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Abstract

We introduce models for density estimation
with multiple, hidden, continuous factors.
In particular, we propose a generalization
of multilinear models using nonlinear basis
functions. By marginalizing over the weights,
we obtain a multifactor form of the Gaussian
process latent variable model. In this model,
each factor is kernelized independently, al-
lowing nonlinear mappings from any partic-
ular factor to the data. We learn models for
human locomotion data, in which each pose
is generated by factors representing the per-
son’s identity, gait, and the current state of
motion. We demonstrate our approach us-
ing time-series prediction, and by synthesiz-
ing novel animation from the model.

1. Introduction

Using prior models of human motion to constrain the
inference of 3D pose sequences is a popular approach
to improve monocular people tracking, as well as to
simplify the process of character animation. The avail-
ability of motion capture devices in recent years en-
ables such models to be learned from data, and learn-
ing models that generalize well to novel motions has
become a major challenge.

One of the main difficulties in this domain is that the
training data and test data typically come from related
but distinct distributions. For example, we would of-
ten like to learn a prior model of locomotion from the
motion capture data of a few individuals performing
a few gaits (i.e., walking and running). Such a prior
model could then be used to track a new individual
or to generate plausible animations of a related, but
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new gait not included in the training database. Due
to the natural variations in how different individuals
perform different gaits — which we broadly refer to as
style — learning a model that can represent and gener-
alize to the space of human motions is not straightfor-
ward. One approach is to learn a single model from all
training data, without regard of our knowledge about
their style. However, this can lead to unrealistic mod-
els that either average together all styles of motion, or
else amount to a mixture model of styles. Neither ap-
proach can be expected to handle data from new styles
well. Nonetheless, it has long been observed that inter-
polating and extrapolating motion capture data yields
plausible new motions, and it is reasonable to attempt
building motion models that can generalize in style.

This paper introduces a multifactor model for learning
distributions of styles of human motion. We param-
eterize the space of human motion styles by a small
number of low-dimensional factors, such as identity
and gait, where the dependence on each individual fac-
tor may be nonlinear. This parameterization is learned
in a semi-supervised manner from a collection of ex-
ample motions with different styles. Given a new mo-
tion, identifying its stylistic factors defines that mo-
tion’s style-specific distribution.

Our multifactor Gaussian process model can be viewed
as a special class of Gaussian process latent vari-
able model (GPLVM) (Lawrence, 2005). As in the
GPLVM, we marginalize out the weights in the gen-
erative model, and optimize the latent variables that
correspond to the different factors in the model. If
used with linear factors, the complete model amounts
to a Bayesian generalization of multilinear models
(De Lathauwer et al., 2000; Vasilescu & Terzopoulos,
2002). We also incorporate latent-space dynamics, and
show that the use of the multifactor model improves
time-series prediction results on human motion.

fleet
Text Box
International Conference on Machine Learning, Oregon, 2007 (to appear)



Multifactor Gaussian Process Models for Style-Content Separation

1.1. Background

The problem of style-content separation — modeling
the interaction of multiple factors — was introduced
by Tenenbaum and Freeman (2000). They employed a
bilinear model, in which hidden “style” and “content”
variables are multiplied along with a set of weights
to produce observations; their algorithm was used to
model variations in images of human faces and in
typefaces. Identifying which variables correspond to
“style” or “content” is problem-dependent, and some-
what arbitrary.

The natural generalization of the bilinear model when
more than two factors are present is the multilinear
model. Multilinear factorizations have been used to
model images of faces (Vasilescu & Terzopoulos, 2002),
3D face geometry (Vlasic et al., 2005), motion cap-
ture sequences (Vasilescu, 2002), and texture and re-
flectance (Vasilescu & Terzopoulos, 2004). These mod-
els are multilinear in the factors, but linear with re-
spect to any single factor. Li et al. (2005) proposed
a multifactor generalization of kernel principal com-
ponents analysis (PCA). It is complementary to the
model proposed here, as they kernelize the outputs
while we kernelize the factors.

The main application in this paper is learning models
of human poses and motions. Perhaps the simplest ap-
proach to generating motion is to interpolate example
poses (Rose et al., 2001) or motion capture sequences
(Rose et al., 1998), assuming that all examples are la-
beled with style parameters. Independent components
analysis can be applied to sequences to obtain a linear
style-space of sequences (Shapiro et al., 2006).

