Allan D Jepson and David J Fleet*

This paper concerns the use of phase information from
band-pass signals for the measurement of binocular
disparity, optic flow and image orientation. Towards
this end, one of the important properties of band-pass
phase information is its stability with respect to small
geometric deformations and contrast changes. However,
in particular regions phase can also be very unstable due
to the occurrence of phase singularities. We discuss the
existence of phase singularities, and their relation to the
neighbourhoods where phase is unreliable. Moreover,
we present a simple method for detecting these regions of
instability.
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INTRODUCTION

In order to compute image velocity or binocular
disparity, it is necessary (in some sense) to localize
structure in an image sequence and track it across
frames, or match it between left and right stereo views.
For example, differential-based velocity techniques
measure the translation of level contours of either
constant intensity, or constant amplitude of filter
response’™, while zero-crossing approaches focus on
the motion of zero-crossings in the output of band-pass
filters®,”. Recently, the use of contours of constant
phase has been suggested for the measurement of
binocular disparity*'! and of image velocity’?. In
choosing what type of structure to track, it is important
to consider its stability under common image deforma-
tions such as contrast variations, dilations, shears, and
rotations, in addition to simple translation (cf. Verri
and Poggio'®). One main advantage of phase informa-
tion is that, except near certain points referred to here
as singularities, phase is generally stable with respect to
small affine image deformations.

In this paper we illustrate the stability of phase
information as compared to the amplitude of filter
output for 1D signals through the use of a scale-space
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representation. Note that we are not concerned here
with the representation of images, as in the traditional
scale-space work', but rather with tracking structure
across frames. Therefore, we are primarily concerned
with small changes in scale (e.g. up to 20% dilations).
In addition, we discuss the existence of phase singular-
ities, the neighbourhoods about them where phase is
unreliable, and we present a simple method for their
detection. Given this detection scheme, highly accurate
and robust approaches to the measurement of optic
flow and binocular disparity are possible. For example,
based on the spatiotemgoral gradient of phase informa-
tion, Fleet and Jepson'? reported a technique for the
measurement of component (normal) image velocity
for which approximagely 90% of the accepted estimates
had less than 5% relative error in cases of significant
dilation and shear.

The results presented here are of general interest for
several reasons. First, they apply to zero-crossings of
the filter output in that zero-crossings in the response of
band-passed filters can be viewed as lines of constant
phase. Second, similar results apply to 2D signals.
Third, the problems caused by deviations from image
translation do not exist solely for phase-based tech-
niques (cf. Schunck® and Verri and Poggio'®). The fact
that the geometric deformations can be handled
robustly within a phase-based framework should be
viewed as a major advantage.

BAND-PASS SCALE-SPACE EXPANSIONS

To demonstrate the robustness of phase and its
singularities we first consider a scale-space expansion of
a 1D signal that expresses the output of a band-pass
filter K(x, A), as a function of spatial position and the
principal wavelength A, to which the filter is tuned. In
what follows, the filters are assumed to be band-pass
and constant phase. The kernels K(x, A) are complex
where the real and imaginary parts form quadrature
pairs (they are Hilbert transforms of one another).
Furthermore, we assume translational invariance and,
for convenience, self-similarity across scales so that the
octave bandwidth is constant (cf. Mallat'®). Band-
widths of approximately one octave are common in
vision applications. Finally, it is assumed that the
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filters’ output should be subsampled in both space and
scale to maintain an efficient, yet complete, representa-
tion of the input.

The scale-space expansion of an input signal I(x) is
defined by:

S(x, A) = K(x, A) *I(x), 1)

where * denotes convolution. Because K(x; A)e
the response S(x, A)=Re[S(x, A)]+iIm[S(x, A)]
can be written in terms of amplitude and phase
components as R(x, A) = p(x, A) ei¢(.2), where:

p(x, A)=18(x, A)| = VRe[S(x, A)*+Im[S(x, A)]%,
@)

é(x, A) = arg[S(x, A)] =Im[log, S(x, A)]e(~m, 7.
(2b)

The scale-space defined by (1) is similar to band-pass
expansions defined by Gabor functions or the Lapla-
cian of a Gaussian, although it is expressed in terms of
analytic complex kernels instead of real kernels (cf.
Mallat', Witkin!4, Koenderink!” and Papoulis'®).
Following Whitham'® or Papoulis'®, the local (instan-
taneous) frequency of the response can be defined as

the spatial derivative of the phase signal, k(x) =, (x, .

