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Abstract

This chapter addresses an open problem in visual motion analysis, the estimation

of image motion in the vicinity of occlusion boundaries. With a Bayesian

formulation, local image motion is explained in terms of multiple, competing,

nonlinear models, including models for smooth (translational) motion and for

motion boundaries. The generative model for motion boundaries explicitly

encodes the orientation of the boundary, the velocities on either side, the motion

of the occluding edge over time, and the appearance/disappearance of pixels

at the boundary. We formulate the posterior probability distribution over the

models and model parameters, conditioned on the image sequence. Approximate

inference is achieved with a combination of tools: A Bayesian �lter provides for

online computation; factored sampling allows us to represent multimodal non-

Gaussian distributions and to propagate beliefs with nonlinear dynamics from

one time to the next; and mixture models are used to simplify the computation of

joint prediction distributions in the Bayesian �lter. To eÆciently represent such

a high-dimensional space we also initialize samples using the responses of a low-

level motion discontinuity detector. The basic formulation and computational

model provide a general probabilistic framework for motion estimation with

multiple, non-linear, models.
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1 Visual Motion Analysis

Motion is an intrinsic property of the world and an integral part of our visual experience.

It provides a remarkably rich source of information that supports a wide variety of

visual tasks. Examples include 3D model acquisition, event detection, object recognition,

temporal prediction, and oculomotor control.

Visual motion has long been recognized as a key source of information for inferring the

3D structure of surfaces and the relative 3D motion between the observer and the scene

(Gibson 1950; Ullman 1979; Longuet-Higgins and Prazdny 1980). In particular, the 2D

patterns of image velocity that are produced by an observer moving through the world can

be used to infer the observer's 3D movement (i.e., egomotion). Many animals are known

to use visual motion to help control locomotion and their interaction with objects (Gibson

1950; Warren 1995; Sun and Frost 1998; Srinivasan, Zhang, Altwein, and Tautz 2000).

It is also well-known that visual motion provides information about the 3D structure of

the observed scene, including the depth and orientation of surfaces. Given the 3D motion

of the observer and the 2D image velocity at each pixel, one can infer a 3D depth map. In

particular, it is straightforward to show that the 2D velocities caused by the translational

component of an observer's 3D motion are inversely proportional to surface depth (Heeger

and Jepson 1992; Longuet-Higgins and Prazdny 1980).

While much of the research on visual motion has focused on the estimation of 2D velocity

and the inference of egomotion and 3D depth, it is also widely recognized that visual

motion conveys information about object identity and behavior. Many objects exhibit

characteristic patterns of motion. Examples include rigid and articulated motions, di�erent

types of biological motion, or trees blowing in the wind. From these di�erent classes of

motion we e�ortlessly detect and recognize objects, assess environmental conditions (e.g.,

wind, rain, and snow), and begin to infer and predict the object behavior. This facilitates a

broad range of tasks such as the detection and avoidance of collisions, chasing (or 
eeing)

other animate objects, and the inference of the activities and intentions of other creatures.

Given the signi�cance of visual motion, it is not surprising that it has become one of the

most active areas of computer vision research. In just over two decades the major foci of

research on visual motion analysis include:

� Optical Flow Estimation: This refers to the estimation of 2D image velocities from

image sequences (Horn 1986; Barron, Fleet, and Beauchemin 1994; Otte and Nagel

1994). Although originally viewed as a precursor to the estimation of 3D scene

properties, the techniques developed to estimate optical 
ow have also proven useful

for other registration problems; examples are found in medical domains, in video

compression, in forming image mosaics (panoramas), and in stop-frame animation.

� Motion-Based Segmentation: Although optical 
ow �elds are clearly useful, they

do not explicitly identify the coherently moving regions in an image. Nor do they

separate foreground and background regions. For these tasks, layered motion models

and the Expectation-Maximization (EM) algorithm have become popular (Jepson

and Black 1993; Sawhney and Ayer 1996; Vasconcelos and Lippman 2001; Weiss and

Adelson 1996), as have many other approaches, such as automated clustering based

on spatial proximity and motion similarity.



� Egomotion and Structure-from-Motion: The estimation of self-motion and 3D depth

from optical 
ow or tracked points over many frames, has been one of the long-

standing fundamental problems in visual motion analysis (Broida, Chandrashekhar,

and Chellappa 1990; Heeger and Jepson 1992; Tomasi and Kanade 1992; Longuet-

Higgins and Prazdny 1980). While typically limited to nearly stationary (rigid)

environments, current methods for estimating egomotion can produce accurate results

at close to video frame rates (e.g., see (Chiuso, Favarto, Jin, and Saotto 2000)).

� Visual Tracking: Improvements in 
ow estimation have enabled visual tracking of

objects reliably over tens and often hundreds of frames. Often these methods are

strongly model-based, requiring manual initialization, and prior speci�cation of image

appearance and model dynamics (Irani, Rousso, and Peleg 1994; Shi and Tomasi

1994; Sidenbladh, Black, and Fleet 2000). One of the lessons learned from research

on visual tracking is the importance of having suitable models of image appearance

and temporal dynamics, whether learned prior to tracking (Hager and Belhumeur

1998; Black and Jepson 1998), or adaptively during tracking (Jepson, Fleet, and

El-Maraghi 2001).

In this chapter we focus on the problem of estimating 2D image velocity, especially in the

neighborhoods of surface boundaries.

1.1 Optical Flow

The estimation of optical 
ow was �rst studied in detail over 20 years ago (Fennema and

Thompson 1979; Horn and Schunk 1981). Since then, techniques for optical 
ow estimation

have improved signi�cantly. The use of benchmark data sets and publically available code

have helped to estabalish the quantitative accuracy of recent methods (Barron, Fleet,

and Beauchemin 1994). Accordingly, it is now relatively well accepted that, for smooth

textured surfaces, current methods provide accurate and relatively fast estimators for 2D

image velocity.

Although many interesting variations exist, perhaps the simplest, most commonly used

techniques are known as area-based regression methods. Broadly speaking, these tech-

niques are derived from two main assumptions, namely, brightness constancy, and smooth-

ness. The brightness constancy assumption states that the light re
ected from a surface

toward the camera remains invariant through time. If we further assume that visible points

at time t� 1 are also visible at time t, then we can then express the image at time t as a

deformation of the image at time t� 1:

I(x; t) = I(x+ u(x); t� 1) : (1)

With (1), one can estimate the 2D optical 
ow, u(x) = (u(x); v(x))T , at di�erent spatial

positions, x = ((x; y)T , by tracking points of constant brightness.

The second common assumption that underpins current methods is that the optical 
ow

�eld is a smooth function of image position. This is often formulated by constraining the

optical 
ow �eld u(x) to lie in a subspace spanned by a basis of smooth 
ow �elds for a

local neighborhood of image positions:

u(x; a) =

nX
j=1

aj bj(x) (2)



u(x; a)

= a1 + a2 + a3 + a
5 + a

6+ a4

Figure 1 AÆne 
ow �elds can be expressed as a linear combination of the elements of

a six-dimensional basis set of 
ow �elds, shown here for 5� 5 local neighborhoods).

where fbj(x)gj=1:::n is the basis, and a = (a1; :::; an) denotes the linear coeÆcients

(Bergen, Anandan, Hanna, and Hingorani 1992; Fleet, Black, Yacoob, and Jepson 2000).

For example, Fig. 1 shows an aÆne basis that accounts for translation, scaling, rotation

and shear. Estimating the optical 
ow then amounts to estimating the coeÆcients a that

produce the 
ow �eld that minimizes violations of brightness constancy (1) in the subspace

spanned by fbj(x)gj=1:::n . Alternatively, the smoothness constraint can be formulated as

a regularization term that speci�es how the motion at neighboring pixels may vary (Horn

and Schunk 1981).

Several properties contribute to the e�ectiveness of such methods. First, the number of

unknowns a is typically small compared to the number of pixels in the spatial neighborhood

each of which provides a brightness constancy constraint. Second, the solution can be found

with straightforward numerical methods. If we linearize (1) and discard all but �rst-order

terms, then we obtain a gradient constraint:

rI(x; t� 1) � u(x; a)��I = 0 (3)

where rI = (Ix; Iy) is the spatial image gradient, and �I = I(x; t)� I(x; t� 1). Because

(3) is linear in u(x; a), and u(x; a) is linear in a, the collection of these constraints at each

pixel in the spatial region yields a linear, least-squares system of equations.

