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Abstract. A probabilistic method for tracking 3D articulated human

�gures in monocular image sequences is presented. Within a Bayesian

framework, we de�ne a generative model of image appearance, a robust

likelihood function based on image graylevel di�erences, and a prior prob-

ability distribution over pose and joint angles that models how humans

move. The posterior probability distribution over model parameters is

represented using a discrete set of samples and is propagated over time

using particle �ltering. The approach extends previous work on parame-

terized optical 
ow estimation to exploit a complex 3D articulated mo-

tion model. It also extends previous work on human motion tracking by

including a perspective camera model, by modeling limb self occlusion,

and by recovering 3D motion from a monocular sequence. The explicit

posterior probability distribution represents ambiguities due to image

matching, model singularities, and perspective projection. The method

relies only on a frame-to-frame assumption of brightness constancy and

hence is able to track people under changing viewpoints, in grayscale

image sequences, and with complex unknown backgrounds.

1 Introduction

We present a Bayesian approach to tracking 3D articulated human �gures in

monocular video sequences. The human body is represented by articulated cylin-

ders viewed under perspective projection. A generative model is de�ned in terms

of the shape, appearance, and motion of the body, and a model of noise in the

pixel intensities. This leads to a likelihood function that speci�es the probability

of observing an image given the model parameters. A prior probability distri-

bution over model parameters depends on the temporal dynamics of the body

and the history of body shapes and motions. With this likelihood function and

temporal prior, we formulate the posterior distribution over model parameters

at each time instant, given the observation history.

The estimation of 3D human motion from a monocular sequence of 2D images

is challenging for a variety of reasons. These include the non-linear dynamics of

the limbs, ambiguities in the mapping from the 2D image to the 3D model, the
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similarity of the appearance of di�erent limbs, self occlusions, kinematic singular-

ities, and image noise. One consequence of these diÆculties is that, in general,

we expect the posterior probability distribution over model parameters to be

multi-modal. Also, we cannot expect to �nd an analytic, closed-form, expression

for the likelihood function over model parameters. For these two reasons, we

represent the posterior distribution non-parametrically using a discrete set of

samples (i.e., states), where each sample corresponds to some hypothesized set

of model parameters. Figure 1(a) illustrates this by showing a few samples from

such a distribution over 3D model parameters projected into an image. This

distribution is propagated in time using a particle �lter [11, 13].

The detection and tracking of human motion in video has wide potential for

application in domains as diverse as animation and human-computer interaction.

For this reason there has been a remarkable growth in research on this problem.

The majority of proposed methods rely on sources of information such as skin

color or known backgrounds which may not always be available. Such cues,

while useful, are not intrinsic to 3D human motion. We focus, instead, on the

3D motion of the �gure and its projection into the image plane of the camera.

This formulation, in terms of image motion, gives the tracker some measure of

independence with respect to clothing, background clutter, and ambient lighting.

Additionally, the approach does not require color images, nor does it require

multiple cameras with di�erent viewpoints. As a consequence, it may be used

with archival movie footage and inexpensive video surveillance equipment. The

use of perspective projection allows the model to handle signi�cant changes in

depth. Finally, unlike template tracking methods [6], the use of image motion

allows tracking under changing viewpoint. These properties are illustrated with

examples that include tracking people walking in cluttered images while their

depth and orientation with respect to the camera changes signi�cantly.

2 Related Work

Estimation of human motion is an active and growing research area [8]. We brie
y

review previous work on image cues, body representations, temporal models, and

estimation techniques.

Image Cues. Methods for full body tracking typically use simple cues such

as background di�erence images [4], color [22] or edges [7, 9, 10, 15]. However

robust, these cues provide sparse information about the features in the image.

Image motion (optical 
ow) [5, 14, 24] provides a dense cue but, since it only

exploits relative motion between frames, it is sensitive to the accumulation of

errors over multiple frames. The result is that these techniques are prone to

\drift" from the correct solution over time. The use of image templates [6] can

avoid this problem, but such approaches are sensitive to changes in view and

illumination. Some of the most interesting work to date has combined multiple

cues such as edges and optical 
ow [21]. The Bayesian approach we describe may

provide a framework for the principled combination of such cues.
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The approach here focuses on the estimation of 3D articulated motion from

2D image changes. In so doing we exploit recent work on the probabilistic esti-

mation of optical 
ow using particle �ltering [1, 2]. The method has been applied

to non-linear spatial and temporal models of optical 
ow, and is extended here

to model the motion of articulated 3D objects.

