed to lower the objective. Finally, we perform induc-
ing set selection jointly with gradient-based hyperparameter estimation instead of the grid search in
CSI. Our algorithm selects inducing points in a principled fashion, optimizing the variational free
energy or the log likelihood. It does so with time complexity O(m2n), and in practice provides an
improved quality-speed trade-off over other discrete selection methods.

2 Sparse GP Regression
Let y ∈ R be the noisy output of a function, f , of input x. Let X = {xi}ni=1 denote n training
inputs, each belonging to input space D, which is not necessarily Euclidean. Let y ∈ Rn denote the
corresponding vector of training outputs. Under a full zero-mean GP, with the covariance function

E[yiyj] = κ(xi,xj) + σ21[i = j] , (1)

where κ is the kernel function, 1[·] is the usual indicator function, and σ2 is the variance of the obser-
vation noise, the predictive distribution over the output f? at a test point x? is normally distributed.
The mean and variance of the predictive distribution can be expressed as

µ? = κ(x?)
T (
K + σ2In

)−1
y

v2? = κ(x?,x?)− κ(x?)
T (
K + σ2In

)−1
κ(x?)

where In is the n × n identity matrix, K is the kernel matrix whose ijth element is κ(xi,xj), and
κ(x?) is the column vector whose ith element is κ(x?,xi).

The hyperparameters of a GP, denoted θ, comprise the parameters of the kernel function, and the
noise variance σ2. The natural objective for learning θ is the negative marginal log likelihood
(NMLL) of the training data, − log (P (y|X,θ)), given up to a constant by

Efull(θ) = (y>(K+σ2In
)−1

y + log |K+σ2In|) / 2 . (2)

The computational bottleneck lies in the O(n2) storage and O(n3) inversion of the full covariance
matrix, K + σ2In. To lower this cost with a sparse approximation, Csató and Opper [4] and Seeger
et al. [11] proposed the Projected Process (PP) model, wherein a set of m inducing points are used
to construct a low-rank approximation of the kernel matrix. In the discrete case, where the inducing
points are a subset of the training data, with indices I ⊂ {1, 2, ..., n}, this approach amounts to
replacing the kernel matrix K with the following Nyström approximation [10]:

K ' K̂ = K[:, I]K[I, I]−1K[I, :] (3)

where K[:, I] denotes the sub-matrix of K comprising columns indexed by I, and K[I, I] is the
sub-matrix of K comprising rows and columns indexed by I. We assume the rank of K is m or

2

higher so we can always find such rank-m approximations. The PP NMLL is then algebraically
equivalent to replacing K with K̂ in Eq. (2), i.e.,

E(θ, I) =
(
ED(θ, I) + EC(θ, I)

)
/2 , (4)

with data term ED(θ, I) = y>(K̂+σ2In)−1y, and model complexity EC(θ, I) = log |K̂+σ2In|.

The computational cost reduction from O(n3) to O(m2n) associated with the new likelihood is
achieved by applying the Woodbury inversion identity to ED(θ, I) and EC(θ, I). The objective
in (4) can be viewed as an approximate log likelihood for the full GP model, or as the exact log
likelihood for an approximate model, called the Deterministically Trained Conditional [9].

The same PP model can also be obtained by a variational argument, as in [14], for which the varia-
tional free energy objective can be shown to be Eq. (4) plus one extra term; i.e.,

F (θ, I) =
(
ED(θ, I) + EC(θ, I) + EV(θ, I)

)
/ 2 , (5)

where EV (θ, I) = σ−2 tr(K−K̂) arises from the variational formulation. It effectively regularizes
the trace norm of the approximation residual of the covariance matrix. The kernel machine of [1]
also uses a regularizer of the form λ tr(K−K̂), however λ is a free parameter that is set manually.

3 Efficient optimization

We now outline our algorithm for optimizing the variational free energy (5) to select the inducing set
I and the hyperparameters θ. (The negative log-likelihood (4) is similarly minimized by simply dis-
carding the EV term.) The algorithm is a form of hybrid coordinate descent that alternates between
discrete optimization of inducing points, and continuous optimization of the hyperparameters. We
first describe the algorithm to select inducing points, and then discuss continuous hyperparameter
optimization and termination criteria in Sec. 3.4.