1.2 Motion Boundaries

While current optical 
ow techniques produce reliable estimates for smooth textured

surfaces, there are classes of motion for which they are not e�ective. There are many

situations where brightness constancy does not hold and the motion is not smooth.

Examples include motion discontinuities, the motion of bushes or trees in the wind, and

the deformations and self-occlusions of clothing as people walk.

Optical 
ow at surfaces boundaries is often discontinuous because surfaces at di�erent

depths usually produce di�erent image velocities. This violates the smoothness assump-

tion. Furthermore, pixels that are visible at one time may not be visible at the next time as

the foreground moves and thereby occludes a di�erent portion of the background; this vio-

lates the brightness constancy assumption. As a consequence, most optical 
ow techniques

produce poor estimates at occlusion boundaries.

Nevertheless, motion boundaries remain a rich source of scene information. First, they

provide information about the position and orientation of surface boundaries. Second,

analysis of the occlusion or disocclusion of pixels at motion boundaries can provide

information about the relative depth ordering of the adjacent surfaces. In turn, information

about surface boundaries and depth ordering may be useful for tasks as diverse as

navigation, structure from motion, video compression, perceptual organization, and object

recognition.
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Figure 2 Our motion boundary model is parameterized by foreground and background

velocities, uf and ub, an orientation � with normal n� , and a signed distance d from the

neighborhood center xc. With this model we can predict which pixels are visible between

frames at times t� 1 and t.

In this chapter we formulate a probabilistic, model-based, approach to image motion

analysis. The 2D motion in each local neighborhood of an image is estimated and

represented using one of several possible models. This approach allows us to use di�erent

motion models that are suited to the diverse types of optical 
ow that occur with natural

scenes. In this chapter we consider two models, namely, smooth motion and motion

boundaries. Regions of smooth motion may be modeled using conventional translational or

aÆne models while the complex phenomena that occur at motion boundaries are accounted

for by an explicit, non-linear, boundary model.

The motion boundary model illustrated in Fig. 2 encodes the boundary orientation, the

image velocities of the pixels on each side of the boundary, the foreground/background

assignment for the two sides, and the distance from the boundary to the region center.

With this model, we can predict the visibility of occluded and disoccluded pixels so that

these pixels may be excluded when estimating the probability of a particular motion.

Moreover, the explicit o�set parameter allows us to predict the location of the edge within

the region of interest, and hence track its movement through the region. Tracking the

motion of the edge allows foreground/background ambiguities to be resolved.

Generative models like this have not previously been used for detecting motion disconti-

nuities due to the non-linearity of the model and the consequent diÆculty of estimating

the model parameters. Furthermore, while the use of multiple models clearly complicates

the resulting estimation problem, it provides us with a rich framework with which we can

address the problem of model selection, to determine what type of motion model is most

suited to the nature of the input, and to thereby estimate properties of the motion that

provide useful information about the underlying 3D scene structure.

1.3 Previous Work on Motion Boundaries

The detection of motion boundaries has been a long-standing problem in optical 
ow

estimation, primarily because most approaches to computing optical 
ow fail to be reliable

in the vicinity of motion discontinuities (Barron, Fleet, and Beauchemin 1994; Fleet 1992;

Otte and Nagel 1994). In addition, it has long been acknowledged that motion boundaries

provide useful information about the position and orientation of surface boundaries.



Most previous methods cope with motion boundaries by treating them as a form of noise;

that is, as the violation of a smoothness assumption. This occurs with regularization

schemes where robust statistics, weak continuity, or line processes are used to locally

disable smoothing across motion discontinuities (Cornelius and Kanade 1981; Harris,

Koch, Staats, and Luo 1990; Heitz and Bouthemy 1993; Konrad and Dubois 1998; Murray

and Buxton 1987; Nagel and Enkelmann 1986; Schunck 1989; Shulman and Herv�e 1989;

Thompson, Mutch, and Berzins 1985). Robust regression (Black and Anandan 1996;

Sawhney and Ayer 1996) and mixture models (Sawhney and Ayer 1996; Jepson and Black

1993; Weiss and Adelson 1996) have been used to account for the multiple motions that

occur at motion boundaries but these methods fail to explicitly model the boundary and its

spatiotemporal structure. They do not determine the boundary orientation, which pixels

are occluded or disoccluded, or the depth ordering of the surfaces at the boundary.

Numerous methods have attempted to detect discontinuities in optical 
ow �elds by

analyzing local distributions of 
ow (Spoerri and Ullman 1987) or by performing edge

detection on the 
ow �eld (Potter 1980; Schunck 1989; Thompson, Mutch, and Berzins

1985). It has often been noted that these methods are sensitive to the accuracy of the

optical 
ow and that accurate optical 
ow is hard to estimate without prior knowledge

of the occlusion boundaries. Other methods have focused on detecting occlusion from the

structure of a correlation surface (Black and Anandan 1990), or of the spatiotemporal

brightness pattern (Beauchemin and Barron 2000; Chou 1995; Fleet and Langley 1994;

Niyogi 1995). Still others have used the presence of unmatched features to detect dynamic

occlusions (Mutch and Thompson 1985; Thompson, Mutch, and Berzins 1985).

None of these methods explicitly capture the spatial structure of the image motion present

in the immediate neighborhood of the boundary, and they have not proved suÆciently

reliable in practice. One recent approach formulated an approximate model for motion

boundaries using linear combinations of basis 
ow �elds (Fleet, Black, Yacoob, and Jepson

2000). Estimating the image motion in this case reduces to a regression problem based on

brightness constancy and parameterized models as in (2) and (3) above. Moreover, from

the estimated linear coeÆcients, one can compute the orientation of the boundary and

the velocities on either side, as shown Fig. 5. While useful, the estimates of the motion

and the boundary location produced by this approach are quite noisy. Moreover, they do

not identify the foreground side, nor do they identify which image pixels are occluded or

disoccluded between frames. Rather, pixels that are not visible in both frames are treated

as noise. With the non-linear model developed below, these pixels can be predicted and

therefore taken into account in the likelihood computation (cf. (Belhumeur 1996).

Additionally, most of the above methods have no explicit temporal model. With our

generative model (described below), we predict the motion of the occlusion boundary

over time and hence integrate information over multiple frames. When the motion of the

discontinuity is consistent with that of the foreground surface we can explicitly determine

the foreground/background relationships (local depth ordering) between the surfaces.

1.4 Bayesian Filtering and Approximate Inference

To cope with image noise, matching ambiguities, and model uncertainty, we adopt a

Bayesian probabilistic framework that integrates information over time and represents

multiple, competing, model hypotheses. Our goal is to compute the posterior probability

distribution over motion models and their parameters, conditioned on image measure-



ments. The posterior is expressed in terms of a likelihood function and a prior (prediction)

probability distribution. The likelihood is the probability of observing the current image

given the correct model. The prior represents our belief about the motion at the current

time based on previous observations. This temporal prior embodies our assumptions about

the temporal dynamics of how the models and model parameters evolve over time.

Because we use multiple motion models, we need to cope with both discrete and continuous

variables (i.e., a hybrid state space). The discrete state variable encodes the type of

motion, smooth or discontinuous, and the continuous variables encode the corresponding

motion parameters (we use 2 parameters for smooth motion, and 6 for the motion

boundary model). As is well known, posterior distributions over hybrid state spaces, where

continuous variables depend on discrete variables, are usually multi-modal. To add further

complexity, because our likelihood function and temporal dynamics are both nonlinear,

we also expect the modes of the distribution to be non-Gaussian.

One form of approximate inference that has recently become very popular for such

dynamical vision problems (e.g., motion and tracking), is the particle �lter (Doucet,

de Freitas, and Gordon 2001; Gordon, Salmond, and Smith 1993; Isard and Blake 1998a;

Kitagawa 1987; Liu and Chen 1998; West 1992). Also known as Condensation and

Sequential Monte Carlo �ltering, the idea is to approximate the posterior with a weighted

set of samples; particles (samples) are drawn randomly from a proposal distribution, often

called a temporal prior, and then weighted by normalized likelihood values. With such

point-mass approximations to probability distributions, particle �lters are e�ective for

nonlinear systems that produce non-Gaussian, multimodal distributions.

Additionally, we also want to estimate the motion in local image regions throughout the

entire image. If we could assume that the motion in each region were independent of its

neighbors, then we could estimate the motion in each separately. However, motion in one

region is often a good predictor for motion of its neighbors, both at the current time and

at successive times. Accordingly, the problem becomes Bayesian inference over a random

�eld in which there is a relatively high dimensional hybrid state space at each location in

the �eld. The result, which is well known, is that computation of the exact posterior (i.e.,

Bayesian inference) is not tractable, requiring time-consuming approximate solutions. This

is typical of many vision problems, and it leads us to search for methods that produce

satisfactory approximations to the true posterior.