A few methods for nonlinear style-content separation
of human pose and motion also exist. The style ma-
chines model (Brand & Hertzmann, 2000) learns a lin-
ear space of style-specific hidden Markov models for
different individuals. This method is limited to two
factors, and must represent poses with a discrete state
model plus temporal smoothing. Elgammal and Lee
(2004) learn a nonlinear manifold and a two-factor
mapping to pose and silhouette data in a least-squares
setting.

More recently, several researchers have used the
GPLVM (Lawrence, 2005) to model human poses
(Grochow et al., 2004; Urtasun et al., 2005). Given
a set of high-dimensional training poses, the GPLVM
provides a set of corresponding low-dimensional latent
coordinates, along with a Gaussian process mapping
from latent coordinates to pose observations. The
mapping is in general nonlinear, and gives rise to a
joint distribution over new data and the correspond-

ing latent coordinates. The Gaussian process dynam-
ical model (GPDM) (Wang et al., 2006) extends the
GPLVM by including a dynamical model on the low-
dimensional latent space. It thereby models time-
series data for a single individual, but does not gener-
alize well to multiple styles or activities. This paper
builds on these two models with the inclusion of factors
to represent variation in gait and across individuals.

2. Multifactor Gaussian Processes

The model we use is a probabilistic latent variable
model, involving a low-dimensional latent space of hid-
den factors describing style and content, and a map-
ping to a high-dimensional observation space. In this
section, we introduce the multifactor Gaussian process
(GP) mapping that lies at the core of our approach.
We will assume for now that the inputs are known, and
only consider one-dimensional outputs. In Section 3,
we describe how to learn the model in an unsupervised
fashion, and apply the model to motion capture data,
in which each observation is a high-dimensional human
body pose associated with a particular person and a
specific gait.

2.1. Gaussian Processes

We begin by reviewing GP regression, using the
“weight-space” view (Rasmussen & Williams, 2006).
Suppose we have a one-dimensional function y = g(x)
of input vector x, defined as a linear combination of J

basis functions φj(x):

y = g(x) =

J
∑

j=1

wjφj(x) = wTΦ(x), (1)

where the vector Φ(x) = [φ1(x), ..., φJ (x)]T stacks the
basis functions. Furthermore, we assume a weight de-
cay prior: w ∼ N (0; I). Since the outputs y are a
linear function of the weights, the outputs are also
Gaussian. In particular, given known inputs x and x′,
the mean and covariance of their outputs y and y′ are:

µ(x) ≡ E[y] = E[wT Φ(x)] = 0, (2)

k(x,x′) ≡ E[yy′] = E[(wT Φ(x))(wT Φ(x′))]

= Φ(x)T Φ(x′), (3)

since E[w] = 0 and E[wwT ] = I. The functions µ(x)
and k(x,x′) are referred to as the mean function and
kernel function, respectively. If we choose linear basis
functions (i.e., Φ(x) = x), then the kernel function
is quadratic: k(x,x′) = xT x′. It can be shown that,
with appropriate choice of Gaussian basis functions for
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φj(x), the kernel function becomes the “RBF kernel”:

k(x,x′) = exp(−
γ

2
||x − x′||2). (4)

Other assumptions about the form of g lead to different
kernel functions.

Given N training pairs D = {(xi, yi)}, the N×N kernel
matrix K is defined such that Ki,j = k(xi,xj). A
Gaussian predictive distribution at a new input, x̃ can
then be derived i.e.,

ỹ | x̃,D ∼ N (m(x̃); σ2(x̃)), (5)

where

m(x) = [y1, ..., yN ] K−1k(x), (6)

σ2(x) = k(x,x) − k(x)T K−1k(x), (7)

k(x) = [k(x,x1), ..., k(x,xN )]T . (8)

2.2. A Simple Two-Factor Model

Suppose now we wish to model different mappings for
different styles. One way to do this is to add a latent
“style” parameter. Accordingly, consider a regression
problem with inputs x and style parameters s ∈ R

S .
We define the following mapping, in which the output
depends linearly on style:

y = f(x; s) =

S
∑

i=1

sigi(x) + ε

=
S
∑

i=1

siw
T
i Φ(x) + ε, (9)

where each gi(x) is a mapping with weight vector wi,
and ε represents additive i.i.d. Gaussian noise with
zero mean and variance β−1. Fixing just the input
s specializes the mapping to a specific style. If we
hold fixed the input x and style s, then, because ε and
w ≡ [wT

1 . . .wT
S ]T are Gaussian, and f(x; s) is a linear

function of w, f(x; s) is also Gaussian. Given two sets
of inputs (x, s) and (x′, s′), this function has mean and
covariance

E[y] =
∑

i

siE[wi]
TΦ(x) + E[ε] = 0, (10)

E[yy′] = E[

(

S
∑

i=1

sigi(x) + ε

)





S
∑

j=1

s′jgj(x
′) + ε′



]

=
∑

i

sis
′
iE[(wT

i Φ(x))(wT
i Φ(x′))] + E[εε′]

= (sT s′)Φ(x)T Φ(x′) + β−1δ. (11)

The term δ is 1 when y and y′ are the same measure-
ment, and zero otherwise.