Body and Camera Models. Models of the human body vary widely in their

level of detail. At one extreme are methods that crudely model the body as

a collection of articulated planar patches [14, 24]. At the other extreme are 3D

models in which the limb shapes are deformable [9, 15]. Additionally, assumptions

about the viewing conditions vary from scaled orthographic projection [5] to full

perspective [21, 25]. To account for large variations in depth, we model the body

in terms of articulated 3D cylinders [12] viewed under perspective projection.

Temporal Models. Temporal models of body limb or joint motion also vary

in complexity; they include smooth motion [7], linear dynamical models [18],

non-linear models learned from training data using dimensionality reduction [3,

16, 23], and probabilistic Hidden Markov Models (HMM's) (e.g., [4]). In many

of these methods, image measurements are �rst computed and then the tempo-

ral models are applied to either smooth or interpret the results. For example,

Leventon and Freeman [16] proposed a Bayesian framework for recovering 3D

human motion from the motion of a 2D stick �gure. They learned a prior dis-

tribution over human motions using vector quantization. Given the 2D motion

of a set of joints, the most plausible 3D motion could be found. They required a

pre-processing step to determine the 2D stick �gure motion and did not tie the

3D motion directly to the image. Their Bayesian framework did not represent

multi-modal distributions and therefore did not maintain multiple interpreta-

tions.

Brand [4] learned a more sophisticated HMM from the same 3D training

data used in [16]. Brand's method used binary silhouette images to compute a

feature vector of image moments. The hidden states of the HMM represented 3D

body con�gurations and the method could recover 3D models from a sequence

of feature vectors. These weak image cues meant that the tracking results were

heavily dependent on the prior temporal model.

Unlike the above methods, we explore the use of complex non-linear tempo-

ral models early in the process to constrain the estimation of low-level image

measurements. In related work Yacoob and Davis [24] used a learned \eigen-

curve" model of image motion [23] to constrain estimation of a 2D articulated

model. Black [1] used similar non-linear temporal models within a probabilistic

framework to constrain the estimation of optical 
ow.

Estimation. Problems with articulated 3D tracking arise due to kinematic sin-

gularities [17], depth ambiguities, and occlusion. Multiple camera views, special

clothing, and simpli�ed backgrounds have been used to ameliorate some of these

problems [5, 9, 15]. In the case of monocular tracking, body parts with low visi-

bility (e.g. one arm and one leg) are often excluded from the tracking to avoid

occlusion e�ects and also to lower the dimensionality of the model [5]. Cham

and Rehg [6] avoid kinematic singularities and depth ambiguities by using a 2D
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model with limb foreshortening [17]. They also employ a multi-modal tracking

approach related to particle �ltering.

Bregler and Malik [5] assumed scaled orthographic projection and posed the

articulated motion problem as a linear estimation problem. Yamamoto et al. [25]

also formulated a linear estimation problem and relied on multiple camera views.

These approaches elegantly modeled the image motion but did not account for

imaging ambiguities and multiple matches.

Recently, Deutscher et al. [7] showed promising results in 3D tracking of

body parts using a particle �ltering method (the Condensation [13] algorithm).

They successfully tracked an arm through kinematic singularities. We address

the singularity problems in the same way but focus on image motion rather

than edge tracking. We also employ learned temporal models to compensate for

depth ambiguities and occlusion e�ects, and we show tracking results with more

complex full-body motions.

3 Generative Model

A Bayesian approach to human motion estimation requires that we formulate a

generative model of image appearance and motion. This model de�nes the state

space representation for humans and their motion and speci�es the probabilistic

relationship between these states and observations. The generative model of

human appearance described below has three main components, namely, shape,

appearance, and motion. The human body is modeled as an articulated object,

parameterized by a set of joint angles and an appearance function for each of

the rigid parts. Given the camera parameters and the position and orientation

of the body in the scene, we can render images of how the body is likely to

appear. The probabilistic formulation of the generative model provides the basis

for evaluating the likelihood of observing image measurements, It at time t, given

the model parameters.

3.1 Shape: Human Body Model

As shown in Figure 1, the body is modeled as a con�guration of 9 cylinders and

3 spheres, numbered for ease of identi�cation. All cylinders are right-circular,

except for the torso which has an elliptical cross-section. More sophisticated

tapered cylinders [7, 21] or superquadrics [8] could be employed. Each part is

de�ned in a part-centric coordinate frame with the origin at the base of the

cylinder (or sphere). Each part is connected to others at joints, the angles of

which are represented as Euler angles. The origin in each part's coordinate frame

corresponds to the center of rotation (the joint position).

