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Abstract. We show that, from the output of a simple 3D human pose tramker
can infer physical attribute€.g., gender and weight) and aspects of mental state
(e.g., happiness or sadness). This task is useful for man-machimenunication,
and it provides a natural benchmark for evaluating the perémce of 3D pose
tracking methods6. conventional Euclidean joint error metrics). Based on an ex
tensive corpus of motion capture data, with physical andgg@ual ground truth,
we analyze the inference of subtle biologically-inspirettilautes from cyclic
gait data. It is shown that inference is also possible wittiglaobservations of
the body, and with motions as short as a single gait cyclerrieg models from
small amounts of noisy video pose data is, however, pronednfitting. To mit-
igate this we formulate learning in terms of domain adaptatior which mocap
data is uses to regularize models for inference from videset data.

1 Introduction

The fidelity with which one needs to estimate 3D human posev#&mom task to task.
One might be able to classify some gestures based on réyativarse pose estimates,
but the communication of many biological and socially relevattributes, such as gen-
der, age, mental state and personality traits, necessitia¢erecovery of more subtle
cues. It is generally thought that current human pose tnactéchniques are insuffi-
cient for this task. As a consequence, most previous workctiorarecognition, ges-
ture analysis, and the extraction of biometrics, has fatwse2D image properties, or
holistic spatiotemporal representations. On the contaeyposit that it is possible to
infer subtle human attributes from video-based 3D artiedlgpose estimates. Further,
we advocate the inference of human attributes as a natueahimgful way to assess
the performance of 3D pose tracking techniques.

In this paper, we consider the inference of gender, age hvaigd mood from video-
based pose estimates. One key problem is the lack of suttaliéng data comprising
labeled image sequences with 3D pose estimates. To deahigtissue, our models are
bootstrapped from a substantial corpus of human motiorucaptata, and then adapted
using a simple form of inductive transfer learning. In pautar, the adaptation accounts
for differences between the distributions of featureswaelfrom mocap and the video-
based pose tracking data. Ground truth gender, age and g iprovided with the
mocap and some video-based pose tracking data. We alsaleonsddels trained on
perceived attributes gathered from human perception experimentstbeenternet. For
various aspects of mental state, like mood (happiness)ahyrerception is, at present,
our principal source of (ground truth) training data.



2 Sigal, Fleet, Troje and Livne

The inference of human attributes has myriad potential,useging from human-
computer interaction to surveillance to clinical diagmstE.g., biometrics are of in-
terest in security, and retails stores are interested iprodemographics. The range
of potential applications increases further as one corsigevider range of attributes,
including, for example, the degree of clinical depressibfi[or levels of anxiety.

The goal of this paper is to demonstrate a simple proof-ofcept model for at-
tribute inference. We restrict our attention to walking iroos, a generic 3D pose tracker,
the extraction of simple motion features, and a very basiofs#tributes. Pose tracking
from two views is accomplished with an Annealed Particleefi[8, 29], with a like-
lihood derived from background subtraction and 2D pointksa We avoid the use of
sophisticated activity-specific prior modeésd., [18, 30]) that are prone to over-fitting,
thereby biasing pose estimates and masking useful infawmatollowing [23, 28, 31,
33] our motion features are derived from a low-dimensioaptesentation of joint tra-
jectories in a body-centric coordinate frame. We then usgalarized form of logistic
regression for classification. The experimental resultsvsinat one can infer attributes
from video pose estimates (at 60—90% accuracy dependingeoattribute). We are
confident these results can be improved with advances in 3B fpacking.

2 Background and Related Work

Perception of Biological Motion: Almost 40 years ago, Johansson [12] showed that a
simple display with a small number of dots, moving as if dittto major joints of
the human body, elicits a compelling percept of a human figuneotion. Not only can
we detect people quickly and reliably from such displayscae also retrieve details
about their specific nature. Biological motion cues enalerecognition of familiar
people [6, 32], and the inference of attributes such as geade, mental state, actions
and intentions, even for unfamiliar people [3, 20, 31].

