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ABSTRACT

We examine the performance of phase-based and energy-
based techniques for estimating image orientation, empha-
sizing measurement stability under deformations that com-
monly occur in natural images. We also present a new
energy-based technique for estimating multiple orientations
in an neighbourhood.

1. INTRODUCTION

Image orientation is central to many tasks in machine vision
and image processing, including the extraction of edges,
lines and curves [5, 9, 11, 16], and image enhancement
[12, 14]. Tt is also central to the measurement of normal
velocity constraints for optical flow (e.g. [2]) and stereo
disparity estimation (e.g. [15]). More recent uses of image
orientation concern the determination of surface slant from
texture [10, 18], from binocular viewing [13, 20], or from a
moving camera.

Many methods for orientation estimation implicitly as-
sume a single orientation in each local neighbourhood. But
many of the tasks above exploit multiple orientation esti-
mates. The accuracy of orientation measurement is also a
primary concern — e.g., Jones and Malik [13] showed that
under typical stereo viewing geometries, orientation differ-
ences between binocular views of slanted 3d surfaces are
usually less than 5 degrees. Orientation measurements must
be accurate and stable with respect to deformations be-
tween left and right views to be useful in this context.

We examine the accuracy with which one can expect to
measure image orientation using energy-based and phase-
based methods, and propose a new energy-based method
for reliably extracting multiple orientations from textured
image regions. Rather than evaluate the performance of
such methods with only synthetic inputs with known orien-
tations, such as lines and edges, we concentrate on the sta-
bility of measurements under deformations of images like
those that typically occur between different views of 3d
scenes. This is clearly an important criterion if one wants
the measurements to depend primarily on the image struc-
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ture, independent of small changes of viewing geometry and
the filters used.

Toward this end we develop a framework based on steer-
able (adaptive) filters in which one can steer orientation-
tuned quadrature-pair filter responses, their amplitude and
phase, and their amplitude and phase derivatives with re-
spect to orientation and spatial position. In this way one
can extract rich descriptions of local image structure appro-
priate for energy and phase-based methods.

Interestingly, our initial results based on instantaneous
frequency (following [7]) proved somewhat unstable rela-
tive to the accuracy required for slant estimation, although
multiple local orientations were extracted. Estimates from a
simple energy-based approach (following [9, 14]) also proved
inappropriate as the density of estimates was low since just
one orientation was extracted in each neighbourhood.

We have found a significant improvement with a new
method that extracts multiple local orientations based on
maxima of energy as a function of orientation. Central to
the method is the set of steerable filters mentioned above,
the extraction of local amplitude maxima via zero-crossings
in the amplitude derivative, a correspondence technique
that matches orientations in left and right views, and sta-
bility measures that identify unreliable estimates.

We show that this method produces superior results
compared to other methods in terms of measurement accu-
racy, stability with respect to noise and deformation, and
the number of independent measurements, often with two
or three orientations in a single neighbourhood. The con-
fidence measures are particularly important to this perfor-
mance, as they are in most methods, e.g. for measuring
optical flow [2].

2. COMPUTATIONAL FRAMEWORK

We first outline a class of steerable filters that are suitable
for both energy and phase-based methods.

2.1. Adaptive Quadrature Filters

Following Andersson [1], we consider polar-separable am-
plitude spectra of the form

Qw, ¢; ¥) = H(w)S(¢; ¥) (1)

where (w, ¢) denotes polar coordinates in frequency space,
H(w) is a bandpass function of radial frequency, and S(¢; ¥)



denotes an angular spectrum, as a function of ¢, that is
tuned (rotated) to ¢. The ability to interpolate such fil-
ters over a continuous range of orientations follows from
the trigonometric identity

cos(n(¢ — 9¥)) = cos(ng) cos(ny) + sin(ng)sin(ny)

That is, for any n one can compute cos(n(¢ — ¢)), at any
¥, using a weighted sum of two basis functions, namely,
cos(ng) and sin(ng¢). It is therefore convenient to express
the angular spectra of orientation-tuned filters as weighted
sums of cosinusoidal functions, i.e.,

N
H(w)Y ancos(n(é —¢))  (2)

n=0

Qluw,¢;¥) =

The basis set contains 2N + 1 real-valued functions of the
form H(w)cos(n¢) and H(w)sin(ng), that are weighted
with the coefficients a.,.

