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This paper proposes an application of adaptive IIR �l�
ters to the problem of image velocity estimation� A
phase�based motion algorithm �Fleet and Jepson ����
Langley and Fleet ���	 is employed to measure velocity
locally within an image sequence from the outputs of a
set of complex space�time separable band�pass �lters�
The �lters
 temporal tunings are adaptively modi�ed
on the basis of measured velocity to optimise the rep�
resentation of image motion� In computer simulations
the scheme is shown to provide accurate estimates of
velocity even at high levels of image noise�

INTRODUCTION

The method we use for measuring image velocity is
based on the phase information in the output of band�
pass �lters ���� In a comparative study of the quantia�
tive accuracy of several optical �ow techniques� Barron
et al ��� found that phase�based methods produced the
most reliable estimates of image velocity� However� a
common criticism of the many techniques that have
been developed for computing image motion� and one
which applies particularly to phase�based approaches�
is the computational expense and the amount of mem�
ory necessary to store the required number of frames
and the di
erent �lters
 outputs� The phase�based ap�
proach of Fleet and Jepson ���� for example� involved
�� �lters at each spatial scale� each of which was an
FIR �lter with a temporal extent of �� frames or more�

In an attempt to create motion algorithms that run
at or near frame�rates it is necessary to address the
issue of e�ciency� In general� the most common way
of reducing storage requirements has been to restrict
the duration of temporal support to a small number
of frames �e�g� � or �	� An alternative is to introduce
recursive temporal �ltering� allowing performance to be
maintained while improving markedly on the e�ciency
of implementation ����� Fleet and Langley ���	� Here
we describe the use of a class of adaptive IIR temporal
�lters within a phase�based framework�

Recursive centre�frequency adaptive band�pass �lters
were originally designed for the tracking and enhance�
ment of one�dimensional signals in biomedicine and
communications �Kumar and Pal ���	� Kumar and Pal
s
�lters adapt according to a gradient algorithm operat�
ing on the basis of power output� while ours use mea�
surements derived from phase� Phase information is

reasonably stable with respect to small signal pertur�
bations �Fleet and Jepson ���	� and it is therefore hoped
that phase�based adaptation may o
er faster conver�
gence and wide applicability in signal processing�

The purpose of introducing adaptation into image ve�
locity estimation is twofold� to reduce computation
and storage requirements by reducing the number of
independent temporal �lters required� and to increase
accuracy by maximising �ltered image power� Assum�
ing a model of constant image translation� I�x� t	 �
Is�x� vt	� image power will be constrained to lie on a
plane through the origin in frequency space�

�I�k� �	 � �Is�k	��v � k� �	 � ��	

where k � �k�� k�	 and � denote spatial and temporal
frequencies� Therefore� if Is�x	 is spatially band�pass�
then the spatiotemporal signal I�x� t	 is temporally
band�pass� with its temporal frequencies constrained
by its spatial frequency content and the image veloc�
ity� We consider this situation very suitable for the use
of centre�frequency adaptive temporal �lters� Using
a model of local image translation� and �lters of �xed
spatial tuning� we feedback measured velocity to adjust
the peak temporal frequency tuning of the IIR �lters
to match the temporal characteristics of the spatially
�ltered image signal �see Fig��	�

MEASURING VELOCITY

The phase�based approach to velocity measurement op�
erates on the outputs of complex band�pass �lters and
their derivatives� so causal band�pass temporal �lters
and corresponding derivative �lters are required� The
phase derivatives of the �lter outputs are combined over
a small spatiotemporal region to arrive at an estimate
of local velocity and a measure of con�dence in that es�
timate� To avoid explicit calculation and di
erentation
of phase� and the attendant problem of phase unwrap�
ping� we use the following identity to extract phase
derivatives ����� Franks ���	�

�t�x� t	 �
Im�R��x� t	 Rt�x� t	 �

jR�x� t	j�
� ��	

where R�x� t	 is the complex�valued �lter output�
��x� t	 is its phase� and Rt is the partial temporal
derivative of R� We compute velocity using a weighted
least squares �t of local �rst�order constraints on phase
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Figure �� Schematic diagram of the method of image
velocity measurement described in this paper� Velocity
measurements computed from the outputs of space�time
separable band�pass �lters are fed back to adapt the �l�
ters� temporal tunings so that they match the space�time
characteristics of the image signal�

to a model of constant velocity� v�x� t	� in each small
spatiotemporal neighbourhood� N � by minimizing�X

�x�t��N

W �x� t	�jr��x� t	 � v�x� t	 � �t�x� t	j�
� � ��	

where W �x� t	 is a window that gives more weight to
constraints near the centre of the neighbourhood� The
minimization of ��	 leads to a linear system of the form
W�xv �W�t� the solution of which is given by�

v � ��T
xW�x	

���T
xW�t � ��	

where v is the image velocity vector� �x and �t are
the nx� matrix and nx� vector of spatial and temporal
phase derivatives� and W is the diagonal weight ma�
trix� Unreliable estimates of velocity may be identi�ed
using the eigenvalues of�T

xW�x ���� Here we use the
magnitude of the smallest eigenvalue as a measure of
con�dence in the associated velocity estimate�

IIR TEMPORAL FILTERS

To implement the above phase�based scheme we use
space�time separable �lters� allowing us to consider
temporal �ltering in isolation� We design the �lters
in the continuous�time domain and transform them to

obtain a discrete�time transfer function� The class of
�lters we use are derived from the truncated exponen�
tial� a causal low�pass �lter with a nearly linear phase
spectrum ���� We modulate with a complex sinusoid
to obtain band�pass �lters� and cascade to localise in
the frequency domain� As the number of cascades in�
creases� the resulting �lter approaches a Gabor func�
tion� widely used in motion analysis� The impulse re�
sponse after n cascades An�t	� is�

An�t	 �

�
tn��bn

�n���� exp��bt� j��t� � t � �

� � t � �
��	

where �� is the temporal frequency tuning� and the
temporal support of the �lter and its bandwdith are
determined by a combination of b�� �the exponential
time constant when n � �	 and n�

Digital Filter Design

To realise a discrete IIR implementation of the con�
tinuous �lter in ��	 we map the Laplace transform �the
s�domain	 representation of the �lter onto the discrete�
time z�domain �Bozic ���	� The Laplace transform of
An�t	 is given by�

L�An�t	� �

�
b

s� b� j��

�n
� ��	

and that of the derivative �lter follows from the deriva�
tive theorem for Laplace transforms �Bracewell ���	�
L�dAn�t	�dt� � sL�An�t	�� Here we consider the dis�
crete implementation of a �rd�order �lter and its deriva�
tive according to the bilinear transform� Although the
impulse invariant method is somewhat simpler� it is
susceptible to severe aliasing problems� The bilinear
transform e
ectively warps frequency space to avoid
aliasing ���� and it is then a simple matter to unwarp
the phase derivatives in converting back to the analogue
domain� The z�transforms of the band�pass �lter and
its derivative can both be expressed in the following
form�

H��z	 � q�
�
m� �m�z

�� �m�z
�� �m�z

��

� � �rz�� � �r�z�� � r�z��

�
� ��	

where q � b��b�j����	� r � �b�j����	��b�j����	�
and the values of the mi are given in Table ��

Filter m� m� m� m�

band�pass � � � �
derivative � � �� ��

Table �� Parameters for the discrete�time transfer
function of the �rd�order �lter and its derivative ac�
cording to ��	�

It should be noted that the transfer functions of the
band�pass �lter and its derivative share the same de�
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Figure �� ��D schematic diagram of a set of �lters
adapting their temporal tunings to lie on the line �in
��D� plane� in frequency space corresponding to the ve�
locity of the local image signal�

nominator� allowing a further reduction in computa�
tional storage� Discrete implementations follow from
the z�transform� We realise the common feedback path
as the cascade of three �rst�order sections to ensure
stability and to reduce coe�cient sensitivity compared
to the direct form �Tam et al ����� Nayeri and Jenkins
����	�

TEMPORAL ADAPTATION

The goal of adaptation as discussed here is to min�
imise the error in image velocity measured from a small
number of spatiotemporal �lters� Assuming the least�
squares solution to image velocity given in ��	� we de�
�ne the state of a set of �lter kernels vf by their local
velocity selectivity in a similar manner�

vf � �KT WK	��KT W� � C� � ��	

where K�� refer to the spatial and temporal frequency
tunings of the �lter kernels� In this formulation the
matrix C is a constant because only the temporal pa�
rameters are adapted�

The adaptive scheme is posed in terms of a single�
�ow model of local image translation� In frequency
space� all the power in a translating image lies on a
plane through the origin ��	� Here� �lters adapt their
temporal centre�frequency tunings towards the plane
of power in frequency space corresponding to the mea�
sured velocity of the local image signal� thereby tending
to maximise the signal�to�noise ratio of their outputs
�see Fig��	� The centre frequency tuning of the nth�

order cascaded kernel An�t	 ��	 is simply the temporal
modulation frequency� ��� Thus� to lie on the plane of
power of the image signal� the centre�frequency tempo�
ral tuning of any �lter tuned to a spatial frequency of
k� must satisfy�

�� � v � k� � ��	

By adjusting the parameter ��� and hence the weights
q and r in the IIR implementation ��	� we can control
the peak temporal frequency tuning of the �lter� Here
the value of �� is under adaptive control in an e
ort to
minimise the distance of the peak tuning of the �lter
from the plane of power of the local image signal�

Dynamics of Adaptation

At each time step� measured velocity is fed back to
adapt the �lters� The feedback mechanism that we
have chosen to implement is a vector formulation of
the LMS algorithm of Widrow and Stearns ����� Treat�
ing the locally measured velocity as the desired re�
sponse vector� the temporal state of the �lter kernels is
adapted on the basis of the di
erence equation�

� � v � vf � v �C� � ���	

where � is a vector error signal� Following ����� we take
the instantaneous value of the squared error� j�j�� and
minimise it with respect to � to arrive at a gradient
descent update equation�

�T
t�� � �T

t �
�

�
r�j�tj

� � ���	

�T
t�� � �T

t � ��Tt C � ���	

where � controls the rate of adaptation� Without noise�
when � � ���� the adaptive scheme convergences in one
iteration� In the simulations described below� using
noisy input images� � is set at ��� to ensure conver�
gence�

EXPERIMENTAL RESULTS

We illustrate the performance of the adaptive scheme
described above with results from two image sequences�
one synthetic and one real� The synthetic diverging
tree sequence ��� �� has a known ��Dmotion �eld� allow�
ing a quantiative comparison of the performance of the
adaptive and non�adaptive versions of the algorithm at
various levels of additive white spatiotemporal noise�
Results are presented graphically in the form of nee�
dle diagrams and con�dence maps� and numerically as
error statistics for the synthetic images�

Implementation

The spatial �lters used in our implementation are com�
plex band�pass Gabor �lters and their derivatives� The
�lters are tuned to each of � spatial orientations� with
centre�frequency spatial tunings of ��� cycles per pixel



and envelope standard deviations of ��� pixels� Each
spatial �lter feeds into a �xed low�pass temporal �l�
ter �as described in ��	 but with �� � �	� and a pair
of band�pass temporal �lters of equal and opposite
peak tuning� Under the adaptive scheme� the centre�
frequency tunings of the band�pass temporal �lters are
adapted from an initial value of zero� In the non�
adaptive scheme� used for comparison� the temporal
tunings of the band�pass �lters are set to ��� cycles per
frame� equivalent to a velocity tuning of � pixel per
frame in the preferred direction� The temporal �lter
time constant ��	� b��� is set at ���� frames� giving an
implicit delay of � frames in measurements of veloc�
ity� Following ���� the spatiotemporal window W �x� t	
in ��	 is a Gaussian in space �with a standard deviation
of ��� pixels	 and an exponential in time �with a time
constant of ���� frames	� Under the adaptive scheme �
���	 is set at ����

Error Measures

Following ���� we view velocity as spatiotemporal orien�
tation and measure error as an angle in space�time� If
velocity� v � �vx� vy	