The simple two-factor model with linear dependence
on style and nonlinear dependence on content can
therefore be expressed as a GP, with the Bayesian in-
tegration of the weights derived in closed form. As
discussed below, the two-factor model can be general-
ized to greater numbers of factors, each of which may
be linearly or nonlinearly related to the training data,
holding the other factors fixed.

2.3. General Multifactor Models

In general, suppose we wish to model the effect of M

factors X = {x(1), . . . ,x(M)} on the output indepen-
dently, then

y = f(x(1), . . . ,x(M)) + ε

= wT (Φ(1) ⊗ · · · ⊗ Φ(M)) + ε, (12)

where Φ(i) is a basis column vector for factor x(i), w is
a weight vector, ε is as defined in the previous section,
and ⊗ denotes the Kronecker product.1 The lengths
of w and (Φ(1) ⊗ · · · ⊗ Φ(M)) are both equal to the
product of the lengths of Φ(i)’s.

As before, we assume a weight decay prior on w.
Hence, y is a GP with zero mean and covariance

k(X ,X ′) ≡ E[yy′]

= E[wT (Φ(1) ⊗ . . . )wT (Φ(1)′ ⊗ . . . )] + β−1δ

= (Φ(1) ⊗ . . . )T (Φ(1)′ ⊗ . . . ) + β−1δ

= (Φ(1)T
Φ(1)′) ⊗ · · · ⊗ (Φ(M)T

Φ(M)′) + β−1δ

=

M
∏

i=1

ki(x
(i),x(i)′) + β−1δ, (13)

where ki(x
(i),x(i)′) = Φ(i)T

Φ(i)′ is the kernel function

for the i-th factor, Φ(i)′ is a function of x(i)′. For
example, the kernel function in (11) has two factors,

with k1(s, s
′) = sT s′ and k2(x,x′) = e−

γ

2
||x−x

′||2 .

Given N training pairs D = {(Xi, yi)}N
i=1, the kernel

matrix K for the resulting GP is defined in the usual
way; i.e., Ki,j = k(Xi,Xj). The kernel product may
also be written as the elementwise product of M kernel
matrices, one for each factor,

K = K(1) ◦ K(2) ◦ · · · ◦ K(M) + β−1I. (14)

1For M = 3, and indexing elements of w by (l, m,n),
(12) can be written as

y =
X

l,m,n

wl,m,nφ
(1)
l φ

(2)
m φ

(3)
n + ε,

where φ
(i)
j is an element of Φ(i), and is a function of x(i).
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Conditioned on the factors, the joint likelihood of
a vector of outputs y = [y1, ..., yN ]T is Gaussian:
y|{Xi}N

i=1 ∼ N (0;K).

If all basis functions Φ(i) are linear, then the gener-
ative model is multilinear, and the GP represents a
Bayesian form of multilinear regression. For general
kernel functions, multifactor GP regression can be per-
formed in the same manner as normal GP regression.
Given training data D, the predictive distribution for
a new set of inputs in each of the factors, X̃ , is Gaus-
sian, and are defined in terms of the kernel function
as in (5) – (8). Generalizing the above discussion to
non-zero mean functions is straightforward.