To design quadrature-pair filters, the weights a, are
chosen to minimize the energy in the spectrum (2) in the
rear half-plane, i.e., for | ¢ — ¢ |> 0.57 [1]. That is, we
minimize

2m 2m N

W(6) |Q(w, ¢ ¥) [P dp = [W() [ ancos(n(e)) " do
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n=0
where the weighting function W(¢) is

lo—v ] > =/2 (4)
lo—d | <= =/2

Other weighting functions are clearly possible. For exam-
ple, in [1] a smooth weighting function of the form W(¢) =
sin®"(0.5(¢)) is examined from which the resulting filter
closely approximates a quadrature filter, and by changing
r one can obtain different angular bandwidths. The cost
of narrower angular bandwidth is a small amount of ring-
ing in the rear half plane. As the number of basis filters
increases, the energy in the rear half-plane and the orienta-
tion bandwidth of the filters both decrease; e.g., with N = 6
the angular bandwidth at half height can be 50° — 65°, de-
pending on weighting function. For the band-pass function
H(w) we currently use lognormal functions (e.g. [14]).

H(w) = exp{—41n*(w/wo) (B In(2))}  (5)

In the experiments we set the centre frequency to wo =
7/(2v/2), where the Nyquist frequency is 7 and the rela-
tive bandwidth B = /2 octaves. We then take an inverse
2D-DFT of H(w)cos(n¢) and H(w)sin(n¢) to obtain the
discrete basis kernels b, (x) , where x = (2, y). The orienta-
tion tuned filters ¢(x;¢) are then constructed as weighted
sums of the b, (x) according to (2).

The oriented filters ¢(x;¢) and their responses R(x; )
are complex-valued. The real part is constructed from even-
order basis functions (i.e. n = 0,2,4,6) and the imagi-
nary part from odd-order basis functions (i.e. n =1,3,5).
The response can also be expressed in terms of amplitude

p(x; ¥) and phase 4(x; ¢), as in
R(x; ) = plx;g)e "0 (6)

where p(x; ¥) =] R(x; ¢) |, 0(x; ¥) = arg[R(x; ¢)], and
i? = —1. The final concept we need is instantaneous fre-
quency, defined as the derivative of phase with respect to
spatial position, V ¢(x), where V is the usual gradient op-
erator. Instantaneous frequency has played a central role in
phase-based methods for computing image velocity [7] and
binocular disparity [8, 17, 19].

2.2. Steerable Derivatives

This steerable set allows one to interpolate the complex-
valued response R(x; ¢), and its amplitude and phase with
ease. Unlike previous uses of steerable filters, we also want
to interpolate amplitude and phase derivatives with respect
to spatial position and orientation. The amplitude deriva-
tive with respect to orientation will be used for localizing
energy maxima in orientation, and as a stability measure.
The phase derivative in orientation could be useful as a
stability measure [1]. Derivatives of phase and amplitude
with respect to spatial position are needed for phase-based
methods, and for stability measures as discussed below.

The mathematical derivation of the derivatives follows
from (6)

PROSO) (o ) + inlos )05 0] 5 (7)

where s denotes one of , y or ¥. As a consequence [4, 7]

20(Xsy)  _ Im[R:(X59) R*(Xs59)]

9s o [R(X;)[? (8)
9p(Xs)  _ Re[R:(Xs¥) R* (Xs5¢)]

ds - |R(X;9)|

where the superscript * denotes complex conjugate.

Using these identities, amplitude and phase derivatives
with respect to orientation are easily computed (steered)
using the original basis filters b, (x). In particular, from (2)
it follows that

0Q(w, ¢; ¥)
P

Then by using the trigonometric identity
sin(n(¢ — ¢¥)) = sin(ng) cos(ny) — cos(ng) sin(ny)

and (8) one can easily steer phase and amplitude derivatives
with respect to orientation using the responses of b, (x), al-
ready available. That is, the derivative w.r.t the tuning an-
gle of the quadrature response is given by another weighting
of the responses of the same basis filters.

We also require derivatives of amplitude and phase with
respect to spatial position. Although not as simple as ori-
entation derivatives, they are easily obtained, e.g.

= H(w) Z nap sin n(¢ — ¥) (9)

a9 a9
S 4@y v) = Zan%bn(x,y) (10)
or equivalently, in the Fourier domain, with w, = wcos(¢)
wz Qw, ¢; ) = Z anwg H(w) cos n(¢ — ) (11)

For efficiency we numerically differentiate the basis filter
outputs instead of using a second set of 2d filters applied to



the original image'. This procedure gives us full steerability
for the quadrature response and its derivatives. It is now
easy to form an estimate of the instantaneous frequency,
V § according to (8). Note that we do not have to steer
responses at neighbouring pixels to the same filter tuning
to differentiate the steered filter output.

3. EXPERIMENTAL METHODS

We outhine our experimental method before discussing the
actual estimation techniques we have employed. In the
evaluation of the estimation techniques we are interested
in stability with respect to deformations that typically oc-
cur between binocular views, or between frames in an image
sequence. The procedure we have been using involves

1. Create an image pair by applying a known deforma-
tion (warping) to a natural image. Cubic interpola-
tion has been used for the warping. The deformations
have been rotations (2° — 10°), anisotropic dilations
(2% —10%) and shears (2% —10%). For example, the
following deformation was used for anisotropic dila-

tion.
14+a O
0 1

where a € [0.02 0.04 0.06 0.08 0.10].