While the particle �lter discussed above is suitable for hybrid state spaces with nonlinear

dynamics and likelihood functions, it will not cope with a random �eld. As is well known,

one problem with particle �lters is the exponential increase in the required number of

particles (i.e., computational cost) as a function of the dimensionality of the state space.

Although e�ective for low-dimensional tracking, they do not scale well to high-dimensional

problems (e.g., see (Choo and Fleet 2001; Deutscher, Blake, and Reid 2000; MacCormick

and Isard 2000; Sminchisescu and Triggs 2001)). This is particularly signi�cant with

random �elds where the state dimension grows linearly with the number of random �eld

locations, and conventional iterative solutions (such as MCMC (Gilks, Richardson, and

Spiegelhalter 1996)) can be prohibitively slow. The situation worsens when we consider

an entire image sequence.

In this chapter we explore two forms of approximate inference, drawing on research

described in (Black and Fleet 2000; Nestares and Fleet 2001). In the �rst case we



approximate the posterior and the temporal dynamics by factoring each so that each

local region of the image can be treated separately. This has problems since it prohibits

us from encouraging boundary continuity and from allowing one region to predict when

edges are going to move from one region to another.

The second model we describe uses combines Bayesian �ltering with spatiotemporal pre-

dictions to detect and track motion boundaries. We continue to assume that the posterior

can be approximated as the product of its marginal distributions for each region, but we

introduce a dynamical model that explicitly represents interactions between neighboring

regions. To do so we make use of several inference tools: in addition to approximating

the joint posterior over multiple regions by its marginals (Murphy and Weiss 2001), we

use Monte Carlo (sampled) approximations to these distributions to deal with non-linear

dynamics and non-Gaussian likelihoods, and we use mixture models to eÆciently approx-

imate the prediction distributions that arise from multiple neighborhoods.

While the method described here can be thought of simply as a motion boundary detector,

the framework has wider application. The Bayesian formulation and computational model

provide a general probabilistic framework for motion estimation with multiple, non-linear,

models. This generalizes previous work on recovering optical 
ow using linear models

(Bergen, Anandan, Hanna, and Hingorani 1992; Fleet, Black, Yacoob, and Jepson 2000).

Moreover, the Bayesian formulation provides a principled way of choosing between multiple

hypothesized models for explaining the image variation within a region. This work can also

be viewed as an exploration of the suitability of di�erent forms of approximate inference

in the context of otherwise intractable inference problems in vision.

2 Generative Motion Models

Our Bayesian formulation rests on the speci�cation of generative models for smooth motion

and motion boundaries. These generative models de�ne our probabilistic assumptions

about the spatial structure of the motion within a region, how the parameters are expected

to vary through time, and the probability distribution over the image measurements that

one would expect to observe given the model.

Accordingly, we �rst describe our generative model for the motion in a single local image

neighborhood. As suggested in Fig. 2, we decompose an image into a grid of circular

neighborhoods in which we estimate motion information. We assume that the motion in

any region can be modeled by one of several motion models; here we consider only two

models, namely smooth (translational) motion and motion boundaries.

For the smooth motion model, we express the optical 
ow within the circular region as

image translation; more complex models can also be used. The translational model has

two parameters, namely, the horizontal and vertical components of the velocity, denoted

u0 = (u0; v0). Exploiting the common assumption of brightness constancy, the generative

model states that the image intensity, I(x 0; t), of a point x 0 = (x0; y0) at time t in a region

R is equal to the intensity at some location x at time t� 1 with the addition of noise �n :

I(x
0
; t) = I(x; t� 1) + �n(x; t) ; (4)

where x 0 = x+u0. Here, we are assuming that the noise, �n(x; t), is white and mean-zero

Gaussian with a standard deviation of �n; that is, �n � N (0; �2n).



The motion boundary model is more complex and contains 6 parameters: the edge

orientation, the velocities of the foreground (uf ) and the background (ub), and the distance

from edge to the center of the region xc. In our parameterization, shown in Fig. 2, the

orientation, � 2 [��; �), speci�es the direction of a unit vector, n = (cos(�); sin(�)),

that is normal to the occluding edge. We represent the location of the edge by its signed

perpendicular distance d from the center of the region (positive meaning in the direction

of the normal). The edge is normal to n and passes through the point xc + dn. Relative

to the center of the region, we adopt a convention where the foreground side is that side

to which the normal n points. Thus, a point x is on the foreground if (x� xc) � n > d.

Points on the background satisfy (x� xc) � n < d.

At most motion boundaries some pixels will be occluded or disoccluded. As a consequence,

at boundaries one should not expect to �nd corresponding pixels in adjacent frames. Here,

in order to resolve occlusions and disocclusions, we assume that the motion boundary

edge moves with the same velocity as the pixels on the foreground side of the edge (i.e.,

the occluding side).1 With this assumption, the occurrence of occlusion or disocclusion

depends solely on the di�erence between the background and foreground velocities. Pixels

become occluded from one frame to the next when the background moves faster than

the foreground in the direction of the edge normal. More precisely, if ufn = uf � n and

ubn = ub � n denote the two normal velocities, occlusion occurs when ubn � ufn > 0.

Disocclusion occurs when ubn � ufn < 0. The width of the occluded/disoccluded region,

measured normal to the occluding edge, is jubn � ufnj.

With this model, parameterized by (�; uf ; ub; d), we can now specify how visible points

move from one frame to the next. A pixel x at time t� 1, that remains visible at time t,

moves to location x 0 at time t given by

x
0
=

�
x+ uf if (x� xc) � n > d

x+ ub if (x� xc) � n < d+w
(5)

where w = max(ubn�ufn; 0) is the width of the occluded region. Finally, with x 0 de�ned

by (5), along with the assumptions of brightness constancy and white Gaussian image

noise, the image observations associated with a motion edge are also given by (4).

Referring to Fig. 2(right), in the case of disocclusion, a circular neighborhood at time t�1

maps to a pair of regions at time t, separated by the width of the disocclusion region

jubn � ufnj. Conversely, in the case of occlusion, a pair of neighborhoods at time t � 1,

separated by jubn � ufnj, map to a circular neighborhood at time t. Being able to look

forward or backward in time in this way allows us to treat occlusion and disocclusion

symmetrically.

So far we have focused on the spatial structure of the generative models. We must also

specify the evolution of the model parameters through time since this will be necessary

to disambiguate which side of the motion boundary is the foreground. From optical 
ow

alone one cannot determine the motion of the occlusion boundary using only two frames.

The boundary must be observed in at least two separate instances (e.g., using three

1Physical situations that violate this assumption include rotating objects, such as a baseball

where the edge of the ball moves in one direction, but, due to the spin on the ball, the surface

texture of the ball moves in another direction. Nevertheless, assuming that the edge moves with

the foreground velocity, as we do in this paper, allows one to handle most cases of interest.



consecutive frames) to discern its motion. The image pixels whose motion is consistent

with that of the boundary are likely to belong to the occluding surface. Thus, to resolve

the foreground/background ambiguity, we propose to accumulate evidence over time using

Bayesian tracking.

Towards this end, we assume that the motion parameters of both motion models obey a

�rst-order Markov process; i.e., given the parameter values at the time t � 1, the values

at time t are conditionally independent of the values before time t � 1. For the smooth

motion model we assume that, on average, the image translation remains constant from

one time to the next. More precisely, we assume that the image translation at time t, u0;t,

is given by

u0;t = u0;t�1 + �u ; �u � N (0; �
2

u I2) ; (6)

where I2 is the 2D identity matrix. Here, �u represents the modeling uncertainty (process

noise) implicit in this simple �rst-order dynamical model.

For the motion boundary model, we assume that, on average, the velocities on either

side of the boundary and the boundary orientation remain constant from one time to the

next. Moreover, as discussed above, we assume that the expected location of the boundary

translates with the foreground velocity. More formally, these assumed dynamics are then

given by

uf;t = uf;t�1 + �u;f ; �u;f � N (0; �
2

u I2) (7)

ub;t = ub;t�1 + �u;b ; �u;b � N (0; �
2

u I2) (8)

�t = [�t�1 + ��] mod 2� ; �� � N (0; �
2

�) (9)

dt = dt�1 + nt�1 � uf;t�1 + �d ; �d � N (0; �
2

d): (10)

Here we use a wrapped-normal distribution over angles; therefore, orientation, �t�1, is

propagated in time by adding Gaussian noise and then removing an integer multiple of

2� so that �t 2 [��; �). The location of the boundary moves with the velocity of the

foreground, and therefore its expected location at time t is equal to that at time t�1 plus

the component of the foreground velocity projected onto the direction of the boundary

normal. As above, Gaussian noise is added to represent the modeling errors implicit in

this simple dynamical model. Note that more sophisticated models of temporal dynamics

(e.g., constant acceleration) could also be used.