Humans reliably classify gender from point-light walkerghaa hit rate (correct
classification rate) of 65 to 75%; frontal views are clasdifiest [20, 25, 31]. Studies
have focused on cues that mediate gender classification asuthe shoulder-hip ratio
[7] or the lateral sway of the upper body that is more pronedrio men [20]. Interest-
ingly, depriving observers of kinematics degrades genldasification rates. When in
conflict, information conveyed by dynamic features dongsahat of static anthropo-
metrics [20, 31]. Using PCA and linear discriminants Tr&][modeled such aspects
of human perception. Similar models have even been showoreey information
about weight and mood and the degree of depression in dlpigaulations [17].

Biometrics. Gait analysis is closely related to our task here. There i©wigg liter-
ature on gait recognition, and on gender discriminatiomfigait (see [4] for a good
overview), and a substantial benchmark datasets exisgiorecognition ([27]). How-
ever, such datasets are not well suited for 3D model-bassel fpacking as they lack
camera calibration and resolution is often poor. Indeedstrapproaches to gait recog-
nition rely mainly on background subtraction and properti£2D silhouettes. Very few
approaches exploit articulated models, either in 2D or 3ihdagh see [33, 35]).

Like gait recognition, gender classification from gait isiaky formulated in terms
of 2D silhouettes, often from sagittal views where the shafpie upper body, rather
than motion, is the primary cue.., [16, 19]). With multiple views some form of voting
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is often used to merge 2D cues [10]. The use of articulatedetsddr gender discrim-
ination has been limited to 2D partial-body models. ¥al., [34] used a set of 19
features, including 2D joint angles, dynamics of hip angthe correlation between
left and right leg angles, and the centre coordinates of ihe&iee cyclogram, with
linear and RBF SVMs, and a 3-layer feed-forward neural negémder classification.
Samangooei and Nixon [26] consider video retrieval with gl attributes that in-
clude gender, age and weight. But they assume 2D sagittas\daad a green screen to
simplify the extraction of silhouette-based gait signatur

Unlike the gait recognition problem, inferring attributefsunfamiliar people does
not presuppose that test subjects exist in the training &ataher, by using 3D artic-
ulated tracking we avoid the need for view-based models andtrained domain<f,
[10, 26, 34]). The video sequences we use were collectedimdaor environment with
different (calibrated) camera locations, most of whichmlid include a proper sagittal
view. Finally, here we infer physical attributes as well apects of mental state, like
the mood of the subject. To our knowledge this is the first ptps attempts to address
recovery of such attributes collectively from video-ba8&dpose estimates.

Action Recognition: Like biometrics, most work on action recognition has foclisa
holistic space-time features, local interest points ocsgiame shape®(@., [9, 14, 21]),

in the image domain rather than with 3D pose in a body-ceptriworld frame. It is
widely believed that 3D pose estimation is sufficiently gaisat estimator bias and
variance will outweigh the benefits of such compelling repreations. Nevertheless,
some recent methods have successfully demonstratedithatdl not be the case..,
[22]). Unlike such work focused on classifying very diffatenotion patterns, we tackle
the more subtle problem of inferring meaningful percepsftocomotion.

3D Pose Tracking: The primary benchmark for evaluating techniques for paseking,
HUMAN EvA [29], uses the 3D Euclidean distance between estimatedrandd truth
(mocap) joint positions. Errors in joint positions and joémgles are easy to measure,
but it is not clear how they relate to task requirements. RMSE (root-mean-squared
error) of 70mm be sufficient to determine gender or mood, pbgésture recognition?
Some trackers with errors of 70mm might preserve the retéaéormation while oth-
ers may not. As such, task-specific measures, like attribtgeence, complement con-
ventional RMSE measures. In particular, attribute infeeeis relatively complex as
it depends on subtle pose and motion information. Furthezmamlike many activity
recognition tasks, which depend on motion and scene cofeext[15]), attribute in-
ference is mainly a function of information intrinsic to thgent or the perception of the
agent’s motion. Human attributes are of clear social sigaiite, and may be directly
relevant to applications. That said, an extensive compiarié different pose trackers
based on attribute inference is beyond the scope of thispape

3 Human Motion and Attribute Data

Models for different attributes are learned from a combaradf partially labeled video
and motion capture data. Unfortunately, since we had viédéa lom only20 subjects,
models trained on video-based tracking data are prone tefitileg. On the other hand,
models learned from mocap should not be applied blindlyaicking data because many
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Gender Mood Weight Age
20, 201 20, 20,
10 10y 10 10
male female happy sad light heavy young old
[Attribute J#Observerg#Ratings| 30 30
Gender 563 36524 20 20
Weight 694 44657 1 1
Age 67 4380
Mood 126 8093 56 105 I 25

® 0 (Rar ™
Fig. 1. Web Attribute Data: The top row shows histograms of average ratings from observe
for four attributes. The bottom row histograms show grounthtdistributions of weight (kg) and

age (yrs). The numbers of observers and walkers rated foragtitbute are given in the table.

of the discriminative features in mocap data cannot bebigliastimated during pose
tracking. Therefore, as discussed below (Sec. 4), we tram & combination of mocap
and tracking data using a simple formulation of transfemesy.