A). If the phase of S(x, A) is linear, as in ¢(x, A) =
kox, then S(x, A) is simply an amplitude-modulated
sinusoid with constant frequency k,. Otherwise, the
phase derivative ¢,(x, A) provides a local, constant-
frequency approximation to S(x, A). In order to
compute ¢,(x, A) we can make use of the following
identity:

Im[S*(x, A) S,(x, A)]
1S(x, M)

where S*(x, A) denotes complex conjugate of S(x,
A). Note that this equation shows how the phase
derivative ¢, can be computed without first unwrap-
ping the phase.

As mentioned above, it is important that the signal
property to be tracked is stable with respect to scale
perturbations. This suggests that its level contours
should be vertical in scale-space. To see this, consider
two 1D signals (e.g. left and right views), where one is a
dilation and translation of the other, i.e. let:

I(a(x)) = Ii(x),

with a; near 1. Because the filters have constant
bandwidth the two output signals will satisfy:

bx(x, )= ’ (3

where a(x) = ag+ayx, ©)

Sr(a(x)’ /\1) = Sl(x1 /‘2)’ where /\-I = al)‘27 (5)
i.e. the two outputs would have similar structure if
filters tuned to A; and A, had been applied to I,(x)
and I,(x), respectively. However, in measuring dispar-
ity (or velocity) it is common to apply the same filters to
I,(x) and I,(x) because the scale factor a, is unknown.
In other words, we attempt to recover a(x) by matching
structure (features) of S,(a(x), A;) and S;(x, A;). To
be successful, the structure of §;(x, A,) that is used for
matching must be well represented by the structure of
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S;(x, Ay). Equivalently, its level contours should be
nearly vertical in scale-space.

For illustrative purposes, let the band-pass kernel be
K(x, A) = Gabor(x; o(A), £(A)), where:

Gabor(x; o, k) = e™* G(x; o) (6)
denotes a Gabor kernel?® where G(x; o) is a Gaus-
sian®. The peak tuning frequency of the filter is given
by:

k(A) = %:—T . (7a)

With a bandwidth of B octaves (assumed to be near 1),
and with one standard deviation as a measure of the
extent of the Gaussian envelope, the standard devia-
tion. of the amplitude spectra o =o' should satisfy
B =log,[(k(A) + o ))k(A) —ay)]. From this, it is
easy to show that the approximate radius of spatial
support is given by:

o (2 "
M= \2F-1) (70)

Figure 1 (top) shows a signal composed of a sample of
white Gaussian noise concatenated with a scanline from
a real image. The two middle images show p (x, A)
and ¢ (x, A), generated with a Gabor kernel with
B =1.0, over an interval of two octaves for A. Level
contours of constant amplitude and phase are shown
below. It is clear from Figure 1 that p(x, A) depends
significantly on scale because its level contours are not
generally vertical. As a consequence, the amplitude
signal and the raw filter output (which has a significant
amplitude component) are not stable candidate pro-
perties for matching. In contrast note that, except for
several isolated regions, phase is generally stable with
respect to scale perturbations. As explained below, the
major source of this instability is the occurrence of
singularities in the phase signal ¢(x, A). Moreover, a
simple method is suggested for detecting these regions
of instability.

SINGULARITY NEIGHBOURHOODS

For a general image I(x), the scale-space defined by (1)
is analytic, and contains a number of isolated zeros,
where S(x, A)=0. In p(x, A) shown in Figure 1,
zeros appear as black spots. The phase signal in (2b) is
also analytic, except at the zeros of S(x, A). It can be
shown that, for white noise input, the expected density
of phase singularities about a given scale Ao, is
proportional to Ag> 2.

In order to describe the effects of phase singularities,
we begin with a simple model that generates singular-
ities. This model consists of two complex exponentials,
the amplitudes of which vary as a function of scale. For
example, let the input I(x) be the superposition of two
waveforms at frequencies ko and k;, where k;> k.