In the case where the inputs {Xi}N
i=1 are unknown and

the outputs are high-dimensional, the model can be
viewed as a GPLVM (Lawrence, 2005) with a struc-
tured latent space. As it is usually assumed that dif-
ferent subsets of the observations are represented by
the same vector in certain latent factors.2

Since the product of valid kernel functions is also a
valid kernel function (Stitson et al., 1998; Rasmussen
& Williams, 2006), any valid kernels may be used for
the individual factors. Although this is a known re-
sult, products of kernel functions are rarely used. The
value of our formulation is that it leads to intuition
as to how and why to multiply kernels, by considering
the underlying generative model. Previous work pro-
vides guidance as to how to determine the generative
model as well. For example, simple bilinear models
have been used successfully to model stylistic varia-
tion in typefaces (Tenenbaum & Freeman, 2000), and
multilinear models have also been used to capture the
dependence of facial images on identity, lighting, and
pose (Tenenbaum & Freeman, 2000; Vasilescu & Ter-
zopoulos, 2002). Nonlinear manifolds are clearly useful
for modeling the space of human poses (Elgammal &
Lee, 2004; Grochow et al., 2004; Urtasun et al., 2005),
but we may wish to express the dependence of motion
data on other factors with linear kernels. In the next
section, we use such experience with simpler models
of motion capture data to guide the selection of kernel
functions for more complex multifactor models.

3. A Model for Human Motion

In this paper, we apply the multifactor model to hu-
man motion capture data consisting of sequences of
poses. A single pose is represented as a feature vector
yt of 89 dimensions, including 43 angular degrees-of-

2For example, a set of distinct face images are assumed
to share the same lighting direction, or a set of poses are
assumed to share the same gait.
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Figure 1. The skeleton used in our experiments is a sim-
plified version of the default skeleton in the CMU mocap
database. The numbers in parentheses indicate the num-
ber of DOFs for the joint directly above the labeled body
node in the kinematic tree.

freedom (DOF) (see Figure 1), their velocities, and
the global translational velocity. Joints with 3 DOFs
and the global orientation are represented as exponen-
tial maps (Grassia, 1998); other joints are represented
as Euler angles. An entire motion is represented as a
sequence of T poses, y1:T .

We focus on periodic human locomotion, such as walk-
ing and running, and model each pose in a motion
sequence as arising from a combination of three inde-
pendent factors:

• the identity of the subject performing the motion,
represented as a 3D vector s;

• the gait of locomotion (walk, stride, or run), rep-
resented as a 3D vector g; and

• the current state in the motion sequence, repre-
sented as a 3D vector x. For example, x corre-
sponds to the phase of a cyclic gait.

For the purpose of the discussion, We will refer to s

and g as the style, and x as the content of the mo-
tion. These latent input coordinates are not normally
provided in observed motions. Hence, the model is a
form of the GPLVM, in which we estimate the latent
coordinates.

We must also choose the type of kernel functions for
each set of input coordinates. Fortunately, we can
draw on experience from previous work to help se-
lect the mappings. In particular, it has been shown
that, for a style-specific model of motion, a nonlin-
ear GPLVM model with an “RBF kernel” provides ex-
cellent results (Grochow et al., 2004; Urtasun et al.,
2005), whereas linear models (such as obtained by lin-
ear PCA) do not capture the nonlinearities of human
poses. Second, stylistic parameters can often be mod-
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eled effectively using a linear space of styles (Brand
& Hertzmann, 2000; Sidenbladh et al., 2000; Urtasun
et al., 2006b) or multilinear in the case of multiple fac-
tors (Vasilescu, 2002). Third, since each DOF yd may
have a very different variance, it is important to in-
troduce scale terms wd for individual DOFs (Grochow
et al., 2004). Based on these observations, we employ
the following kernel function for the d-th DOF:

kd([x, s,g], [x′, s′,g′]) =

1

w2
d

((sT s′)(gT g′) exp(−
γ

2
||x − x′||2) + β−1δ). (15)

This defines a Gaussian process fd(x, s,g) for each
pose DOF, which is assumed to be independent con-
ditioned on the inputs. Note that, if we fix values of s

and g, we get a style-specific GP over poses y condi-
tioned on the content x.

For any particular motion sequence, we assume the
style stays constant over time, and only model dynam-
ics in the content space. We consider two approaches:
nonlinear GP dynamics and a circle dynamics model
(CDM), where the content vectors are restricted to lie
on a unit circle (Elgammal & Lee, 2004). In the first
approach, we assume the time-series obeys a nonlinear
dynamical mapping:

xt = h(xt−1) + ε (16)

Furthermore, we assume that h is a GP with a “linear
+ RBF” kernel; hence, for any given s and g, the
model is a GPDM (Wang et al., 2006).

In the CDM, low-dimensional coordinates are param-
eterized by a phase parameter θt, such that xt =
[cos θt, sin θt]

T . Phase is linear as a function of time,
parameterized by offset θ0 and step-size ∆θ: θt =
θ0 + t∆θ. Each sequence is then parameterized only
by θ0 and ∆θ. The step-size accounts for the different
frequencies of different gaits. (The sampling rate of
the motion capture data is the same in all cases).