Finding the optimal inducing set is a combinatorial problem; global optimization is intractable.
Instead, the inducing set is initialized to a random subset of the training data, which is then refined
by a fixed number of swap updates at each iteration.1 In a single swap update, a randomly chosen
inducing point is considered for replacement. If swapping does not improve the objective, then the
original point is retained. There are n −m potential replacements for each each swap update; the
key is to efficiently determine which will maximally improve the objective. With the techniques
described below, the computation time required to approximately evaluate all possible candidates
and swap an inducing point is O(mn). Swapping all inducing points once takes O(m2n) time.

3.1 Factored representation
To support efficient evaluation of the objective and swapping, we use a factored representation of the
kernel matrix. Given an inducing set I of k points, for any k ≤ m, the low-rank Nyström approx-
imation to the kernel matrix (Eq. 3) can be expressed in terms of a partial Cholesky factorization:

K̂ = K[:, I]K[I, I]−1K[I, :] = L(I)L(I)> , (6)

where L(I) ∈ Rn×k is, up to permutation of rows, lower trapezoidal matrix (i.e., has a k × k
top lower triangular block, again up to row permutation). The derivation of Eq. 6 follows from
Proposition 1 in [1], and the fact that, given the ordered sequence of pivots I, the partial Cholesky
factorization is unique.

Using this factorization and the Woodbury identities (dropping the dependence on θ and I for clar-
ity), the terms of the negative marginal log-likelihood (4) and variational free energy (5) become

ED = σ−2
(
y>y − y>L

(
L>L+ σ2I

)−1
L>y

)
(7)

EC = log
(
(σ2)n−k|L>L+ σ2I|

)
(8)

EV = σ−2(tr(K)− tr(L>L)) (9)

1The inducing set can be incrementally constructed, as in [1], however we found no benefit to this.

3

We can further simplify the data term by augmenting the factor matrix as L̃ = [L>, σIk]>, where
Ik is the k×k identity matrix, and ỹ = [yT,0T

k]
T

is the y vector with k zeroes appended:

ED = σ−2
(
y>y − ỹ>L̃ (L̃>L̃)−1 L̃>ỹ

)
(10)

Now, let L̃ = QR be a QR factorization of L̃, where Q ∈ R(n+k)×k has orthogonal columns and
R ∈ Rk×k is invertible. The first two terms in the objective simplify further to

ED = σ−2
(
‖y‖2 − ‖Q>ỹ‖2

)
(11)

EC = (n− k) log(σ2) + 2 log |R| . (12)

3.2 Factorization update
Here we present the mechanics of the swap update algorithm, see [3] for pseudo-code. Suppose we
wish to swap inducing point i with candidate point j in Im, the inducing set of size m. We first
modify the factor matrices in order to remove point i from Im, i.e. to downdate the factors. Then
we update all the key terms using one step of Cholesky and QR factorization with the new point j.

Downdating to remove inducing point i requires that we shift the corresponding columns/rows in
the factorization to the right-most columns of L̃, Q, R and to the last row of R. We can then simply
discard these last columns and rows, and modify related quantities. When permuting the order of the
inducing points, the underlying GP model is invariant, but the matrices in the factored representation
are not. If needed, any two points in Im, can be permuted, and the Cholesky or QR factors can be
updated in time O(mn). This is done with the efficient pivot permutation presented in the Appendix
of [1], with minor modifications to account for the augmented form of L̃. In this way, downdating
and removing i take O(mn) time, as does the updating with point j.

After downdating, we have factors L̃m−1,Qm−1, Rm−1, and inducing set Im−1. To add j to Im−1,
and update the factors to rank m, one step of Cholesky factorization is performed with point j, for
which, ideally, the new columnto append to L̃ is formed as

`m = (K−K̂m−1)[:, j]
/√

(K−K̂m−1)[j, j] (13)

where K̂m−1 = Lm−1Lm−1
T. Then, we set L̃m = [L̃m−1 ˜̀

m], where ˜̀
m is just `m augmented

with σem = [0, 0, ..., σ, ..., 0, 0]>. The final updates are Qm = [Qm−1 qm], where qm is given
by Gram-Schmidt orthogonalization, qm = ((I−Qm−1Q

>
m−1)˜̀m) / ‖(I −Qm−1Q

>
m−1)˜̀m‖, and

Rm is updated from Rm−1 so that L̃m = QmRm.