FStrictly speaking, the real and imaginary Gabor parts do not form
quadrature pairs, i.e. (Re[Gabor], Im[Gabor])#0. But for
sufficiently small octave bandwidths (e.g. an octave or less), they are
close enough to illustrate the main points clearly.
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Figure 1. Gabor scale-space expansion: the input signal
(top) consists of white Gaussian noise (left), and a
scanline from a real image (right). The middle images
show the amplitude and phase components of S(x, A)
for 12<A <48 (in pixels). The vertical and horizontal
axes represent scale and spatial position. The bottom two
figures show level contours of constant p(x, A) and
¢(x, A). The small tick on the right side of the
amplitude contours (lower left) marks scale A =20 for
reference in other figures.

Then, the output of a band-pass filter with its peak
tuning frequency k(A) somewhere between kg and ki,
is given by:

S(x, A) = po(A) e *¥ + py (1) e+, )

where ¢ is an arbitrary phase shift. Because of the roll-
off of the amplitude spectrum away from the peak
tuning frequency, an increase in scale, and therefore a
decrease in k(A), causes variation in the two ampli-
tude coefficients. In particular:

d
a [po/p:]>0, %

so the relative amplitude of the lower frequency
component becomes larger as the scale parameter
increases. Singularities occur when po(A) =p;(A),
where the signal passes through the origin. Figure 2
shows a simple example in which k; =2k,. The four
panels show the signal in the complex plane as a
function of x, for successively larger ratios of po/p;.
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Figure 2. Simple model with a phase singularity: these
four plots show four instances of the simple model (8) at
successively larger scales. The signal shown is a function
of spatial position in the complex plane. The actual
singularity occurs in the top-right figure where the signal
passes through the origin. The bullets marks fixed spatial
positions for illustrative purposes, .and the arrows
indicate the direction for increasing x values '

The arrows indicate the direction for increasing values
of x. The upper-left panel illustrates the signal
behaviour for a scale just below a singularity; that is for
po<p; and A<Ay, where Ay denotes the scale at
which the singularity occurs. The upper-right panel
illustrates the case A = A, for which the singularity is
a result of S(x, Ay) passing through the origin. The
bottom two panels show the behaviour at two scales
above Ay, where the relative amplitude of the higher
frequency signal component decreases further. The
sequence as a whole illustrates the general mechanism
through which higher frequency information is lost as
one moves up in scale-space.

This model also helps illustrate the behaviour of
phase in the neighbourhood of singularities. As we
show below, these neighbourhoods can be charac-
terized in terms of properties of the complex logarithm
of the filter response S(x, A), i.e. log.S(x, A)
=log.p(x, A)+i¢(x, A). Here p and ¢ are the
amplitude and phase of S as described in equation
(2). In particular, we use the x-derivative of log,S,
which satisfies:

[S*(x, A) S,(x, A)]
IS, A2
_Pex, A)
plx, A)

Here the imaginary part is ¢,(x, A), which is simply
the local frequency as in (3), and the real part is the
relative amplitude derivative p,(x, A)/p(x, A). The
general behaviour of these two terms in the neighbour-
hood of a phase singularity is illustrated using the

;a_ log,S(x, A) =
: (10)
+ it (x, A).
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simple model (8). In what follows, let (xp, Ap) denote
the location of a typical singularity.

The neighbourhoods just above and below singular
points can be characterized in terms of the behaviour of
é(x, A) and é,(x, ). Above singular points (for
A>)g), they are characterized by local frequencies
that are significantly below the corresponding peak
tuning frequencies k(A). Within these neighbourhoods
there exist retrograde regions where local frequencies
are negative, i.e. ¢,(x, A)<0. In Figure 2 (bottom-
left), where the signal normally winds counter-
clockwise about the origin, the retrograde behaviour
corresponds to the middle of the small loop where the
signal winds clockwise with respect to the origin. Along
the boundaries of retrograde regions the local fre-
quency is zero. The significance of ¢,(x, A) vanishing
is that the level phase contours are horizontal, and not
vertical as désired. Nearby this boundary, both inside
and outside the retrograde regions, the level contours
are generally far from vertical which, as discussed
above, implies considerable phase instability. Below
singular points (for A <Ay) the neighbourhoods are
characterized by local frequencies of response that are
significantly higher than the peak tuning frequencies.
In addition, the local frequency changes rapidly as a
function of spatial location. The extreme local frequen-
cies above and below the singular point also suggest
considerable difficulty for accurate signal interpolation
in these regions.