3 Probabilistic Framework

Given the generative models described above, we are now ready to formulate our state

description and the posterior probability distribution over the models and model param-

eters. Initially we will make the assumption that there are no probabilistic dependencies

between each local image region and its neighboring regions. This allows us to consider

each neighborhood independently of all other neighborhoods.

For each single neighborhood, let the states be denoted by s = (�; c), where � is the model

type (translation or motion boundary), and c is a parameter vector appropriate for the

model type. For the translational model the parameter vector is 2-dimensional, c = (u0).

For the motion boundary model it is 6-dimensional, c = (�;uf ;ub; d). Our goal is to �nd



the posterior probability distribution over states at time t given the image measurement

history up to time t; i.e., p(st j ~Zt). Here, ~Zt = (zt; :::; z0) denotes the measurement history,

where zt simply denotes the image at time t, zt � I(x; t).

From the Markov assumption above in the generative models, the conditional indepen-

dence of the current state at time t and states before time t� 1 is written as

p(st j ~St�1) = p(st j st�1) ;

where ~St = (st; :::; s0) denotes the state history. Similarly, the generative model assumes

conditional independence of the observations and the dynamics; that is, given st and zt�1,

the most recent image observation, zt, is independent of previous observations ~Zt�2. With

these assumptions one can show that the posterior distribution p(st j ~Zt) can be factored

and reduced using Bayes' rule to obtain

p(st j ~Zt) = k p(zt j st; zt�1) p(st j ~Zt�1) (11)

where k is a constant used to ensure that the distribution integrates to one. Here,

p(zt j st; zt�1) represents the likelihood of observing the current measurement given the

current state, while p(st j ~Zt�1) is the prediction of the current state given all previous

observations; it is referred to as a temporal prior or prediction density.

The speci�c form of the likelihood function p(zt j st; zt�1) follows from the generative

models. In particular, the state speci�es the motion model and the mapping from visible

pixels at time t�1 to those at time t. The observation equation, derived from the brightness

constancy assumption (4), speci�es that the intensity di�erences between corresponding

pixels at times t and t � 1 should be white and Gaussian, with zero mean and standard

deviation �n.

Using Bayes' rule and the conditional independence assumed above, it is straightforward

to show that the temporal prior, also called the prediction distribution, can be written in

terms of the posterior distribution at time t�1 and the temporal dynamics that propagate

states from time t� 1 to time t. In particular,

p(st j ~Zt�1) =

Z
p(st j st�1) p(st�1 j

~Zt�1) d st�1 ; (12)

where the conditional probability distribution p(stjst�1) embodies the temporal dynamics,

and p(st�1 j
~Zt�1) is the posterior distribution over the state space at time t� 1.

This completes our description of the state space, and the mathematical form of the

posterior probability distribution over the possible interpretations of the motion within

an image region.

4 Computational Model: Individual Neighborhood

We now describe the details of our computational embodiment of the probabilistic

framework outlined above for a single neighborhood. First, we consider the representation

of the posterior distribution and its propagation through time using a particle �lter. We

then address the computation of the likelihood function and discuss the nature of the

prediction distribution that facilitates the state space search for the most probable models

and model parameters.



4.1 Particle Filter

The �rst issue concerns the representation of the posterior distribution, p(st j ~Zt). Because

of the non-linear nature of the motion boundary model, the existence of multiple mod-

els, and because we expect foreground/background and matching ambiguities, we should

assume that p(st j ~Zt) is non-Gaussian, and often multi-modal. For this reason we approx-

imate the posterior distribution non-parametrically, using factored sampling. We then use

a particle �lter to propagate the posterior through time (Gordon, Salmond, and Smith

1993; Isard and Blake 1998a; Liu and Chen 1998).

The posterior is approximated with a discrete, weighted set ofN samples f(s
(i)
t ; w

(i)
t )gi=1:::N .

At each time step, fair samples are drawn from the prediction distribution. The likelihood

function is then evaluated at each sample state. Finally, by normalizing the likelihood

values so that they sum to one, we obtain the weights w
(i)
t :

w
(i)
t =

p(zt j s
(i)
t ; zt�1)PN

n=1
p(zt j s

(n)
t ; zt�1)

:

These weights ensure that our sample set f(s
(i)
t ; w

(i)
t )gi=1;:::;N contains properly weighted

samples with respect to the desired posterior distribution p(st j ~Zt) (Liu and Chen 1998). A

suÆciently large number of independent samples then provides a reasonable approximation

to the posterior.

4.2 Likelihood Function

We assume that the likelihood of observing the current image observations can be written

as a product of two factors, namely, a motion likelihood that depends on the di�erence

between frames at time t and t � 1, and an edge likelihood that depends solely on the

band-pass properties of the image at time t:

p(zt j s
(i)
t ; zt�1) = pm(zt j s

(i)
t ; zt�1) pe(f k; akgt j s

(i)
t ) : (13)

These two likelihood factors are discussed in detail below.

4.2.1 Motion Likelihood

According to the generative model, the motion likelihood pm(zt j s
(i)
t ; zt�1) is straightfor-

ward to compute. Given the state, s
(i)
t , we can warp one image according to the motion

and subtract it from the other. According to the generative model, these image di�erences

at each visible pixel should be normally distributed and independent. The likelihood func-

tion, to within a constant �, is therefore given by

pm(zt j s
(i)
t ; zt�1) = �

 
exp

"
�1

2�2n

X
x2R

D(x; t; s
(i)
t )

2

#!
1=T

(14)

where D(x; t; s
(i)
t ) = I(x 0; t) � I(x; t � 1), T = jRj is the number of pixels in the

circular neighborhood, and x 0 denotes the warped image coordinates which depend on

the motion encoded in s
(i)
t . (The warping here is done simply with bilinear interpolation.)



Figure 3 An image is shown, with its dominant level phase contours at ��=2, from the

output of �lters tuned to vertical and horizontal orientations, and at two di�erent scales.

We note that this likelihood function di�ers from the generative model in one important

respect, that is, the introduction of the exponent 1=T . This is computationally, rather than

probabilistically, motivated. A large value of T has the e�ect of smoothing the posterior

distribution making the peaks broader. Within a sampling framework, this allows a more

e�ective search of the parameter space, reducing the chances of missing a signi�cant peak.

4.2.2 Edge Likelihood

Intensity edges in static images have many physical causes, including surface re
ectance

variations, lighting e�ects, and of course surface boundaries. As shown in Fig. 3, not all

image edges are motion boundaries. But because motion boundaries are generally caused

by depth discontinuities, most motion boundaries do coincide with intensity edges. Edge

information can therefore provide useful information about the position and orientation

of motion boundaries. To take advantage of this we combine the motion likelihood with

the likelihood of observing an image edge, conditioned on the location and orientation of

a motion boundary.

We chose the edge likelihood to be the observation density over the responses of an oriented

band-pass �lter tuned to the edge orientation. Filtering the image in this way removes all

oriented image structure except that near the orientation of the edge in question. To do

this eÆciently for many edges we �rst apply a steerable transform to the image (Simoncelli,

Freeman, Adelson, and Heeger 1992). From the steerable basis set we can quickly compute

responses of �lters tuned to any orientation. Here, we use the (G2; H2) quadrature-pair

�lters de�ned in (Freeman and Adelson 1991). These are complex-valued �lters so we

express their response at each (subsampled) spatial location in terms of amplitude and

phase (Fleet and Jepson 1993). The edge likelihood is simply the observation density over

phase and amplitude of the subsampled �lters responses at points along the edge.

Modeling this observation density can, however, be diÆcult. The appearance of image

edges at surface boundaries depends greatly on surface re
ectance properties and on local

surface illumination. Given the variability of natural surface textures, and the variability of

local lighting, the local structure of images at surface boundaries di�ers greatly from image

to image. Therefore, rather than attempting to design an edge likelihood that captures

the variability of edge appearance from �rst principles, we develop an empirical model for

the observation density based on the statistics of natural images.



Figure 4 Histograms are shown of (left) phase conditioned on amplitude and the edge,

p�(� j a; E), and of (right) log amplitude conditioned on the edge, pa(a jE).