2. Apply the algorithm on both the original and the
deformed image.

3. Calculate error statistics for the estimates, utilizing
confidence measures, while compensating for the known
deformation. In the results the mean orientation dif-
ference, the standard deviation of the difference, and
the coverage are reported.

4. STABLE ESTIMATION OF ORIENTATION

We have tested the stability of orientation estimation for
phase-based and energy-based techniques.

4.1. Phase-Based Technique

As mentioned above, although phase-based orientation mea-
surements from band-pass filter outputs produce multiple
local orientations and are reasonably stable under certain
lighting and geometric deformations of the input [6, 8], they
proved too unstable (with fixed filters) for computing orien-
tational disparities. For example, Table 1 shows the mean
error and standard deviation of orientation differences, as
functions of rotations of the image shown in Figure 1, with
a single orientation-tuned filter. The orientation estimates
in this case are given by the orientation of the instantaneous

frequency, V ¢(x).

4.2. Energy-Based Techniques

Energy-based methods are another technique to measure
image orientation, which typically rely on the fact that a

1The computational cost for differentiating the filter outputs,
with a 8 tap filter, is 2 - 8 - 13 = 208 operations per pixel, which
should be compared to 15-15-13-2 = 5850 operations per pixel
if the 2d filters are assumed to be 15x15 pixels in size

rotation | mean | Std dev
2° 1.21° 1.52°
4° 2.13° 3.53°
6° 3.92° 4.34°
8° 5.54° 5.61°

rotation | mean | Std dev
2° 1.21° 1.52°
4° 2.13° 3.53°
6° 3.92° 4.34°
8° 5.54° 5.61°

Table 1: Stability of phase-based orientation from a single
filter for rotations of the input. Columns show mean and
standard deviations for errors in orientation differences.

Figure 1: The used test image.

perfectly oriented signal will have its Fourier power concen-
trated on a line through the origin. By estimating the ori-
entation of this line the image orientation is also obtained.

Estimation of a Dominant Orientation

Simple energy-based methods [14, 9] assume a single ori-
entation in each neighbourhood. In essence these methods
estimate the RMS orientation of the angular energy dis-
tribution. These techniques will yield stable results under
local rotations, but not necessarily under shear or dilation
if more than one local orientation is present. For these rea-
sons we have used a stability measure based on the ratio
of the oriented energy to the total local energy, to detect
neighbourhoods with multiple local orientations, (e.g.[12]).
Tables 2-4 show the results. We have also tested a gradient-
based scheme [3] and found the same type of behaviour and
similar estimation errors. Although accuracy is generally
good, there remain two drawbacks of these techniques:

o the neighbourhoods with the most information (mul-
tiple orientations) are explicitly removed. For in-
stance, note the coverage of estimates in Tables 2-4.

e if multiple orientations are too close, the confidence
measure is weakened.

Estimation of Multiple Orientations

It is therefore natural to try to extract multiple local ori-
entations based on energy maxima of the steerable filters
[1, 13, 16]. The issues that arise include how to find the
local maxima, how to do the matching between two views,
and the development of stability measures to identify out-
liers. The method outlined below significantly increases the



rotation | coverage mean | Std dev
2° 40% | —0.005° 0.35°
4° 40% | —0.015° 0.59°
6° 39% | —0.026° 0.80°
8° 39% | —0.033° 1.02°
10° 39% | —0.044° 1.16°

Table 2: Stability of energy-based estimates with rotations
of the input (using a confidence measure).

dilation | coverage mean | Std dev
2% 38% | —0.005° 0.68°
4% 38% 0.003° 0.88°
6% 38% 0.010° 1.15°
8% 37% 0.036° 1.44°
10% 37% 0.041° 1.67°

Table 3: Stability of the energy-based orientation estima-
tion algorithm w.r.t. anisotropic dilation.

shear | coverage mean | Std dev
2% 38% | —0.014° 0.49°
4% 38% | —0.002° 0.62°
6% 37% | —0.002° 0.78°
8% 37% 0.006° 0.95°
10% 37% 0.011° 1.16°

Table 4:  Stability of the energy-based orientation estima-
tion algorithm w.r.t. shear of the input image.

Filter Filter
response response

1

A

Orientation Orientation
tuning tuning
0 T 0 b

Figure 2: Two estimation curves that should be matched,
with an ordering constraint three matches are possible, (1-

A, 2-B, 3-C); (1-C, 2-A, 3-B) or (1-B, 2-C, 3-A).

number of independent local measurements and their sta-
bility compared to the single orientation techniques.