3.1 Motion Capture Data: Dpocap

Our source mocap data comprises walking motions fid individuals. From41
physical markers we estimaté 3D “virtual markers” at major joints of the bodye.,

at shoulder joints, elbows, wrists, hip joints, knees, ankles, and at the centers of
the pelvis, clavicles, and head. Each participant walkedéweral minutes within the
capture volume at their preferred speed, after which werbegeecord up tat trials of
walking. The data are also labelled with gender, age andhwésge Fig. 1).

Human Subject Ratings: In addition to physical attributes we also consider pemgiv
attributesj.e., what people perceive when viewing point-light displaysvatking peo-
ple. With this data one can begin to explore biological ches tonvey gender, age and
weight. More importantly, this provides us with labels abapparent mental state, such
as mood (happiness or sadness).

In a web-based experiment observers were asked to ratergalkieg attributes of
their choosing. Each observer specified an attribute, ardréited up to 100 walkers (in
random order) on a scale of 1 to 6. They were also asked torighrases to indicate
what ratings of 1 and 6 represenerom ratings of ovet000 observers, each of whom
rated at least 20 walkers, we selected sessions for whichatmeed attribute was one
of “gender”, “age” or “weight”, and the labels for ratings a6 were meaningful. For
“gender” we accepted “male-female” or “masculine-feméiirfor “age” they had to
contain “young” and “old” (or “elderly”), and for “weight™/light” and “heavy”. We
accepted any of “mood”, “emotion”, “happy”, or “happinedst the mood attribute,
and ratings 1 and 6 had to include the words “happy” and “sBké.resulting numbers
of subjects and trials are given in Fig. 1. For each of tbe walkers displayed, we
computed the average rating, over all observers. Fig. 1 stmdistributions. Although
data from experiments like this are noisier than those ctdttunder more controlled
conditions, they do reveal consistent perceptual intéagions.

4 http://www.biomotionlab.ca/Demos/BMLrating.html
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Fig. 2. Video Pose Tracking:The APF tracker uses a background model and 2D tracked points
from two views (top row). Tracking output for three subjeate shown in the bottom three rows,
with average error in 3D joint locations of 63.7#:.(n), 59.9 (nm), and 82.3 {um) respectively.
Notice the differences in camera orientations and the bacikgl.

3.2 Video Pose Tracking DataD,;geo

In addition to the mocap above, we also have synchronizesthiar video (30Hz) and
mocap (120hz). We captured 2-3 sequences for each of 2¢1j@ male, 10 female)
walking, with different camera configurations, but usualith views that were within
30° of frontal and sagittal. Each sequence was approximatelygtit cycles in length.

The 3D pose tracker was a modified version of an AnnealeddraFilter (APF)
[8,29]. The likelihood used a combination of a probabitidiackground model with
shadow suppression, and 2D point tracks [11] (see Fig. )(tBpint tracks were only
used for body parts that remain visible, the likelihood fdrieth was formulated as a
truncated Gaussian (for robustness). The same likelih@sdused for all subjects. We
used al5-part body model comprising truncated cylinders, withjoint angles plus
global pose [29]40 DOFs in total). The prior motion model was a smooth first-orde
Markov model, with weak joint limits and inter-penetratioonstraints. The lack of an
activity-specific prior motion model was motivated by theside to avoid biasing the
pose estimates towards a particular population. All expenits used the same APF
setup 200 particles/layerp layers), requiring roughl minutes/frame (Matlab). We
believe it is possible to estimate partial anthropometidine while tracking [2], but
for simplicity we assumed known anthropometrics.
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Fig. 3. Subspace VisualizationThe distribution of motions ifD,,.cqp in the first 2 principal
dimensions is shown. (Left) Males (blue +) and females (redMiddle) Weight is depicted
with blended colors: Heavy (red) and light (blue). (Rightji& pose tracks and mocap from 5
subjects iMD,; 4., are shown in 2 subspace dimensions: (color coded); cinstbsdte two video
trials, crosses corresponding tracks; (CyaR,mocqp males, yellow -Dy,ocqp females).