In short, we manually labelled 800 surface boundaries in 25 images. To each image we

applied the steerable �lters and extracted phase � and log amplitude a of the responses

along each edge at each scale. We sampled these responses with a sampling distance of

one wavelength of the �lters' tuning frequency. This sparse sampling reduces measurement

correlations, and allows us to make the simplifying assumption that the measurements at

the di�erent locations along the edge are conditionally independent.

The resulting ensemble of phase and amplitude measurements exhibits a striking regularity

that suggests a factorization of the joint observation density:

pe(�; a j s) = p�(� j a; s) pa(a j s) : (15)

As shown in Fig. 4(left), phase responses, �, are typically close to ��=2, depending on

the sign of the intensity gradient at the edge. These conditional phase distributions are

very well described by a mixture of two Gaussian modes at �=2 and ��=2, and a uniform

outlier density. A maximum likelihood �t of this model to the data with the EM algorithm

is shown as the solid curve in Fig. 4(left). Alternatively, collapsing the two modes by

wrapping the phase about � yields the equivalent density for  � (�mod�):

p ( j a; s) = m(a)G( ;
�

2
; �

2) + (1�m(a))p0 : (16)

where p0 = 1=� is the phase outlier probability, and m is the Gaussian mixing probability.

With this mixture model (16), we �nd that the mixing probability m depends signi�cantly

on log amplitude. When amplitude is very small, phase is unreliable (Fleet and Jepson

1993) and when it is approximately 20% or more of its typical range in 8-bit images,

then it is usually quite stable. The standard deviation of the Gaussian is also found to

decrease slowly as a function of log amplitude. Using a simple Bayesian model selection

criteria (MacKay 1991), we �nd that a good model for the phase observation density is

the mixture in (16) where the standard deviation of the Gaussian mode is held �xed at

approximately �=8, and the mixing probability m(a) is a linear function of log amplitude,

given approximately by m(a) = 0:1(1:5 + log a) where 8 > log a > 0 on 8 bit images.

Amplitudes vary widely over the di�erent edges that are encountered in natural scenes.

In practice, we �nd that a simple Beta distribution �ts the conditional distribution of

amplitudes. An example of this is shown in Fig. 4(right). The Beta distribution is natural

in that it is de�ned on a �nite interval which is appropriate for images with a limited range

of intensities, and it provides a reasonable approximation to the empirical distribution.



Our edge-based likelihood is given by the factorization in (15), along with the parametric

models for the phase and amplitude densities. Given a set of K phase and amplitude

measurements, conditioned on a motion boundary state, s
(j)
t , the joint likelihood is

pe(f k; akg j s
(j)
t ) =

 Y
k

p ( k j ak; s
(j)
t ) pa(ak j s

(j)
t )

!
1=2K

(17)

Finally, when the state is a smooth motion model, the observation density for the phase

is taken to be a uniform density.

4.3 Prediction Distribution

The prediction distribution serves to shepherd our samples to relevant portions of the

parameter space. Because we are seeking solutions from a high-dimensional state space

with continuous state variables, naive approaches for representing or searching it will

be ineÆcient. Therefore, unlike a conventional particle �lter for which the prediction is

derived solely by propagating the posterior from the previous time instant, we also exploit

an initialization prior that provides a form of bottom-up information to initialize new

states. This is useful at time 0 when no posterior is available from the previous time

instant. It is also useful to help avoid getting trapped at local maxima thereby missing

the occurrence of novel events that might not have been predicted from the posterior at

the previous time. For example, it helps to detect sudden appearances of motion edges in

regions where only translational state samples existed at the previous time instant. This

is particularly important since information is not passed between adjacent regions in this

formulation.

The actual prediction used here is a linear mixture of a temporal prior and an initialization

prior. In the experiments that follow in Section 5 we use constant mixture proportions of

0.8 and 0.2 respectively; that is, 80% of the samples are drawn from the temporal prior.

Importance sampling (Gordon, Salmond, and Smith 1993; Isard and Blake 1998b; Liu and

Chen 1998) provides an alternative way of achieving similar results.

4.3.1 Temporal Prior

According to the temporal dynamics in generative model for the two motions, (6) through

(10), our predictions about the current state, st, given the previous state st�1, are just

Gaussian densities. For smooth motion, the temporal dynamics (6) yield

p(st j st�1) = N (�u0; �
2

u) (18)

where N (�u0; �
2

u) denotes a mean-zero Gaussian with covariance matrix �2u I2, evaluated

at the temporal velocity di�erence �u0 = u0;t � u0;t�1. Similarly, the generative model

for the motion boundary ((7) { (10)) speci�es that

p(st j st�1) = N (�uf ; �
2

uI)N (�ub; �
2

uI)N
w(��; �2d)N (�d� n � uf;t�1; �

2

�) (19)

where Nw denotes a wrapped-normal (for circular distributions) and, as above, �� =

�t � �t�1 and �d = dt � dt�1.



Because the posterior, p(st�1j
~Zt�1), at time t� 1 is represented as a weighted sample set,

and the dynamics in (18) and (19) are Gaussian, the temporal prior given by (12) can be

viewed as a Gaussian mixture model (West 1992):

X
j=1:::N

w
(j)

t�1
p(st j s

(j)

t�1
) : (20)

To see this, note that the posterior is approximated by a weighted sum of delta functions

(at the sample states). So (12) becomes a convolution of the Gaussian dynamics with the

sum of delta functions. The result is a weighted sum of Gaussians, with one Gaussian

for each sample s
(j)

t�1
at time t� 1. To draw a fair sample from a Gaussian mixture, one

�rst draws a Gaussian component with probabilities equal to the weights. Then, one can

draw a random sample from that Gaussian component. This amounts to �rst selecting a

single state, s
(j)
t�1

, for propagation to time t, and then drawing a sample from the Gaussian

dynamics, p(stjs
(j)

t�1
). This is repeated for every sample drawn from the temporal prior. In

practice, residual sampling and quasi Monte Carlo sampling can be used to reduce random

sampling variability (Liu and Chen 1998; Ormoneit, Lemieux, and Fleet 2001).

Thus far we have assumed that the motion class (i.e., smooth or boundary) remains

constant as we propagate states from one time to the next. However, when a boundary

passes through a region and out the other side, the motion type should switch from a

motion boundary model to smooth motion. Accordingly, given a motion boundary state

at time t�1, we let the probability of switching to a translational model at time t be given

by the probability that the temporal dynamics will place the boundary outside the region

of interest at time t. This can be computed as the integral of p(stjst�1) over boundary

locations d that fall outside of the region. In practice, we accomplish this by sampling from

the temporal prior as described above. Then, whenever we sample a motion boundary state

s
(j)
t for which the edge is outside the circular neighborhood, we simply change model types,

sampling instead from a translational model whose velocity is consistent with whatever

side of the motion boundary would have remained in the region of interest.

4.3.2 Initialization Prior

Low-Level Motion Boundary Detection. To initialize new states and provide a

distribution over their parameters from which to sample, we use the motion boundary

detector in (Fleet, Black, Yacoob, and Jepson 2000). This approach uses a robust, gradient-

based technique for estimating optical 
ow with a linear parameterized motion model.

Motion edges are approximated with a linear basis (2), the coeÆcients of which are

estimated using area-based regression. Fleet et al. then solve for the parameters of the

motion edge that are most consistent (in a least squares sense) with the linear coeÆcients.

Figure 5 shows the result of applying this method to two frames of an image sequence

in which a camera moves to the right while viewing a Pepsi can sitting on a table. The

resulting motions are all leftward as the camera moves to the right, with the can moving

somewhat faster than the background. The method provides a mean velocity estimate at

each pixel (i.e., the average of the velocities on each side of the motion edge). This is

simply the translational velocity when no motion edge is present. A con�dence measure,

c(x) 2 [0; 1] is used in (Fleet, Black, Yacoob, and Jepson 2000) to detect the most likely

edges (Fig. 5, \Con�dence"). Fig. 5(bottom) show estimates for the edge orientation and



Frame 0 Frame 1

Mean Horizontal Velocity Mean Vertical Velocity Con�dence

Orientation Horizontal Velocity Di�erence Vertical Velocity Di�erence

Figure 5 The top row shows two frames of the Pepsi Sequence. The remaining two

rows show responses from the low-level motion edge detector. The image velocities and

velocity di�erences are nearly horizontal. In the orientation image, grey denotes vertical

orientations, while white and dark grey denote near horizontal orientations.



for the horizontal and vertical velocity di�erences across the edge, at locations where

c(x) > 0:5.