3.3 Evaluating candidates
Next we show how to select candidates for inclusion in the inducing set. We first derive the exact
change in the objective due to adding an element to Im−1. Later we will provide an approximation
to this objective change that can be computed efficiently.

Given an inducing set Im−1, and matrices L̃m−1, Qm−1, andRm−1, we wish to evaluate the change
in Eq. 5 for Im =Im−1 ∪ j. That is, ∆F ≡ F (θ, Im−1)−F (θ, Im) = (∆ED + ∆EC + ∆EV)/2,
where, based on the mechanics of the incremental updates above, one can show that

∆ED = σ−2(ỹ> (I −Qm−1Q
>
m−1

)
˜̀
m)2

/
‖
(
I −Qm−1Q

>
m−1

)
˜̀
m‖2 (14)

∆EC = log
(
σ2
)
− log ‖(I −Qm−1Q

>
m−1)˜̀m‖2 (15)

∆EV = σ−2‖`m‖2 (16)

This gives the exact decrease in the objective function after adding point j. For a single point this
evaluation is O(mn), so to evaluate all n−m points would be O(mn2).

3.3.1 Fast approximate cost reduction
While O(mn2) is prohibitive, computing the exact change is not required. Rather, we only need a
ranking of the best few candidates. Thus, instead of evaluating the change in the objective exactly,
we use an efficient approximation based on a small number, z, of training points which provide

4

information about the residual between the current low-rank covariance matrix (based on inducing
points) and the full covariance matrix. After this approximation proposes a candidate, we use the
actual objective to decide whether to include it. The techniques below reduce the complexity of
evaluating all n−m candidates to O(zn).

To compute the change in objective for one candidate, we need the new column of the updated
Cholesky factorization, `m. In Eq. (13) this vector is a (normalized) column of the residual
K − K̂m−1 between the full kernel matrix and the Nyström approximation. Now consider the
full Cholesky decomposition of K = L∗L∗> where L∗ = [Lm−1, L(Jm−1)] is constructed with
Im−1 as the first pivots and Jm−1 = {1, ..., n}\Im−1 as the remaining pivots, so the resid-
ual becomes K− K̂m−1 = L(Jm−1)L(Jm−1)>. We approximate L(Jm−1) by a rank z � n
matrix, Lz , by taking z points from Jm−1 and performing a partial Cholesky factorization of
K− K̂m−1 using these pivots. The residual approximation becomes K− K̂m−1 ≈ LzL

>
z , and

thus `m ≈ (LzL
>
z)[:, j]

/√
(LzL>z)[j, j]. The pivots used to construct Lz are called information

pivots; their selection is discussed in Sec. 3.3.2.

The approximations to ∆ED
k , ∆EC

k and ∆EV
k , Eqs. (14)-(16), for all candidate points, involve

the following terms: diag(LzL
>
z LzL

>
z), y>LzL

>
z , and (Qk−1[1 : n, :])

>
LzL

>
z . The first term

can be computed in time O(z2n), and the other two in O(zmn) with careful ordering of matrix
multiplications.2 Computing Lz costs O(z2n), but can be avoided since information pivots change
by at most one when an information pivots is added to the inducing set and needs to be replaced.
The techniques in Sec. 3.2 bring the associated update cost to O(zn) by updating Lz rather than
recomputing it. These z information pivots are equivalent to the “look-ahead” steps of Bach and
Jordan’s CSI algorithm, but as described in Sec. 3.3.2, there is a more effective way to select them.