The tracker performed well except when the legs were closere cases the leg
identities were switched. In these cases we did not filterdékalts in any way. In fact
we report performance on all tracks obtained. We ran théératwvice on every test
sequence (yielding 80 pose trajectories). Sample traaldsglts for three subjects are
shown in Fig. 2; in terms of the average Euclidean joint exrtre results are compa-
rable to state-of-the-art [29]. The average Euclideanrénr8D joint locations over the
80 runs had a mean of 73mm and a standard deviation of 19mm.

Finally, note that pose data iR,;qco andD,,.cqp have structual differences. To
facilitate video tracking the body model 1,,;4., had fewer degrees of freedom. Also
the mocap protocol used to estimate joint positions difféneD ;qco aNAD,,0cqp-

3.3 Motion Representation

Following [28, 31] we represent each motion as a pose ti@jgdte., a vector com-
prising the 15 3D joint positions at each time steype exploit the periodic nature of
locomotion, expressing each motion as a Fourier serie8[33two harmonics are suf-
ficient for walking [31]. To represent each pose trajectarg,encode the mean (DC)
pose, along with the Fourier coefficients at the fundaméntgluency and its second
harmonic. This yields a 225-D vector for each motiaa.(5 real-valued Fourier coef-
ficients for each of 15, 3D markers). This encoding is soméwgiaust to the noise in
the 3D poses within a trajectory, allowing us to better deith the poor SNR of the
video-based pose data.

Let the Fourier-based representation of th&’smotions be{m; } ', , wherem; €
R22%, Not surprisingly we find that the dimension of the represgon can be reduced
significantly with PCA. Since the SNR of the mocap data is mhigher than the track-
ing data, we compute the subspace basis from the mocap datattie 115 subjects
described above in Sec. 3.1). Well more than 90% of the daianee is captured in 16
dimensions; in practice, using more than 16 dimensions dogisnprove the accuracy
of attribute prediction appreciably.

5 Initially all the walkers are aligned. The world frame iseted so subjects are walking along
the X-axis. We remove slow trends in the forward and lateiralctions, based on the motion
of the COM ({.e,, the average of all5 joint markers) the XY plane.
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Let B = [by, ..., bk] denote the subspace basis, wh&rés usually 16 or below.
Further, letc; denote the subspace coefficientsifoy; i.e,, c; = B? (m; — m) where
m is sample mean of the motion ddta; }. Fig. 3 depicts the distribution of gender and
weight in the first two principal directions. While not limbaseparable, the attribute
structure is clearly evident.

Of course there are other possible motion features. For pbearioo et al. [34]
use features of an articulated model extracted from a shgitw of walking people,
from which they acheive good gender classification with SVBt&sed on their paper,
our implementation of their features with several différeassifiers produces no better
than 75% correct gender classification on our mocap dafasgt.,, compared to hit
rates of 80%-90% obtained here (cf. Fig. 5).

4 Learning

Dimocap Provides a significant corpus of labeled mochut, the subspace motion fea-
tures fromD,,,cqp @aNAD,;4., Nave different distributions. First, the pose dat®in .,

is based on a different joint parameterization (more slétédy video-based pose track-
ing). More importantly, the video tracking data has a lowBiRSand is often biased
because certain parts of the boadyg(, the feet) are not tracked well. Indeed, some
features that are highly discriminative,, .., will be uninformative inD,;4.,. Con-
versely, learning models from the small corpus of noisy eidata inD,;4., iS prone

to over-fitting.