To illustrate this behaviour with singularities that
arise in practice, Figure 3 (left) shows a 1D slice of
¢é(x, A) and ¢, (x, A) from the scale-space of Figure
1 at a single scale. This slice of scale-space, at A =20,
passes through three singularity neighbourhoods: two
just above singularities (near locations 17 and 124), and
one just below a singularity (near location 180). Notice
the low (sometimes negative) and high local frequen-
cies near the singularities. Figure 3 (right) shows the
typical behaviour of level phase contours near a
singularity, taken from the scale-space expansion of a
scanline from a real image. The phase singularity is the
point in the middle through which several of the phase
contours pass. The small elliptical contour marks the
retrograde boundary where ¢,(x, A) =0. The insta-
bility above the singular point is clear from the nearly
horizontal level phase contours. Directly below the

Local 8
Froquoncy 4.,
00—

T T T T T T T T T
0 25 50 75 10 125 150 175 200

Spatial Location

Figure 3. Phase and local frequency near singularities:
(left) é(x, A) and ¢, (x, A) are shown for a slice of
the scale-space in Figure 1 (with A =20). Vertical
dotted lines denote phase wrapping (not discontinuities),
and the horizontal dotted line marks the filter's
peak tuning’ frequency k(A)=0.314; (right) typical
behaviour of level phase contours near a singularity.
The singularity is the point in the centre through which
several phase contours pass. The small ellipsoidal
contour marks the retrograde boundary

vol 9 no 5 october 1991

singular point the high local frequencies are evident
from the high density of phase contours.

Finally, the neighbourhoods to the left and right of
(i.e. spatially adjacent to) singular points can be
characterized in terms of amplitude variation. As we
approach a singular point, p(x, Ao) goes to zero.
Based on a simple linear model of amplitude, at a
specific location x; near the singularity, the distance to
the singular point is approximately |Ax|=p(xq,
Ao)/|px(x1, Ag)|. Equivalently, as we approach the
singularity, [p,(x(|/p(xi, A¢) increases. As a con-
sequence, the neighbourhoods to the left and right
of phase singularities can be characterized by large
values of |p(x, A)|/p(x, A), which is provided by
the real part of (10).

DETECTION OF SINGULARITY
NEIGHBOURHOODS

In order to use phase information reliably toward the
measurement of image velocity or binocular disparity,
singularity neighbourhoods must be detected so that
measurements in them may be discarded. Here we
introduce constraints on local frequency and amplitude
that can be used to identify locations within sirigularity
neighbourhoods, while avoiding the explicit localiza-
tion- of the singular points. It is important in practice
that this can be done using information available at
only one scale, and hence a dense set of samples across
many scales is not needed.

To detect the neighbourhoods above and below the
singular points, we constrain the distance between the
local frequency of response and the peak tuning
frequency. This can be expressed as a function of the
extent of the amplitude spectrum (measured at one
standard deviation o (A)) as follows:

|d(x, 1) =k(A)| <
ar(A)

The neighbourhoods adjacent to singular points can be
detected with a local amplitude constraint:

(2P-1)
2F+1)°

T Tk(A)=k(A) (11)

(X, A
o(A) ——-——-[,;(Ei )\))l <7, (12)