While the method provides reasonable estimates of motion boundaries, it produces false

positives and the parameter estimates are corrupted by noise. Localization of the boundary

is particularly crude, and since the detector does not determine the foreground side, it does

not predict the velocity of the occluding edge. Despite these weaknesses, it is a relatively

straightforward, but sometimes error prone, source of information about the presence of

motion discontinuities. This information can be used to constrain the regions of the state

space that we need to sample in the particle �lter.

Formulating the Initialization Prior. When initializing a new state we use the

distribution of con�dence values c(x) within a region to �rst decide on the motion type

(translation or motion boundary). If a motion boundary is present, then we expect some

fraction of con�dence values, c(x), within our region of interest, to be high. We therefore

rank order the con�dence values within the region and let the probability of a motion

boundary state be the 95th percentile con�dence value, denoted C95. Accordingly, the

probability of initializing a translation model is 1�C95.

Given that we wish to initialize (sample) a motion boundary state, we assume that actual

boundary locations are distributed according to the con�dence values in the region; i.e.,

the boundary is more likely to pass through pixel locations with large c(x). Sampling from

the con�dence values gives potential boundary locations. Given a boundary position, the

low-level detector parameters at that position provide estimates of the edge orientation and

the image velocity on each side, but they do not specify which side is the foreground. Thus,

the probability distribution over the state space, conditioned on the detector parameters

and boundary location, will have two distinct modes, one for each of the two possible

foreground assignments. We take this distribution to be a mixture of two Gaussians which

are separable with covariance matrices 2:25�2uI2 for the velocity axes, and variances 16�2�
for the orientation axis and 4�2d for the position axis. The variances are larger than those

used in the temporal dynamics described in Section 2 because we expect greater noise

from these low-level estimates.

To produce a sample for the smooth (translation) model, we sample a spatial position

according to the distribution of 1 � c(x). The distribution over translational velocities

is then taken to be a Gaussian centered at the mean velocity estimate of the low-level

detector at the sample position, with a covariance matrix of 2:25�2uI2

4.4 Algorithm Summary and Model Comparison

Initially, at time 0, a set of N samples is drawn from the initialization prior. Their

likelihoods are then computed and normalized to give the weights w
(i)

0
. At each subsequent

time, as shown in Fig. 6, the algorithm repeats the process of sampling from the combined

prior, computing the likelihoods, and normalizing.

From the non-parametric, sampled approximation to the posterior distribution, p(stj~Zt),

we can compute moments and marginalize over various parameters of interest. In particular

we can compute the expected value for some state parameter, f(st), as

E[f(st) j ~Zt] =
X

n=1:::N

f(s
(n)
t )w

(n)
t :
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Figure 6 Particle �ltering algorithm: State samples are drawn from a mixture of the

temporal prior and the initialization prior. The temporal prior combines information from

the posterior probability distribution at the previous time instant with the temporal

dynamics of the motion models. The initialization prior is derived from the responses

of low-level motion boundary detectors within an image region. The parameters of a state

determine the image motion within a neighborhood as speci�ed by the generative models

for each type of motion. These generative models assume brightness constancy and hence

specify how to compute the likelihood of a particular state in terms of the pixel intensity

di�erences between an the image region at one time instant and a warped version of the

image at the next time instant. Normalizing the likelihood values for N states gives an

approximate, discretely sampled, representation of the posterior probability distribution

at the next time instant. In this way the posterior distribution is predicted and updated

over time integrating new information within the Bayesian framework.

However, in doing so, care needs to be taken because the posterior will often be multimodal,

in which case the mean may not be a highly probable state. Thus, for model comparison

and display purposes, we �rst isolate three distinct modes in the posterior. One mode is

often associated with the best �tting smooth motion model. The other two modes are

associated with the motion boundary model. These two boundary models typically di�er

in orientation by �, re
ecting two opposite foreground assignments. For display purposes,

a simple Bayesian model selection criteria is used to select the mode with the largest

cumulative probability mass, and we display only the mean of that most likely mode.

5 Experimental Results: Individual Neighborhoods

We illustrate the method with experiments on 8-bit natural image sequences. For these

experiments, the standard deviation of the image noise was �n = 7:0. The standard

deviations for the temporal dynamics were empirically determined and remained the same

in all experiments. We used circular image regions with a 16 pixel radius and used 3500



Figure 7 Flower Garden results at frame 2 are shown, with the most likely models

overlaid on the image. Translational models are shown as empty circles (as in region B).

Motion boundaries are shown as �lled disks (as in region D). The white and black dots,

respectively, lie on the foreground and background sides of the model. The position and

orientation of the boundaries are depicted by the edges between the white and black sides.

state samples to represent the posterior probability distribution in each region. A few

regions were chosen to illustrate the performance of the method and its failure modes.

As shown in Fig. 7, in each of the selected regions we display the mean state of the

most likely motion model. The smooth motion (translation) models are shown as empty

circles (e.g., Fig. 7, region B). For motion boundary models we sample pixel locations

from the generative model of the mean state; pixels that lie on the foreground are white

and background pixels are black. The position and orientation of the edge are depicted

by the boundary between the white and black sides of the region. The occluded pixels are

not color-coded (e.g., Fig. 7, region D).

Flower Garden Sequence. The 
ower garden image sequence (Fig. 7) depicts a static

scene while a camera translates to the right. Therefore the image velocities are leftward,

with the tree moving quickly in front of a slowly moving background. The low-level detector

responses for the initialization prior are shown in Fig. 8. The detectors �nd the occluding

and disoccluding sides of the tree and provide reasonable estimates of the edge orientation

and the velocities on either side of the boundary. One can see from the con�dence map in

Fig. 8, however, that the boundary localization is not precise.

Results of the particle �lter from frames 2 through 7 are shown in Fig. 9. Regions C, D,

E, and F correctly model the tree boundary (both occlusion and disocclusion) and, after

the �rst three frames, correctly assign the tree trunk as the foreground side. Initially, in

frame 2, regions C andD detect a motion boundary, but region D has incorrectly assigned

the foreground to the 
ower garden rather than the tree. As discussed above, this is not

surprising because we expect the correct foreground assignment to require more than

two frames. By the third frame, the most likely mode of the posterior corresponds to
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Figure 8 Typical low level detector responses for the 
ower garden sequence are shown.

the correct assignment of the foreground. Regions E and F are initially labeled with the

smooth motion model since the tree boundary is just touching the right-most edge of the

regions. These regions switch to boundary models in the next frame as the tree edge enters

the regions. Motion boundary models then remain in all four regions along the tree trunck

boundary until the last frame when the edge of the tree leaves the regions.

Beneath each of the images in Fig. 9 are plots that show the marginal posterior distribu-

tions for the horizontal component of the foreground velocity for region D. Initially, at

frame 2, there are two clear modes in the distribution. One mode corresponds to a fast

speed, approximately equal to the image speed of the tree trunk, while the other mode

corresponds to the slower speed of the 
ower garden. These two modes re
ect the fore-

ground ambiguity, where there is evidence for assigning the foreground to both sides. In

frame 2 it is the case that the probability of assigning the foreground to the 
ower garden

in higher. However, with the accumulation of evidence through time, and because this

foreground assignment is not consistent with the motion of the boundary, the probability

of assigning the foreground to the 
ower garden decreases, while the probability of assign-

ing the foreground to the tree trunk increases. In frame 3 the probability of assigning the

foreground to the tree trunk is slightly larger, and hence the foreground assignment in re-

gion D switches between frame 2 to frame 3. As time continues the probability associated

with this correct foreground assignment increases to become the dominant interpretation.

Region B corresponds to translation and is correctly modeled as such. While translation

can be equally well accounted for by the motion boundary model, the low-level detectors

do not respond in this region and hence the distribution is initialized with more samples

corresponding to the translational model. Region A is more interesting; if the sky were

completely uniform, this region would also be modeled as translation. Note, however, that

there are signi�cant low-level detector responses in this area (Fig. 8) due to the fact that
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Figure 9 Flower Garden frames 2{7 are shown with the most probable motion models

overlaid. Marginal distributions for the foreground velocity in region D are also shown.



Figure 10 The most probable motion models in selected regions at frames 1, 3, 5, 7, 9,

and 10 of the Pepsi Sequence are shown.

the sky is not uniform. The probabilities of the translation and motion boundary models

are roughly equal here and the displayed model 
ips back and forth between them. For

the motion boundary model, the orientation corresponds to the orientation of the tree

branches in the region.