Given training sequences, we learn the model by max-
imizing the log-posterior of the unknown factors x, s

and g for each pose, as well as the kernel parameters.
As mentioned before, each motion sequence has a sin-
gle s and a single g for each pose; these factors are not
allowed to vary through time. Furthermore, motions
performed by the same subject are constrained to have
the same s as each other, and motions with the same
type of gait are constrained to have the same g. The
β and γ hyperparameters have prior p(β, γ) ∝ (βγ)−1;
all other hyperparameters and factors have uniform
priors. Numerical optimization is performed using L-
BFGS-B (Zhu et al., 1997). Note that we do not con-
strain corresponding poses in different sequences to

Table 1. RMS errors for long prediction. Sequence indices
correspond to the sequences in the CMU mocap database.

Model GPDM B-GPDM CDM

Style no yes no yes yes

07-02 1.56 0.91 1.75 0.76 0.38

08-04 1.18 0.48 1.30 0.97 0.47

08-05 1.91 0.56 1.29 0.57 1.77

08-11 2.42 1.06 1.52 1.36 0.80

07-04 1.10 1.10 1.17 1.32 0.72

07-12 1.45 1.06 1.39 0.78 0.57

37-01 1.04 0.75 0.98 0.91 0.35

16-35 1.41 0.53 0.55 0.40 0.39

09-07 1.34 0.49 0.87 0.67 0.57

Avg. 1.49 0.77 1.20 0.86 0.67

Table 2. RMS errors for short prediction (averaged over
24 samples).

Model B-GPDM CDM

Style no yes yes

07-04 1.21 ± .035 0.92 ± .030 1.12 ± .048

07-12 1.48 ± .033 0.88 ± .037 1.14 ± .050

37-01 1.00 ± .026 0.70 ± .013 0.85 ± .019

share the same x, as we do not assume prior knowledge
of the exact correspondences. It is desirable, however,
to restrict the content of different styles to lie on the
same trajectory, especially for motion synthesis. This
is the main motivation for the CDM.

4. Experiments

We now evaluate the ability of learned multifactor
models to perform time-series prediction from motion
capture data, and to synthesize new motion sequences
in new styles.

4.1. Prediction

In the prediction task, we first learn models from a
collection of motion clips.3 Then, given a portion of a
new sequence, we predict the subsequent frames of the
sequence, and compare them against ground-truth. No
timewarping is done on any of the training or testing

3The data are taken from CMU (mocaps.cs.cmu.edu)
data sets 02 02, 02 03, 35 01, 35 18, 08 01, 08 07, down-
sampled by a factor of 4, and constitute 314 frames in total.
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Figure 2. The structure of the multifactor model, where each sequence of poses are generated by an identity/subject
vector, a gait vector, and a trajectory of states. Not all combinations of identity and gaits are available in the training
data; the sequences (02, stride), (35, stride), and (08, run) are missing data inferred by the stylistic CDM.

data. We compare single-factor dynamical models for
xt which do not explicitly model style (s and g) with
the multifactor models introduced in the previous sec-
tion (but use the same dynamical model in xt). We
will refer to the latter as stylistic models here. The
models compared include the GPDM, the B-GPDM
(Urtasun et al., 2006a), and the CDM. The B-GPDM
is a variant of GPDM which heavily prefers smooth
trajectories in the latent space. Following previous
work, we use 3D latent spaces for xt in the GPDMs.
The CDM restricts xt to lie on a circle, and is there-
fore 2D. For the stylistic models, 2 additional 3D la-
tent spaces are introduced, corresponding to the s and
g factors.

Given that a 2D circle latent space is unable to model
any stylistic variations, the CDM without style is omit-
ted as it performed very poorly. Single-factor GPDMs
with higher latent dimensionality are also omitted, as
we have found that additional latent dimensions do
not improve performance.

In prediction, the hidden factors are first estimated for
the test subjects, by maximizing the joint posterior of
all unknowns, conditioned on the test sequence and
the learned model. Prediction is then performed by ex-
trapolating the latent sequence of xt’s. For the GPDM
variants, this is done by optimizing the joint dynamics
distribution (Wang et al., 2006); for the CDM, this is

done by taking the appropriate number of linear steps
in phase. In both cases, the subject and gait are as-
sumed to stay constant for the new sequence. New
poses are then generated as the mean of the condi-
tional Gaussian given the computed factors for each
time-step.