3.3.2 Ensuring a good approximation
Selection of the information pivots determines the approximate objective, and hence the candidate
proposal. To ensure a good approximation, the CSI algorithm [1] greedily selects points to find
an approximation of the residual K− K̂m−1 in Eq. (13) that is optimal in terms of a bound of
the trace norm. The goal, however, is to approximate Eqs. (14)-(16) . By analyzing the role of
the residual matrix, we see that the information pivots provide a low-rank approximation to the
orthogonal complement of the space spanned by current inducing set. With a fixed set of information
pivots, parts of that subspace may never be captured. This suggests that we might occasionally
update the entire set of information pivots. Although information pivots are changed when one is
moved into the inducing set, we find empirically that this is not insufficient. Instead, at regular
intervals we replace the entire set of information pivots by random selection. We find this works
better than optimizing the information pivots as in [1].

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

exact total reduction

a
p

p
ro

x
 t

o
ta

l
re

d
u

c
ti
o

n

0 50 100 150
0

50

100

150

ranking exact total reduction

ra
n
k
in

g
 a

p
p
ro

x
 t
o
ta

l
re

d
u
c
ti
o
n

Figure 1: Exact vs approximate costs, based on
the 1D example of Sec. 4, with z=10, n=200.

Figure 1 compares the exact and approximate
cost reduction for candidate inducing points
(left), and their respective rankings (right). The
approximation is shown to work well. It is also
robust to changes in the number of information
pivots and the frequency of updates. When bad
candidates are proposed, they are rejected after
evaluating the change in the true objective. We
find that rejection rates are typically low during
early iterations (< 20%), but increase as opti-
mization nears convergence (to 30% or 40%). Rejection rates also increase for sparser models,
where each inducing point plays a more critical role and is harder to replace.

3.4 Hybrid optimization
The overall hybrid optimization procedure performs block coordinate descent in the inducing points
and the continuous hyperparameters. It alternates between discrete and continuous phases until
improvement in the objective is below a threshold or the computational time budget is exhausted.

In the discrete phase, inducing points are considered for swapping with the hyper-parameters fixed.
With the factorization and efficient candidate evaluation above, swapping an inducing point i ∈ Im

2Both can be further reduced to O(zn) by appropriate caching during the updates of Q,R and L̃, and Lz

5

16 32 64 128 256 512

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

number of inducing points (m)
T

e
s
ti
n

g
 S

N
L

P

CholQR−z16

IVM

Random
Titsias−16

Titsias−512

16 32 64 128 256 512

0.3

0.4

0.5

0.6

0.7

number of inducing points (m)

T
e

s
ti
n

g
 S

M
S

E

16 32 64 128 256 512

−1.2

−1

−0.8

−0.6

−0.4

number of inducing points (m)

T
e

s
ti
n

g
 S

N
L

P

CholQR−z16

IVM

Random
Titsias−16

Titsias−512

16 32 64 128 256 512

0.1

0.15

0.2

0.25

0.3

0.35

0.4

number of inducing points (m)

T
e

s
ti
n

g
 S

M
S

E

Figure 2: Test performance on discrete datasets. (top row) BindingDB, values at each marker is the
average of 150 runs (50-fold random train/test splits times 3 random initialization); (bottom row)
HoG dataset, each marker is the average of 10 randomly initialized runs.

proceeds as follows: (I) down-date the factorization matrices as in Sec. 3.2 to remove i; (II) compute
the true objective function value Fm−1 over the down-dated model with Im\{i}, using (11), (12)
and (9); (III) select a replacement candidate using the fast approximate cost change from Sec. 3.3.1;
(IV) evaluate the exact objective change, using (14), (15), and (16); (V) add the exact change to the
true objective Fm−1 to get the objective value with the new candidate. If this improves, we include
the candidate in I and update the matrices as in Sec. 3.2. Otherwise it is rejected and we revert to
the factorization with i; (VI) if needed, update the information pivots as in Secs. 3.3.1 and 3.3.2.

After each discrete optimization step we fix the inducing set I and optimize the hyperparameters
using non-linear conjugate gradients (CG). The equivalence in (6) allows us to compute the gradient
with respect to the hyperparameters analytically using the Nyström form. In practice, because we
alternate each phase for many training epochs, attempting to swap every inducing point in each
epoch is unnecessary, just as there is no need to run hyperparameter optimization until convergence.
As long as all inducing set points are eventually considered we find that optimized models can
achieve similar performance with shorter learning times.