To mitigate these problems we formulate the learning prolds a form of trans-
fer learning, callediomain adaptation. It is applicable when the sourc®f,o.q,) and
target O,:4¢0) domains share the same features, but have significantéyelift feature
distributions €.g., see [24]). Intuitively, we learn source models from the aptrain-
ing data. The source models are then adapted to the videardedomain through the
minimization of a loss function on the target data that isedttoward the source model
(eg., [1,5]). The resulting models generalize much better tisé learned from the
video-based pose data directly, and they produce muchrbegalts than the direct
application of models learned fro,,,cqp-

In more detail, we use logistic classifiers for the infereatbinary attributes and
for predicting human ratings. A logistic model expressegtbsterior probability of an
attribute,g € {0,1}, as a sigmoidal function(-) of distance from a planar decision
boundary, defined by parametérs (w, b); i.e

1

plg=1lc,0) = 1+ exp(—cfw — b) = U(CTW +b). 1)

The weights that define the decision hyperplane are foundlbgpimization. That is,
given source mocap datfs;, gj}j.";l, the optimized parameters are found by minimiz-
ing the negative log likelihood of the data with respect te Weight vectomw and the
bias offseb, i.e, §° = (w*,b°) = argmin L,, where

Ls(w,b) logHU cj;w,b) 95 (1 —o(cs;w, b)) 79 . (2)

VR
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To adapt the model learned frof,, ..., to the target dat®,;q.,, following [5],
we learn a logistic model on the target training data with aisd&n prior centered
at the source model. That is, we minimize a loss function tha combination of
the negative log likelihood of the video training da(ay,gj}J 1» Nt < N, and a
quadratic regularizer:

Li(w,b) 1ogHa (cj;w,b) 9; (1—a(c§;w,b))1_g; + Njw —w*[>. (3)

While this formulation assumes an isotropic prior, withigacel /), the loss function
is easily generalized to an anisotropic prior that allowssaveights to drift more than
others. The covariance for an anisotopic prior might be sebming to the ratio of
variances in the subspace projectiongQf,c., andD.;q., respectively. Nevertheless
the experiments reported below are based on an isotrogic pri

Cross-validation is used to determineAlso, note that we do not regularize the
bias offset since it is often convenient to allowo vary freely to account for any bias in
the tracking data. Minimization of, is accomplished with Newton iterations to solve
for critical points,i.e.,

N: .
sty = Ytotehiwn - (F) A (") =0 @

J=1

One can generalize the approach to model the ratings dagpltacing the ground
truth ¢ in (3) with the average rating (scaled (@, 1)). Treating the average rating as
the expected value af over different observers, (3) can be interpreted as theatagde
likelihood. Also, while the approach formulated here ppsases labelled target data,
it is also possible to extend the technique to the semi-sigest case where the target
video data is not labelee.@., [1]).

In addition to simple classifiers for binary attributes, weoaconsider domain-
adapted least-squares (LS) regressors for real-valudaliadis, such as age and weight.
For example, the adapted LS predictor for real-valuedaitieic minimizes

Ny
2 ,
L.(w,b) = Z [(ch§- +b) — aﬁ-] + N|w — W‘SLSHQ. (5)

Jj=1

wherew; ¢ is the LS optimal weight vector learned from the mocap da@,jfcqp

5 Models and Analysis of Source DataD,,ocap

We first learn models for the inference of different attrémitising the labelled mocap
Corpus.Dyocap- We tried learning with several different loss functiomgluding Gaus-
sian class-conditional models and linear/RBF SVMs, buergeneralized significantly
better than logistic or linear LS regression. In all casescharacterize the expected
performance of the classifier/regressor using leave-aneross-validation.

Figure 4 (left) shows how gender classification depends estibspace dimension
of the motion representation. With fewer than 16 dimensiormortant information is
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Fig. 4. Effect of Subspace Dimension and Sequence Lengtheave-one-out cross validation is
used to asses the effect of subspace dimension on the eolassification rate for the ground
truth gender classification (left) and the RMSE of the resdls®d weight regressor (middle). The
right plot shows the dependence of gender classificatioh@duaration (in gait cycles) of mocap

sequences (based again on leave-one-out cross-valigdation

lost. Classification performance with more than 20 dimamsigields marginal gains;
with a 16D subspace the correct classification rate for geisd#0%. Fig. 4 (middle)
shows the behaviour of a LS predictor for weight. The weigifteur 115 walking
subjects ranged from 50 to 100 kg, while the RMSE of predigi(l 6D features and
leave-one-out cross-validation) is 5.4 kg. Fig. 4 (righiws that gender can be classi-
fied with as little as one gait cycle (consistent with humarception [13]).