Pepsi Sequence. The Pepsi Sequence, two frames of which are shown in Fig. 3, depicts

a translating camera that views a Pepsi can sitting on a table in front of a textured

background. This is a relatively diÆcult sequence from which to detect motion boundaries

because the intensities of the foreground and the background are very similar, and because

the can and the background are moving with similar speeds. The di�erence in the 2D image

speeds of the can and the background is less than one pixel per frame. Figure 10 shows

the tracking behavior of the method. Fig. 11 shows an enlarged, more detailed, image of

the bottom region on the left side of the can. Note that in most regions the edge is tracked

correctly and, in the detailed images, we see that the accuracy of the edge boundary

location improves over time.

Note that, because the foreground and background velocities are very similar, the fore-

ground/background ambiguity often remains for several frames. For example, consider the

region that is enlarged in Fig. 11. Here, in frame 5 there is a switch from the incorrect

foreground to the correct assignment and then back again in frame 7. In this case, the

posterior distribution has two modes of almost equal probability mass for these two in-

terpretations. Finally, in frame 9 the foreground assignment again switches to the correct



Figure 11 Enlargements of the neighborhood at the bottom-left edge of the Pepsi can

from the images in Fig. 10.

interpretation. In general, propagation of information from neighboring regions would be

needed to resolve such ambiguities.

Finally, it is important to note that the particle �lter does not detect and track motion

boundaries in all cases as desired. In the Pepsi Sequence, the region at the top of those

on the right side of the can is not tracking the boundary well. A motion boundary is

detected in this region but, in the �rst frame, the most likely mode does not place the

edge in the correct location at the correct orientation. Over time the edge appears to move

roughly with the can, but it never locks onto the can, nor is the foreground/background

assignment correct. This behavior may be the result of low image contrast in this region

and the similarity of the image velocities of the two surfaces.

6 Bayesian Filtering with Spatiotemporal Dynamics

Thus far we have only considered a Bayesian formulation for motion anaylsis in a single

image region. By assuming that local regions are independent, we greatly simpli�ed the

mathematical development and the computational cost of the approach. However, by doing

so we also failed to exploit the information that one region could obtain from its neighbors;

it is diÆcult to encourage boundary continuity and to make accurate predictions about

boundary locations from one time to the next. For example, when we apply the algorithm

described above to a dense array of small local regions with a separate Bayesian �lter

for each region, we typically �nd results very much like that shown in Fig. 12(middle).

By comparison, Fig. 12(right) shows motion estimates produced when information is

propagated between regions using the approach described below.

The main problem with introducing probabilistic dependencies between regions is that

the estimation task then involves inference over the entire random �eld, the posterior and
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Figure 12 The assumed spatiotemporal dependency is shown on the left. The other two
images show motion estimates at frame 6 of the Pepsi sequence without (middle) and with
(right) spatiotemporal dependencies.

dynamics of which are no longer easily factored into products of the marginal distributions

of individual regions. The research described in the remainder of this chapter is an attempt

to consider a form of approximate inference that allows us include a some degree of

spatiotemporal dependence. First, as illustrated in Fig. 12(left), we assume a simple form

of dependence where each region at time t, conditioned on nearby regions at time t � 1,

is independent of other regions at current and past times. In doing so, our goal is to pass

information between regions from one time to the next, but not between adjacent regions

at the same time. Second, we continue to approximate the joint posterior distribution over

the motion in all image regions by the marginal distributions for each region. As shown

in Fig. 12, even with these crude approximations, the resulting inference often provides a

vast improvement over the case in which regions are treated completely separately.

To accommodate spatiotemporal predictions, the main change required of the formulation

in Section 3 concerns the prediction distribution in (12). Following the graphical model in

Fig. 12(left), let fsi;t�1g
M
i=1 denote the M neighbors at time t� 1 that in
uence a speci�c

region st at time t. We begin by writing the prediction distribution as a marginalization

of the joint distribution for st and its neighbors fsi;t�1g
M
i=1 :

p(st j ~Zt�1) =

Z
fsi;t�1g

p(st; fsi;t�1g
M
i=1 j

~Zt�1) : (21)

Factoring the integrand, and exploiting assumed conditional independence, yields

p(st j ~Zt�1) =

Z
fsi;t�1g

p(st j fsi;t�1g) p(fsi;t�1g j
~Zt�1) : (22)

The dynamics, p(st j fsi;t�1g), can be factored if we assume that the neighbors at time

t�1 have uniform priors and are independent when conditioned on st. The joint posterior

over all neighbors cannot be factored in general. However, for computational eÆciency, as

above, we approximate the joint posterior as a product of its marginals (cf. (Murphy and

Weiss 2001)), to yield

p(st j ~Zt�1) � �
Y

i=1:::M

Z
si;t�1

p(st j si;t�1) p(si;t�1 j
~Zt�1) (23)



where � is a constant to ensure that the distribution has unit probability mass. Note that

this approximate prediction distribution is now the product of the predictions from each

neighboring location, each of which has the form of (12).

6.1 Particles and Gaussian Mixtures

The simpli�ed prediction distribution in (23) allows us to combine predictions from

each of the neighbors at time t � 1 in a straightforward manner. As with the particle

�lter above, we approximate each distribution p(si;t�1 j
~Zt�1) with a weighted set of N

samples fs
(j)

i;t�1
; w

(j)

i;t�1
g
N
j=1. Accordingly, when this distribution is propagated through the

dynamics, the approximate prediction distribution for st, conditioned on the state of a

single neighbor, si;t�1, is just a mixture model:X
j=1:::N

w
(j)

i;t�1
p(st j s

(j)

i;t�1
) : (24)

From this perspective, the multi-neighbor prediction distribution in (23) is just a product

of mixture models. However, because we typically use thousands of particles (e.g., N =

103), and about M = 5 neighbors, the number of components in the product, i.e., NM ,

quickly becomes unmanageable. We overcome this problem by �tting a mixture model to

the individual prediction distributions prior to their multiplication in (23). We use mixture

models with a small number of Gaussian components (often 3 to 5) plus a uniform outlier

process. As a result, the product in (23) reduces to fewer than 103 components. The

mixture models are �t with a straightforward version of the EM algorithm (Dempster,

Laird, and Rubin 1977).

Note that we �rst propagate individual samples from the neighboring posteriors at the

previous time, and then we �t the mixture model. As with assumed density �ltering

and unscented �ltering, this is done because it is relatively easy to propagate individual

samples through nonlinear dynamics. The �nal prediction distribution in (23) is obtained

by multiplying the individual mixture model predictions.

7 Computational Model: Spatiotemporal Predictions

Given weighted sample sets that approximate the posterior distribution in each local region

at time t� 1, the steps toward the computation of the posterior distribution in a speci�c

region at time t can be summarized as follows:

1. For each neighbor i at the previous time t� 1:

{ Draw N samples with replacement from the posterior at t� 1, fs
(j)

i;t�1
; w

(j)

i;t�1
g
N
j=1.

{ Propagate the samples using the model dynamics (Sec. 7.1), and then sample from

the prediction density (24) to get a new sample set at time t.

{ Use EM to �t the robust mixture model to the new sample set.

2. Multiply the individual mixture models to form the joint prediction distribution (23).

3. Draw N samples with replacement from this prediction and compute their likelihoods.

4. Normalize the likelihoods to obtain the sample weights.

This yields a weighted sample set fs
(j)
t ; w

(j)
t g that approximates the posterior for a region

at time t, p(st j ~Zt).



7.1 Temporal Dynamics

The �nal issue we must now consider is the form of temporal dynamics that is suitable

for the spatiotemporal dependencies. Since the joint prediction in (23) is the product of

the individual predictions, we need only specify the form of the dynamics between a state

st and a single neighbor si;t�1 at time t� 1. As this is somewhat more complicated than

the case developed in Section 4, here we describe dynamics in more detail.

First, it is useful to expand the state s into its discrete and continuous components, � and

c. This allows us to express the pair-wise prediction distribution as

p(stj~Zt�1) =
X
�t�1

Z
ct�1

[ p(ct j�t; �t�1; ct�1) p(�t j�t�1; ct�1) p(�t�1; ct�1 j
~Zt�1) ] ; (25)

where p(�t j �t�1; ct�1) and p(ct j�t; �t�1; ct�1) denote the discrete and continuous tran-

sition distributions. To avoid singularities (where probabilities go to 0) and to allow for

modeling errors in the dynamics, we let both distributions be robust; that is, we de�ne

p(�t j�t�1; ct�1) = �p�(�t j�t�1; ct�1) + (1��) p�;0

p(ct j�t; �t�1; ct�1) = � pc(ct j�t; �t�1; ct�1) + (1��) pc;0

where p�;0 and pc;0 are uniform outlier distributions for discrete and continuous state

variables, with mixing probabilities � and �. The inlier dynamics, p�(�t j�t�1; ct�1) and

pc(ct j�t; �t�1; ct�1), are summarized in Tables 1 and 2.