4 Experiments and analysis

For the experiments that follow we jointly learn inducing points and hyperparameters, a more chal-
lenging task than learning inducing points with known hyperparameters [11, 13]. For all but the 1D
example, the number of inducing points swapped per epoch is min(60,m). The maximum num-
ber of function evaluations per epoch in CG hyperparameter optimization ismin(20,max(15, 2d)),
where d is the number of continuous hyperparameters. Empirically we find the algorithm is robust
to changes in these limits. We use two performance measures, (a) standardized mean square er-
ror (SMSE), 1

N ΣN
t=1(ŷt − yt)2/σ̂2

∗, where σ̂2
∗ is the sample variance of test outputs {yt}, and (2)

standardized negative log probability (SNLP) defined in [10].

4.1 Discrete input domain
We first show results on two discrete datasets with kernels that are not differentiable in the input
variable x. Because continuous relaxation methods are not applicable, we compare to discrete se-
lection methods, namely, random selection as baseline (Random), greedy subset-optimal selection
of Titsias [14] with either 16 or 512 candidates (Titsias-16 and Titsias-512), and Informative Vec-
tor Machine [7] (IVM). For learning continuous hyperparameters, each method optimizes the same
objective using non-linear CG. Care is taken to ensure consist initialization and termination criteria
[3]. For our algorithm we use z = 16 information pivots with random selection (CholQR-z16).

6

16 32 64 128 256 512

10
2

10
3

10
4

number of inducing points (m)

T
o

ta
l
tr

a
in

in
g

 t
im

e
 (

s
e

c
s
)

(a)

16 32 64 128 256 512
0

500

1000

number of inducing points (m)

T
ra

in
in

g
 V

A
R

CholQR−z16

IVM

Random
Titsias−16

Titsias−512

(b)

10
1

10
2

10
3

10
4

0.1

0.2

0.3

T
e

s
ti
n

g
 S

M
S

E

Time in secs (log scaled)

CholQR−z8
CholQR−z16

CholQR−OI−z16
CholQR−z64
CholQR−OI−z64
CholQR−AA−z128
IVM
Random
Titsias−16

Titsias−512
CSI

(c)

10
0

10
1

10
2

10
3

10
4

−0.3

−0.2

−0.1

0

Cumulative training time in secs (log scale)

T
e
s
ti
n
g
 S

N
L
P

CholQR−z16

IVM

Random
Titsias−16

Titsias−512

(d)

10
0

10
1

10
2

10
3

10
4

0.55

0.6

0.65

0.7

0.75

Cumulative training time in secs (log scale)

T
e
s
ti
n
g
 S

M
S

E

CholQR−z16

IVM

Random
Titsias−16

Titsias−512

(e)

10
1

10
2

0.138

0.14

0.142

0.144

T
e
s
ti
n
g

 S
M

S
E

Time in secs (log scaled)

(f)

Figure 3: Training time versus test performance on discrete datasets. (a) the average BindingDB
training time; (b) the average BindingDB objective function value at convergence; (d) and (e) show
test scores versus training time withm = 32 for a single run; (c) shows the trade-off between training
time and testing SMSE on the HoG dataset with m = 32, for various methods including multiple
variants of CholQR and CSI; (f) a zoomed-in version of (c) comparing the variants of CholQR.

Later, we show how variants of our algorithm trade-off speed and performance. Additionally, we
also compare to least-square kernel regression using CSI (in Fig. 3(c)).

The first discrete dataset, from bindingdb.org, concerns the prediction of binding affinity for a
target (Thrombin), from the 2D chemical structure of small molecules (represented as graphs). We
do 50-fold random splits to 3660 training points and 192 test points for repeated runs. We use a
compound kernel, comprising 14 different graph kernels, and 15 continuous hyperparameters (one
noise variance and 14 data variances). In the second task, from [2], the task is to predict 3D human
joint position from histograms of HoG image features [5]. Training and test sets have 4819 and
4811 data points. Because our goal is the general purpose sparsification method for GP regression,
we make no attempt at the more difficult problem of modelling the multivariate output structure in
the regression as in [2]. Instead, we predict the vertical position of joints independently, using a
histogram intersection kernel [8], having four hyperparameters: one noise variance, and three data
variances corresponding to the kernel evaluated over the HoG from each of three cameras. We select
and show result on the representative left wrist here (see [3] for others joints, and more details about
the datasets and kernels used).