Normalized Models: To infer attributes from video pose estimates, we may no¢ laav
cess to full 3D pose. For example, with monocular tracking imight be able estimate
3D pose only up to the overall scale of the subject. Many 3Cepeckers simply as-
sume the subject is average heighg( [2]). In extreme cases a pose tracker may have
no anthropometric knowledge whatsoever. To explore thasescwe computed two fur-
ther subspace representations of the daf@,if3..,,. First all walkers were normalized
to be the same height, and second, all anthropometricsrai@/ezl (by computing joint
angles and then using the mean anthropometrics to recohgteumotions).

The first row of results in Fig. 5 gives the gender hit rate (correct classification
rate) and the RMSE of linear LS predictors for weight and afjdyased on leave-one-
out (LOO) testing. One can see that the two normalized medeless informative than
using the full 3D data. Predictions from the height-normedi models are somewhat
better than the anthropometric-normalized models as ¢xgedlso note that while
predictions of gender and weight are quite good, age is p@uedicted. The walking
subjects in this dataset ranged in age from roughly 18 to 3Bsyevhile the RMSE for
age prediction is 6.9 years.

Incomplete Data: To infer attributes from video-based pose estimates, we brigble
to cope with missing data, since parts of the body may begligrtir entirely occluded.
Letm € R?2?° be acomplete measurement vectoir€., the Fourier coefficients for each
joint). Let the observed measurementsrhg = Pm, where the matrix? comprises
only those rows of the identity matrix that correspond to dhserved joints. It then
follows from the generative subspace moda, m = Bc + m, that a LS pseudo-
inverse can be used to estimate the subspace coeffieigfrtam my, i.e.,

co = (BTPTPB) 'BTPT(my — Pm). (6)

The columns in Fig. 5 report model performance when data fraodel joints of
the upper body, or from the lower body, are used. Also repaate results when one
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Gender (% correct)| Weight (RMSE kg)| Age (RMSE yrs)
Full | Height|Motion || Full | Height{Motion || Full | Height|Motion
3D | Norm.| Only 3D | Norm.| Only 3D | Norm.| Only

Full 3D Pose 89.6/ 86.1|81.7| 54| 9.7 |109]|| 69| 6.9 | 6.4

Upper 3D Body|| 87.8/ 86.1{80.9 || 59| 9.9 |11.0| 70| 7.1 | 6.3

Lower 3D Body|| 84.4| 80.0|73.9 || 6.2| 9.4 |122| 72| 7.2 | 7.3

Frontal 2D Pos¢ 87.0/ 80.0|76.5| 55| 9.6 | 10.8| 7.0 | 7.1 | 6.9

Sagittal 2D Pogg 80.9| 83.5| 79.1|| 9.9| 11.5| 12.2|| 7.1 | 7.0 | 6.7

Fig. 5. Inference with D,,,.c., Models: To assess performance, with and without missing data,
we build 3 modelsFull 3D uses known anthropometrics and kinemati¢sight Normalized is
learned from mocap that is height normalized; &wation Only uses only kinematic information
(all walkers have the same limb lengths). The lack of anthmogtrics degrades performance,
but the inference of gender and weight are above chance imadels. We also report how
performance varies with different subsets of markerg,(upper/lower body) or 2D projections.
Again, despite degradation in performance, the modelsraomto predict attributes well.

Gender| Weight| Age Mood
Full 3D 94 93 88 94
Height Normalized 93 93 86 93
Motion Only 93 94 86 93

Fig. 6. Inference of Perceived Attributes:We report the accuracy of predictions of human rat-
ings for gender, weight, age and mood, all from the sourceamatataseD,,...,. Perceived
attributes are quantized to one bit based on the averagw fati each subject, and the output
of the logistic regressor is thresholded at 0.5. The tabdevstihe fraction of subjects for which
the classifier matches the quantized rating. Notice thatgderd attributes are generally better
predicted by the learned models than are ground truth ateshtf. age in Fig. 5).

uses 2D data under orthographic projection from frontabgittal views. Interestingly,
the observation that frontal views are more informativentbagittal views is consistent
with studies of human perception [31].