All five models are tested by a long prediction experi-
ment and a short prediction experiment. In long pre-
diction, poses for just over half a cycle are provided,
and poses for the next cycle are predicted.4 The mean
RMS errors of all of the predicted frames are shown
in Table 1. The stylistic versions the GPDMs per-
form better than the single-factor versions by 48% and
28%, respectively. The stylistic CDM model achieved
the lowest average rates among all models in the long
prediction test.

In short prediction, only about a quarter of a cycle is
given, and half a cycle is predicted.5 Here we selected
3 data sets — all from subjects not seen in the train-
ing data — consisting of walks of varying speeds. For
each set, 24 random starting poses are selected (con-
strained by the need for there to be enough ground

4For walking data, 25 frames are given, 40 are predicted.
For running data, 13 are given, 20 are predicted. This is
due to the difference in the number of poses per cycle.

510 poses given, 20 poses predicted
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Figure 3. Motions generated from Gaussian sampling of
the gait space and subject space. None of the poses are
present in the training data.

truth data after the start pose), and we show the mean
and standard error of the average RMS for each pose.
Here we do not test the GPDM models, as they per-
formed worse than the B-GPDM models in the previ-
ous test. The stylistic model improved upon the orig-
inal B-GPDM model in all 3 data sets. The stylistic
CDM model had a higher mean error, as well as more
variability than the the stylistic B-GPDM model. This
is in part due to its need for accurate estimation of the
starting phase, as well as step size, which is less reliable
for small numbers of input poses.

4.2. Motion Synthesis

The learned stylistic CDM can be used to generate mo-
tions not present in the training data. The model was
learned from three subjects (02, 35, and 08 from the
CMU database) all with some missing data. For sub-
jects 02 and 35, the training data comprised examples
of walking and running, but not striding. For subject
08, the training data included examples of walking and
striding only. To generate new motion trajectories,
a step size ∆θ must be determined. We fit a bilin-
ear model to the step sizes estimated during learning,
mapping from s and g to ∆θ. Because the step-size
determines the speed of the motion, we can generate
motions of varying speeds.

Figure 2 depicts the structure of the multifactor model,
including the inferred motions. These inferred mo-
tions are not simply copies of poses from a nearby
gait or subject. In particular, the striding poses for
subjects 02 and 35 contain stylistic elements of their

respective walks: the inferred striding motion for 35
contains very little hand movement compared to the
one striding training sequence (upper right), which is
nevertheless consistent with subject 35’s walking style
(bottom center). Similarly, the bending of the left arm
for subject 02 (upper left) is evident in that subject’s
walking style (lower left).

We can also generate new motions by random sam-
pling. We fit one Gaussian distribution to the learned
subject vector (s) and another to the learned gait vec-
tor (g), and then generate random new styles by sam-
pling from these Gaussians. The step size ∆θ can then
be predicted by the bilinear model, and a sequence xt

of arbitrary length can then be generated.

The synthesized motions are shown in Figure 3. The
top and middle rows are typical samples between a
walk and a run. The bottom row is a slightly less
typical, being a mixture of a run and a stride, which
exaggerates the flight phase of running. In general,
we find that convex combinations of styles produce
reasonable motions.

Figure 4 demonstrates the ability of the model to gen-
erate smooth transitions from walking to running and
from running to striding. The transitions are gener-
ated by linearly interpolating the gait vector with re-
spect to the changing state vector. The subject vector
is fixed to that of subject 02.

5. Discussion

We have described a multifactor regression and dimen-
sionality reduction framework that unifies multilinear
models with Bayesian regression and non-linear dimen-
sionality reduction. The model can be viewed as a
form of hierarchical Bayesian prior: modeling stylistic
variation allows us to model a distribution of distri-
butions, and thus generalize to new data with a style-
specific distribution not included in the training data.
In all of our experiments, we found that stylistic mod-
els performed better than generic models.

A number of potentially-daunting choices are involved
in determining which factors and kernels to use. We
have made these choices by considering subproblems
and special cases of the underlying generative model,
such as “style-only” models and “content-only” mod-
els. Considering these cases sheds light on how to com-
bine these models, and we recommend this approach.
Alternatively, model selection techniques could be em-
ployed, assuming a large dataset is available. Either
way, we believe that multiplicative combination of ker-
nels will be useful for modeling many types of data
sources with multiple factors.
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Figure 4. Transitions between different motions are achieved by linear interpolation in the gait space.
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