The results in Fig. 2 and 3 show that CholQR-z16 outperforms the baseline methods in terms of
test-time predictive power with significantly lower training time. Titsias-16 and Titsias-512 shows
similar test performance, but they are two to four orders of magnitude slower than CholQR-z16 (see
Figs. 3(d) and 3(e)). Indeed, Fig. 3(a) shows that the training time for CholQR-z16 is comparable to
IVM and Random selection, but with much better performance. The poor performance of Random
selection highlights the importance of selecting good inducing points, as no amount of hyperparam-
eter optimization can correct for poor inducing points. Fig. 3(a) also shows IVM to be somewhat
slower due to the increased number of iterations needed, even though per epoch, IVM is faster than
CholQR. When stopped earlier, IVM test performance further degrades.

Finally, Fig. 3(c) and 3(f) show the trade-off between the test SMSE and training time for variants of
CholQR, with baselines and CSI kernel regression [1]. For CholQR we consider different numbers
of information pivots (denoted z8, z16, z64 and z128), and different strategies for their selection in-
cluding random selection, optimization as in [1] (denote OI) and adaptively growing the information
pivot set (denoted AA, see [3] for details). These variants of CholQR trade-off speed and perfor-
mance (3(f)), all significantly outperform the other methods (3(c)); CSI, which uses grid search to
select hyper-parameters, is slow and exhibits higher SMSE.

7

bindingdb.org

(a) CholQR-MLE (b) CholQR-MLE (c) SPGP

(d) CholQR-VAR (e) CholQR-VAR (f) SPGP

Figure 4: Snelson’s 1D example: prediction mean (red curves); one standard deviation in prediction
uncertainty (green curves); inducing point initialization (black points at top of each figure); learned
inducing point locations (the cyan points at the bottom, also overlaid on data for CholQR).

128 256 512 1024 2048

0.05

0.1

0.15

0.2

0.25

te
s
ti
n
g
 S

M
S

E

CholQR−MLE

CholQR−VAR

SPGP
IVM−MLE

IVM−VAR

128 256 512 1024 2048
−2.5

−2

−1.5

−1

−0.5

te
s
ti
n
g

 S
N

L
P

Figure 5: Test scores on KIN40K as function of number of inducing points: for each number of
inducing points the value plotted is averaged over 10 runs from 10 different (shared) initializations.

4.2 Continuous input domain
Although CholQR was developed for discrete input domains, it can be competitive on continuous
domains. To that end, we compare to SPGP [13] and IVM [7], using RBF kernels with one length-
scale parameter per input dimension; κ(xi,xj) = c exp(−0.5

∑d
t=1 bt(x

(t)
i − x

(t)
j)2). We show

results from both the PP log likelihood and variational objectives, suffixed by MLE and VAR.

We use the 1D toy dataset of [13] to show how the PP likelihood with gradient-based optimization
of inducing points is easily trapped in local minima. Fig. 4(a) and 4(d) show that for this dataset
our algorithm does not get trapped when initialization is poor (as in Fig. 1c of [13]). To simulate
the sparsity of data in high-dimensional problems we also down-sample the dataset to 20 points
(every 10th point). Here CholQR out-performs SPGP (see Fig. 4(b), 4(e), and 4(c)). By comparison,
Fig. 4(f) shows SPGP learned with a more uniform initial distribution of inducing points avoids this
local optima and achieves a better negative log likelihood of 11.34 compared to 14.54 in Fig. 4(c).