Predicting Human Ratings: It is also interesting to consider how well one can predict
perceived attributes. This is a scientific curiosity for physical attributes ligender, age
and weight. For mood, however, we have no physical grounti.tfRather, the per-
ceived mood is our only labelled data source. For all attebubecause our perceptual
rating data are noisy, we quantize ratings of each attritoud@e bit;i.e., each walker is
(perceived to be) (1) male or female, (2) heavy or light, @)iyg or old, and (4) happy
or sad. Then, the average attribute rating for a given tngisubject (scaled t(@, 1))

is taken to be the corresponding probability of being maéa\ly, old, and happy, re-
spectively. We use logistic regression to predict thesbaidities, with leave-one-out
measures of performance given in Fig. 6.

It is striking that, in all cases, we can do a better job pralichuman ratings
than ground truth. Human observers are, purportly usingtadable visual cues in a
consistent manner, even if it is inconsistent with the gebtrath. In particular, while
true age is very hard to predict, perceived age is predictgi] /s not how old you are,
it'show old you look. While interesting, this also shows clearly that percewittidbutes
may be biased, and therefore require qualification.
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Fig. 7. Domain Adaptation: (a) Gender classification from timaocap in D,;4.. for 20 test sub-
jects (from leave-one-out performance), as a function efstinength of the prioA, for each of
3 models (full 3D, height normalized, motion only). (b) Gendlassification from the video-
basedpose tracking data for 20 test subjects (leave-one-out performance). (c) RMBEeight
estimates fronpose tracking data, for 20 test subjects, as a function of the strength of therpri

6 Attribute Inference from D,igeo

Given the source models learned fr@, .., We use domain adaptation to learn mod-
els for the test pose data,;4.,. Not only is this useful in generating models for the
video pose tracking data, it is also useful in building a siféeex from the test mocap in
Duideo- The reason is that the pose datellp;,., is noisier and is parameterized dif-
ferently from that inD,,,cqp. The mocap irD,,..qp allows for variable joint locations,
while the parameterization of the tracker usedg ., has fixed joints. The tracker
also has a fewer DOFs. Hence there are structural diffesesv@n between the mocap
iN Diyyocap @and that inDy;geo -

Domain Adaptation: Figure 7 (left) show the leave-one-out hit rates for gendbessi-
fiers learned fronD,;4., With domain adaptation fror®,,,,..,. The curves show how
performance depends on adaptation from the source modelfuestion of\ (see (3)

in Sec. 4). The highest hit rates occur witbetween 0 and10*. For comparison, the
crosses (X) depict the hit rate when there is no domain adaptg.e., withw*® = 0

in (3)). The circles (0) depict the hit rate when the classfiare trained solely on
the source dat®,,,..q, (With no domain adaptation) and then tested on the mocap in
Duideo- ReEMember that the body modelin,; 4., has fewer degrees of freedom and was
estimated using a different mocap protocol from that in ttigiwal mocap inD.,ocqp-
Hence even the mocap motion feature®ip, .., andD,,;q., are distributed differently,
and hence the value of domain adaptation.

Pose Tracking Data: Figure 7 (middle) shows leave-one-out hit rates for gendanf
video-based 3D pose tracking data (two trials of the APFefach of 2 walking se-
quences for each of 20 subjects). As above, the curves showependence on the
strength of the prior from the source model. The crossesggiat hit rates with no do-
main adaptation (from pose tracking data alone), and tleéesio) depict the hit rates
from classifiers trained solely on the source mocap @gta..,. It is not clear why the
full 3D model with pose tracking data is much worse than thigtt wmocap input.
Figure 7 (right) shows how predictions of weight from videased 3D pose data
depends on domain adaptation. As above, the crosses (xharmirtles (0) show that
predictions are poor when based solely on the daf,ip.., Or in Dyiqeo. With domain
adaptation the results improve significantly. The standaxdgation of the weight among
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Gender - mocap || Gender - tracking|| Weight - mocap || Weight - tracking
(% correct, A = 10%) || (% correctA = 10*) || (RMSE kg,A = 10"%) || (RMSE kg,A = 10°)
Full | Height[Motion || Full | Height|Motion|| Full | Height|Motion|| Full | Height|Motion
3D | Norm.| Only 3D | Norm.| Only 3D | Norm.| Only 3D | Norm.| Only
Chmocap 75.0| 65.0| 62.5|] 53.8| 57.5| 47.5|| 5.7 | 10.9| 6.6 || 51.4| 42.1| 42.7
Clrack 65.0| 57.5|42.5(| 55.0| 55.0| 50.0(| 40| 7.3 | 6.9 ||12.5|13.1| 145
Cirackrr| 77.5| 70.0| 67.5( 61.3| 73.8| 61.3|| 3.6 | 7.6 | 6.0 || 10.6| 10.9| 124