where o (A) defines the radius of filter support. Level
contours of (11) for different values of 7, form
8-shaped regions with the singular points as their
centres, while level contours of (12) form c-shaped
regions. This is evident in Figure 4 (top panels). As 7,
and 7, decrease, the constraints become tighter and
larger neighbourhoods are detected. Figure 4 (middle-
left) shows the combined behaviour of (11) and (12) as
applied to the scale-space in Figure 1, with r,=1.2
(i.e. local frequencies are accepted up to 20% outside
the nominal tuning range of the filters) and 7,=1.0
(i.e. points within o(A) of a singularity are dis-
carded). These constraints typically remove about 15%
the scale-space area. Finally, Figure 4 (middle-right)
shows the original level phase contours as for Figure 1,
while in the bottom row we present the contours that
survive the constraints, and the contours in those
regions removed. Notice the stability of the contours
outside the singularity neighbourhoods.
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Figure 4. Detection of singularity neighbourhoods: (top-
left) level contours of (11) for 7, =1, 1.5 and 2 for the
scale—space in Figure 1; (top-right) level contours of (12)
for 7,=0.75, 1, and 1.50; (middle-left) neighbour-
hoods removed by (12) with 7,=1 are shown in
black, while the contours show t}fe remaining regions
marked by (11) with 7,=1.2; (middle-right) level
phase contours for scale-space (cf. Figure 1); and
(bottom row) contours that survive the constraints, and
the phase contours in those regions removed with 7,=
land v, =12

MEASUREMENT OF BINOCULAR DISPARITY

To illustrate the problems caused by phase instability
and the rapid variation of local frequency that occur in
singularity neighbourhoods, we compare the results of
a technique for disparity measurement with and with-
out the removal of singularity neighbourhoods. Follow-
ing Jenkin and Jepson® and Sanger’, estimates of
binocular disparity are computed as:

- [¢l(x) B ¢r(x)]21r

d(x) P )

(13)

where ¢,(x) and ¢,(x) denote the phase responses of
the left and right views, k¢ denotes the peak tuning
frequency of the filter, and [0]y,(—w, =] denotes
the principal part of 8. This computation presumes a
model of local phase given by ¢ (x) = k¢x + ¢¢; when
the left and right signals are shifted versions of one
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Figure 5. Disparity measurement: the top two plots show
the disparity estimates based on (13) without, and then
with, the removal of singularity neighbourhoods. Notice
the substantial errors in the first case versus the second.
The bottom plot shows the improved technique in which
the local frequency is used instead of the peak frequency
in (13). The same neighbourhoods have been removed

another, and the filter outputs have constant frequency
kg, then (13) yields the exact result. Toward a more
general model, ky in (13) can be replaced by the
average local frequency in the left and right outputs
(¢(x) + &'.(x))/2 (cf. Langley et al.''). This allows
frequencies other than k, with accurate results’.
Making the local model of the signal explicit
is important because measurement accuracy and reli-
ability depend on the appropriateness of the local
model. For example, in neighbourhoods above and
below singular points, which are characterized by a
high variation in local frequency, the linear phase
model is inappropriate and the numerical approxima-
tion of ¢’'(x) will be poor. The removal of these
regions is therefore important.

To illustrate this, assume a simple situation in which
the left and right views are shifted versions of the 1D
signal shown in Figure 1 (top). Let the disparity be 5
pixels, and let the Gabor filters be turned to a
wavelength of 20 pixels. Thus the left and right phase
signals are shifted versions of the scale-space slice
shown in Figure 3 (left), which crosses three singularity
neighbourhoods. Figure 5 (top) shows the results of
(13) with the crude linear model®® and without the
removal of singularity neighbourhoods. Figure 5
(middle) shows the consequence of removing any
disparity measurement for which the left or the right
filter responses did not satisfy (11) or (12) with 7,=
1.0 and 7,=1.2 (as in Figure 4). In Sanger’ a
heuristic constraint on amplitude differences between
left and right signals and subsequent smoothing were
used to lessen the effects of such errors. Unfortunately,
this smoothing sacrifices the resolution and accuracy of
nearby estimates. Finally, Figure 5 (bottom) shows the
improvements obtained with the more general linear
model.

SUMMARY

Phase-based techniques for the measurement of bino-
cular -disparity and image velocity are encouraging,
especially because of the stability of band-pass phase
information with respect to deviations from image
translation that are typical in projections of 3D scenes.
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Despite this stability, phase is unreliable in the neigh-
bourhoods of phase singularities. This instability was
described, and it was shown that singularity neighbour-
hoods may be detected using simple constraints on the
local frequency and the amplitude of the filter output.
Finally, these results were discussed briefly in the
context of binocular disparity measurement.
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