Finally, we compare CholQR to SPGP [13] and IVM [7] on a large dataset. KIN40K concerns
nonlinear forward kinematic prediction. It has 8D real-valued inputs and scalar outputs, with 10K
training and 30K test points. We perform linear de-trending and re-scaling as pre-processing. For
SPGP we use the implementation of [13]. Fig. 5 shows that CholQR-VAR outperforms IVM in terms
of SMSE and SNLP. Both CholQR-VAR and CholQR-MLE outperform SPGP in terms of SMSE on
KIN40K with largem, but SPGP exhibits better SNLP. This disparity between the SMSE and SNLP
measures for CholQR-MLE is consistent with findings about the PP likelihood in [14].

5 Conclusion
We describe an algorithm for selecting inducing points for Gaussian Process sparsification. It op-
timizes principled objective functions, and is applicable to discrete domains and non-differentiable
kernels. On such problems it is shown to be as good as or better than competing methods and, for
methods whose predictive behavior is similar, our method is several orders of magnitude faster. On
continuous domains the method is competitive. Extension to the SPGP form of covariance approxi-
mation would be interesting future research.

8

References
[1] F. R. Bach and M. I. Jordan. Predictive low-rank decomposition for kernel methods. In Pro-

ceedings of the 22nd international conference on Machine learning, ICML ’05, pages 33–40,
New York, NY, USA, 2005. ACM.

[2] L. Bo and C. Sminchisescu. Twin gaussian processes for structured prediction. International
Journal of Computer Vision, 87(1-2):28–52, 2010.

[3] Y. Cao, M.A. Brubaker, D.J. Fleet, and A. Hertzmann. Project page: supplementary mate-
rial and software for efficient optimization for sparse gaussian process regression. www.cs.
toronto.edu/˜caoy/opt_sgpr, 2013.

[4] L. Csató and M. Opper. Sparse on-line gaussian processes. Neural Comput., 14(3):641–668,
March 2002.

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In IEEE CVPR,
pages 886–893, 2005.

[6] S.S. Keerthi and W. Chu. A matching pursuit approach to sparse gaussian process regression.
In In Advances in Neural Information Processing Systems 18. MIT Press, 2006.

[7] N.D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse gaussian process methods: The
informative vector machine. In Advances in Neural Information Processing Systems 15, pages
609–616. MIT Press, 2003.

[8] John J. Lee. Libpmk: A pyramid match toolkit. Technical Report MIT-CSAIL-TR-2008-17,
MIT Computer Science and Artificial Intelligence Laboratory, April 2008.

[9] J. Quinonero-Candela and C.E. Rasmussen. A unifying view of sparse approximate gaussian
process regression. J. Mach. Learn. Res., 6:1939–1959, December 2005.

[10] C.E. Rasmussen and C.K.I. Williams. Gaussian processes for machine learning. Adaptive
computation and machine learning. MIT Press, 2006.

[11] M. Seeger, C.K.I. Williams, N.D. Lawrence, and S.S. Dp. Fast forward selection to speed up
sparse gaussian process regression. In Workshop on AI and Statistics 9, 2003.

[12] A.J. Smola and P. Bartlett. Sparse greedy gaussian process regression. In Advances in Neural
Information Processing Systems 13, pages 619–625. MIT Press, 2001.

[13] Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. In
Advances in Neural Information Processing Systems 18, pages 1257–1264. MIT press, 2006.

[14] M.K. Titsias. Variational learning of inducing variables in sparse gaussian processes. Journal
of Machine Learning Research - Proceedings Track, 5:567–574, 2009.

[15] Christian Walder, Kwang In Kim, and Bernhard Schölkopf. Sparse multiscale gaussian process
regression. In Proceedings of the 25th international conference on Machine learning, ICML
’08, pages 1112–1119, New York, NY, USA, 2008. ACM.

9

www.cs.toronto.edu/~caoy/opt_sgpr
www.cs.toronto.edu/~caoy/opt_sgpr

	Introduction
	Previous Work

	Sparse GP Regression
	Efficient optimization
	Factored representation
	Factorization update
	Evaluating candidates
	Fast approximate cost reduction
	Ensuring a good approximation

	Hybrid optimization

	Experiments and analysis
	Discrete input domain
	Continuous input domain

	Conclusion