Fig. 8. Attributes from Mocap and Pose Tracking Data: The tables reports leave-one-out per-
formance on gender classification and weight predictiomftest mocap and pose tracking data
in the target datasé®,,.4., of 20 subjects. There are 40 mocap sequences (2 walks/Hubjed
80 pose trajectories from video tracking (2 tracking trjzés sequence). Results from 3 models
are reportedCl,ocqp 1S learned from the source moc@rocap; Cirack 1S learned solely from
test datéDyidco; Cirackrr iS learned withD,;4., and domain adaptation fro®,,,ocap-

the test subjects is approximately 12kg. With domain adiptawith A = 105, the
RMSE decreases to approximately 10.6. These results &itkitrg data are worse than
those based on training mocap data in Fig. 5, but we find themueaging nonetheless.

Figure 8 gives numerical results for gender classificatind weight prediction,
from both test mocap and test pose tracking data (like thes johoFig. 7). As above,
we show results from three modelS;,,..., is learned solely from the source mo-
capDrocap; Crrack 1S learned solely from test dafyiqco; Crrackrr 1S learned with
Dyideo @and domain adaptation frof,,,.q,. Not surprisingly, the predictions of gen-
der and weight from on video tracking data are not as reliablinose from the mocap.
They are, however, encouraging. While not shown in the figuesalso note that errors
in gender classification are reasonably consistent betweetest mocap and the test
tracking data. Approximately 85% of the motions classifiehf the pose tracking data
are concistent with classification from the correspondirmgap. Thus, while some of
the errors in Fig. 8 are due to noise in the pose tracking datag are due to the fact
that indeed some females consistently walk like males acelwersa.

Inference of Perceived Attributes: Figure 9 reports leave-one-out hit rates in the pre-
diction of theperceived attributes. Like the above experiment in Fig. 6 we quantize
perceptual ratings to one bit and use logistic regressiocléssification €.9., happy
vs. sad). For the purposes of this experiment we also cartsidg@erceptual data as the
ground truth (indeed for perceived mental stageg., mood, that is our only source of
data label) and look at the consistency of predictions betvtke leave-one-out model
trained with mocap and with video tracking results frém; ;...

The consistency between the mocap and pose tracking is wed; with consistent
classification rates between 74% to 93%. It is interestingpte that we can recover the
mental state — mood (happiness), with 85% to 86% accurakgthe results reported in
Fig. 6 the perceived age is predicted well when compared tonmdels for predicting
true age.

7 Discussion

This paper demonstrates that one can, from the output of @oMicised, 3D human
pose tracker, infer physical attributesg(, gender and weight) and aspects of mental
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Gender| Weight | Age Mood
Cirackrr (Full 3D) 83 79 93 86
Ctrackrr (Height Normalized 74 79 90 85

Fig. 9. Classification of Perceived Attributes with Respecto MoCap: The table reports con-
sistency of leave-one-out performance pmnceived gender, weight, age and mood (happiness)
between test mocap and pose tracking data in the targeeti&tas., of 20 test subjects. We use
predicted attribute values for test mocap as targets to @ai...rr binary classifiers (learned
with D,;4.0 and domain adaptation frof,,ocaqp, all with A = 10%).

state €.g.. happiness). The models are used to infer binary attriligessder) and real-
valued attributes (weight). We also consider the prediatibperceived attributes based
on human perceptual experiments. This is useful for infedtiributes such as mood
where human judgements are our source of ground truth. lreais accomplished
using datasets comprising labelled mocap and video-ba3qub3e estimates. These
sources of training data are combined with a simple for of @ioradaptation.

To our knowledge, this is the first paper in the literaturet thiempted to infer
such perceptually and biologically meaningful attributesn 3D video-based pose es-
timates. In the future we hope to collect large datasets aptbee stronger tracking
prior models trained from large collections of mocap data.aéo hope to be able to
test the inference of attributes with monocular pose tragkiethods. While the results
reported here are interesting in their own right, we alsgssgthat tasks like this pro-
vide a natural way to assess the fidelity with which peoplekiees estimate 3D pose.
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