T � is represented as a unit vector�
	v� in space�time�

	v �
�q

v�x � v�y � �
�vx� vy� �	

T � ���	

then the error� 
E � between the correct velocity� 	vc�
and an estimate� 	ve� is given by�


E � arccos� 	vc � 	ve	 � ���	

For results on synthetic image sequences we quote a
mean error and a density� The error is calculated as the
mean angular error of all points satisfying an arbitrary
con�dence threshold� The density gives the percent�
age of points satisfying that threshold� The con�dence
measure we use is the smallest eigenvalue of the spatial
covariance matrix ��	� which depends on the magni�
tudes of the spatial gradients and the range of their
orientations ����

Figure �� Left� Frame �	 of the diverging tree se�
quence� Right� Con�dence map obtained under the
adaptive scheme with no added noise�

Figure �� Left� Correct motion �eld for frame �	 of
the diverging tree sequence� Right� Measured motion
�eld under the adaptive scheme with no added noise�

Noise Fixed �lters Adaptive �lters
��	 error density error density

� ����o ����� ����o �����
� ����o ����� ����o �����
�� ����o ����� ����o �����
�� ����o ����� ����o �����
�� ����o ����� ����o �����
�� �����o ����� ����o �����

Table �� Mean errors obtained from frame 
� of the
diverging tree sequence at various levels of added noise
using �xed and adaptive �lters�

Results

During the diverging tree sequence the camera moves
along its line of sight� the focus of expansion being
the centre of the image� Speeds vary from ��� pixels
per frame on the left of the image to ��� on the right�
Figure � �left	 shows a frame from the sequence� and
Figure � �left	 the true �ow �eld� The measured mo�
tion �eld under the adaptive scheme is shown in Figure
� �right	 to correspond closely to the true �ow �eld�
Encouragingly� the most noticable deviation from the
veridical �eld occurs in a region where con�dence es�
timates are low� Con�dence estimates are shown in
Figure � �right	� with regions of high con�dence being
represented by bright points in the image�

To generate image noise we linearly scale the noise�
less sequence� I��x� t	� and then add the random vari�
able� n�x� t	� drawn from a distribution uniform over
the range of values of the noiseless sequence� We cre�
ate the noisy image� In�x� t	� from the equation�

In�x� t	 � ��� �	I��x� t	 � �n�x� t	 � ���	

where ���� is the percentage noise level� Numerical
results from the �xed and adaptive schemes show that
at noise levels exceeding �� the adaptive scheme yields
lower mean errors at a higher density of measurement
�Table �	� The performance of the adaptive scheme ap�



proaches that of its non�adaptive counterpart at low�
levels of noise� whilst showing an advantage which in�
creases with noise level for ��� noise and above� We
would expect to be able to improve the performance
of the �xed scheme by incorporating additional tem�
poral �lters� but even under the proposed IIR imple�
mentation this would involve a considerable increase in
computational storage�

The rotating Rubik cube sequence ��� is a real im�
age sequence in which a Rubik
s cube is rotating anti�
clockwise on a turntable� Figure � shows a frame from
the sequence and Figure � the �ow �eld measured un�
der the adaptive scheme after con�dence thresholding�

Figure �� Frame from the rotating Rubik cube sequence�

Figure �� Measured �ow �eld from the rotating Rubik
cube sequence
 after thresholding
 under the adaptive
scheme�

CONCLUSION

We have described an algorithm for computing im�
age motion from the phase output of centre�frequency

adaptive IIR �lters� The algorithm may �nd applica�
tion in biomedical imaging� for example in profusion
or cardiac studies where image noise levels are poten�
tially high� The main limitation of the technique is that
some error is necessarily introduced into the velocity
estimates by the process of adaptation itself� although
for noisy image sequences this factor is outweighed
by the improved signal�to�noise response of the adap�
tive �lters� Indeed� as hardware developments allow
faster frame�rates for real�time implementation of mo�
tion analysis algorithms so the proportion of time dur�
ing which signi�cant adaptation occurs will decrease�
and the bene�t of superior image signal representation
will outweigh the cost of adaptation even at low levels
of noise�
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