Our current technique uses 6‘"-order quadrature-pair
filters steered to 18 orientations at which the response R,
its derivative Ry, and the amplitude derivative py are com-
puted using (2), (9), and (8).> Energy maxima are detected
from zero-crossings of py (using linear interpolation of py
when changes in its sign are found between the 18 sampling
points).

In order to test the stability of the measurements with
respect to deformations between two views we also need a
correspondence algorithm to associate the orientations in
the two views. At present we only use an ordering con-
straint, remembering that orientation estimates are modulo
7 (see Fig. 2), and a simple cost function according to (12):

€ap = Z | sin(¢pa:i — ¢5i) | (12)

The match is chosen to minimize this measure.

Confidence Measures

Finally, stability constraints (confidence measures) are used
to detect unreliable measurements, and therefore reduce the
number of outliers. In the current implementation four dif-
ferent confidence measures are used.

2With N = 6, a minimum sampling of 13 orientations is re-
quired by the sampling theorem to encode the response as a
function of orientation. We oversample slightly to permit sim-
pler interpolation.

SNR-threshold: For each of the two views the amplitude
of the filter output has to exceed 5% of the maxi-
mum value over the whole image. The objective is to
remove estimates where the signal-to-noise levels are
problematic.

Sharpness of orientation maxima: From the filter de-
sign we know the shape of the quadrature response
for an ideal single orientation, and especially we know
how sharp the curve should be at the maxima. To
avold estimates where two or more orientations are
within the angular bandwidth of the filter we calcu-
late the quotient pyy /p. This measure must be larger
than 0.6 for the estimate to be considered.

IF versus Energy: The filtering framework allows us to
obtain the image orientation from both an energy-
based technique (allowing multiple orientations) and
from the instantaneous frequency from a quadrature-
pair filter steered to the same orientation. The orien-
tation difference between the estimates from the two
input images, taken separately for the techniques, is
compared and if they behave differently this is an in-
dication that the orientation estimate is not stable.
This effectively removes many outliers in the proce-
dure. This difference is also related to singularity
neighbourhoods [6] where the quadrature response is
particularly unstable.

Phase difference: The final confidence measure is a based
on the difference in phase between the quadrature-
pair responses steered to the orientation maxima in
each of the input images. A large phase difference be-
tween the responses is a strong indication of misalign-
ment, since this is the information that disparity esti-
mation from phase differences relies on, [8, 15,17, 19].

It is worth noting that the absolute levels of these thresholds
are not critical to the results of the algorithm.

Tables 5-7 show the errors in orientation differences
based on the two maxima with the highest energy at each
pixel. Note the increased coverage of measurements, and
the high density of multiple measurements (indicated by
the coverage of the secondary maxima), compared to pre-
vious results in Tables 2-4. The smaller errors for the first
peak are especially encouraging, and as these are difference
errors, the effective accuracy of the individual orientation
estimates should be significantly smaller (assuming IID er-
rors).



rotation | coverage mean | Std dev
2° 78% | 0.028° 0.46°
4° 75% | 0.026° 0.54°
6° 73% | 0.000° 0.57°
8° 71% | 0.008° 0.59°
10° 70% | 0.012° 0.60°
rotation | coverage mean | Std dev
2° 48% 0.078° 0.69°
4° 42% 0.062° 0.81°
6° 40% | —0.003° 0.84°
8° 39% | —0.043° 0.82°
10° 38% 0.036° 0.82°

Table 5: Stabulity of energy-based estimates w.r.t rotation.
The upper table is for the maxima with highest energy, and
the lower is the second highest.

dilation | coverage mean | Std dev
2% 68% | —0.004° 0.56°
4% 68% | —0.014° 0.74°
6% 66% | —0.016° 0.98°
8% 63% 0.004° 1.16°
10% 59% 0.017° 1.36°

dilation | coverage mean | Std dev
2% 35% | 0.021° 0.74°
4% 33% | 0.060° 1.03°
6% 30% | 0.099° 1.37°
8% 28% | 0.150° 1.66°
10% 25% | 0.185° 1.97°

Table 6:  Stabeility of the energy-based estimates w.r.t.
anisotropic dilation. The upper table is for the peak with
the highest energy and the lower is the second highest peak.

5. SUMMARY

This paper examines the performance of phase-based and
energy-based techniques for estimating image orientation.
The stability of these estimates under deformations that
commonly occur with projections of 3d scenes. Jones and
Malik [13] and Perona [16] have suggested that orientation
measurements can be attained with an accuracy of about
1°, suggesting orientation difference errors about /2 larger.
With a new energy-based framework for extracting orien-
tations, we find that even better results are possible®, but
these depend critically on suitable stability constraints.

Our next goal is to use the orientation disparity mea-
surements for surface slant/tilt estimation, where we have
promising, but still very preliminary results.
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