Referring to Table 1, where � = 0 denotes the smooth motion model and � = 1 denotes

the motion boundary model, we assume that smooth motion states will encounter an edge

and switch to a boundary model with probability p0!1. In the case of motion boundaries,

as in Section 4, we assume dynamics such that edges move with the foreground velocity

on average, and that there exists mean-zero Gaussian process noise in the velocities and

the boundary orientation otherwise. Then, given a motion boundary state si;t�1 in the

region centered at xt�1, the distribution of motion boundary parameters at time t for the

state st in a region centered at xt is given by

f(ce;tjce;t�1) = N ((uft�1 ;ubt�1); �
2

uI4) N
w
(�t�1; �

2

�) N (loc(ce;t�1); �
2

d) (26)

where loc(ce;t�1) � dt�1+(uft�1+ xt�1� xt) � n̂t�1 is the mean edge location at time t

relative to the region center xt, and n̂t�1 = (sin(�t�1); cos(�t�1)). Given this distribution,

we de�ne the probability of changing from an edge state at xt�1 to a smooth motion state

at xt as the probability of the edge not intersecting the region at xt at time t: that is,

p1!0 =

Z
jdtj>R

Ndt(loc(ce;t�1); �
2

d) (27)

where Ndt is the probability density for dt, and R is the region radius.

Table 2 de�nes the continuous prediction distributions conditioned on the discrete motion

classes. For example, if the neighbor state at time t � 1 and the current state are both

smooth motions, then the current velocity is normally distributed about the velocity of

the previous state. If the previous state was a motion boundary and the current state



Neighbor n Current �t = 0 �t = 1

�t�1 = 0 1�p0!1 p0!1

�t�1 = 1 p1!0 1�p1!0

Table 1 Discrete transition probabilities p�(�tj�t�1; ct�1) from a motion class at the

neighbor (i.e., si;t�1) to the motion class for st, where � = 0 denotes the smooth motion

model and � = 1 denotes the motion boundary model.

Neighbor n Current �t = 0

�t�1 = 0 pc(utjut�1) = N (ut�1; �
2

uI2)

�t�1 = 1

if xt is in neighbor's foreground

pc(utjce;t�1) = N (uft�1 ; �
2

uI2)

else pc(utjce;t�1) = N (ubt�1 ; �
2

uI2)

Neighbor n Current �t = 1

�t�1 = 0

pc(ce;tjut�1) = p(�t; dt) p(uft jut�1) p(ubt jut�1)

where

p(�t; dt) = Uniform(�t; dtjedge outside neighbor)

if xt�1 is in current foreground

p(uft jui;t�1) = N (ut�1; �
2

uI2);

p(ubt jui;t�1) = N (0; 50I2) (broad prior);

else

p(uft jui;t�1) = N (0; 50I2) (broad prior);

p(ubt jui;t�1) = N (ut�1; �
2

uI2);

�t�1 = 1

pc(ce;tjce;t�1) = f(ce;tjce;t�1)11(jdtj < R) = (1�p1!0)

where

11(jdtj < R) = 1 when jdtj < R, and 0 otherwise

Table 2 Model dynamics, pc(ct j�t; �t�1; ct�1), for the continuous parameters, condi-

tioned on the discrete motion classes (� = 0 for smooth motion and � = 1 for motion

boundary). Here, xt and xt�1 are the centers of the current and neighbor regions at times

t and t� 1. The variances, �2u; �
2

� , and �
2

d, control the process noise in the dynamics; we

let each of them increase as a function of the spatial distance between the region centers

xt�1 and xt. We omitted the dependence on the neighbor (i) for notational simplicity.

is smooth, then the current velocity is normally distributed about the foreground or

background velocity, depending on whether the current region is on the foreground or

background side of the previous region. If the previous state was smooth and the current

state is a boundary, then �t and dt are uniformly distributed over values for which the

edge does not intersect the previous region, and the velocity distributions depend on the

previous velocity state. Finally, if previous and current states are motion boundaries, then

the distribution over the current state is Gaussian, but only for parameters such that the

edge intersects the current region.



Figure 13 Pepsi results for frames 2{10 (in lexicographic order and cropped slightly to

improve the resolution of the display).

This dynamical model is applied to individual particles. The nonlinear components of

the dynamics include the model switching and the computation of the propagated edge

distance, which depends on the normal to the edge direction n̂t�1 = (sin(�t�1); cos(�t�1)).

Nonlinearities make it diÆcult to propagate distributions analytically, even if the neighbor

posterior at the time t� 1 had been Gaussian.

8 Experimental Results: Spatiotemporal Predictions

We demonstrate some experimental results of this approach applied to the Pepsi Sequence.

We use small circular regions with radii of 8 pixels which overlap by 2 pixels. We use 5000

samples for particle approximations in each region. We draw 10% of the particles from

the initialization prior, and the remaining 90% from the prediction density in (23). The



parameters for the dynamics between a location at time t and a neighbor at time t�1

depend on the spatial separation between the two locations. For the same spatial location

at t and t�1 we use �u = 0:75 pixel/frame, �� = 0:1 radians, and �d = 1 pixel. For an

adjacent region at t�1 we use �u=1:5 pixels/frame, ��=0:2 radians, and �d=1:5. In both

cases �=0:975 and �=0:95. Finally, the probability of a motion boundary, conditioned on

the motion of a neighbor being smooth, is p0!1=0:4; this value re
ects the fact that edges

occur in roughly 10% of the image regions, and that such motion boundary predictions

are relatively unconstrained, requiring a large number of samples to search the state space

e�ectively.

Figure 13 shows results from frames 2{10 of the Pepsi Sequence. At frame 1, the results

look very much like those in of the method above in which individual regions are treated

separately (see Fig. 12(middle)). By frame 2 the neighborhood interactions appear to

introduce some coherence. By frame 3, compared to the results of obtained with individual

regions, it is clear that the current method produces more coherent boundary estimates.

Noteworthy in Fig. 13 are the correct assignment of the foreground and the accurate

localization of the motion boundaries. Also evident in Fig. 13, is the importance of the

neighborhood propagation that allows regions to anticipate the arrival of a boundary from

a neighboring region. This is evident in frames 7{9 on the left boundary and later in frames

9{10 on the right side. This propagation allows the correct assignment of the foreground

to be infered quickly.

9 Conclusions

Research on image motion estimation has typically exploited relatively weak models of the

spatiotemporal structure of image motion. Our goal is to move towards a richer description

of image motion using a vocabulary of motion primitives. Here we describe a step in

that direction with the introduction of an explicit non-linear model of motion boundaries

and a Bayesian framework for representing a posterior probability distribution over

models and model parameters. Unlike previous work that attempts to �nd a maximum-

likelihood estimate of image motion, we represent the probability distribution over the

parameter space using discrete samples. This facilitates the correct Bayesian propagation

of information over time when ambiguities make the distribution non-Gaussian.

However, exact Bayesian inference for this problem, like many problems in vision, is not

tractable. As a result we explore di�erent forms of approximate inference. Particle �lters

are e�ective for visual tracking, allowing for a Bayesian framework even with non-Gaussian

distributions and non-linear dynamics. Here we extend their use, in conjunction with other

methods for approximate inference, to the detection and estimation of multiple motion

models de�ned over a random �eld. In particular, we consider the detection and tracking of

motion boundaries for which predictions of motion and of boundary locations/orientations

are obtained from nearby image regions at the previous time. This helps to encourage

boundary continuity, and to direct samples to the appropriate regions of the state space

as an edges leaves one region and enters another. It also improves the inference of surface

depth ordering.

This work represents an early e�ort in what we hope will be a rich area of inquiry. In

particular, we can now begin to think about the spatial interaction of these and other

local motion models. For example, we might formulate a more eleborate probabilistic



spatial \grammar" of motion features and how they relate to their neighbors in space and

time. This raises the question of what is the right vocabulary for describing image motion

and what role learning may play in formulating local models and in determining spatial

interactions between them (see (Freeman and Pasztor 1999)). In summary, the techniques

described here (generative models, Bayesian propagation, and approximate inference with

Monte Carlo methods) permit us to explore problems within motion estimation that were

previously inaccessible.
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