Rigid transformations, T, are used to specify relative positions and orienta-

tions of parts and to change coordinate frames. We express them as a homoge-

neous transformation matrices:

T =

�
RzRyRx t

0 1

�
(1)
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Fig. 1. (a) A few samples from a probability distribution over 3D model parameters

projected into the image coordinate system. (b) Human body model. Each limb, i, has

a local coordinate system with the Zi axis directed along the limb. Joints have up to

3 angular DOF, expressed as rotations (�x; �y; �z).

where Rx, Ry and Rz denote 3�3 rotation matrices about the coordinate axes,

with angles �x, �y and �z, and t = [�x; �y; �z]
T denotes the translation.

A kinematic tree, with the torso at its root, is used to order the transforma-

tions between the coordinate frames of di�erent limbs. For example, in Figure

1b, the point P1 in the local coordinate system of limb 1 (the right thigh) can

be transformed to the corresponding point Pg in the global coordinate system

as Pg = T0;gT1;0P1. The global translation and rotation of the torso are repre-

sented by T0;g, while the translation and rotation of the right thigh with respect

to the torso are represented by T1;0.

With these de�nitions, as shown in Figure 1b, the entire pose and shape of

the body is given by 25 parameters, that is, angles at the shoulders, elbows, hips

and knees, and the position and orientation of the torso in the scene. Let � be

the vector containing these 25 parameters.

Camera Model. The geometrical optics are modeled as a pinhole camera,

with a transformation matrix Tc de�ning the 3D orientation and position of

a 3D camera-centered coordinate system with a focal length f and an image

center c = [xc; yc]
T . The matrix maps points in scene coordinates to points in

camera coordinates. Finally, points in 3D camera coordinates are projected onto

the image at locations, x = [x; y]T , given by x = c� f [ Zc

Xc

; Yc
Xc

]T .

3.2 Appearance Model

For generality, we assume that each limb is textured mapped with an appear-

ance model, R. There are many ways in which one might specify such a model,

including the use of low-dimensional linear subspaces [20]. Moreover, it is desir-

able, in general, to estimate the appearance parameters through time to re
ect

the changing appearance of the object in the image. Here we use a particularly

simple approach in which the appearance function at time t is taken to be the
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mapping, M(�), of the image at time t� 1 onto the 3D shape given by the shape

parameters at time t� 1:

Rt = M(It�1;�t�1) :

In probabilistic terms, this means that the probability distribution over ap-

pearance functions at time t, conditioned on past shapes ��t�1 = [�t�1; : : : ;�0],

past image observations, �It�1 = [It�1; : : : ; I0], and past appearance functions
�Rt�1 = [Rt�1; : : : ;R0], is given by

p(Rt j�It�1; ��t�1;
�Rt�1) = p(Rt j It�1;�t�1) = Æ(Rt �M(It�1;�t�1)) ; (2)

where Æ(�) is a Dirac delta function.

Our generative model of the image, It, at time t is then the projection of the

human model (shape and appearance) corrupted by noise:

It(xj) =M�1(Rt;�t;xj) + � (3)

where M�1(Rt;�t;xj) maps the 3D model of limb j to image location xj and

It(xj) is the image brightness at pixel location xj . To account for \outliers", the

noise, �, is taken to be a mixture of a Gaussian and a uniform distribution

p�(�;xj ;�t) = (1� �)G(�(�(xj ;�t))) + � c;

where 0 � � � 1 and c = 1=256. The uniform noise is bounded over a �nite inter-

val of intensity values while G(�) is zero-mean normal distribution the variance

of which may change with spatial position. In general, the variance is suÆciently

small that the area of the Gaussian outside the bounded interval may be ignored.

The prediction of image structure, It, given an appearance model, Rt, es-

timated from the image at time t � 1 will be less reliable in limbs, or regions

of limbs, that are viewed obliquely compared with those that are nearly fronto-

parallel. In these regions, the image structure can change greatly from one frame

to the next due to perspective distortions and self occlusion. This is captured

by allowing the variance to depend on the orientation of the model surface.

Let �(xj ;�t) be a function that takes an image location, xj , and projects

it onto a 3D limb position P and returns the angle between the surface normal

at the point P and the vector from P to the focal point of the camera. The

variance of the Gaussian component of the noise is then de�ned with respect to

the expected image noise, �I , which is assumed constant, and �(xj ;�t):

�2(�(xj ;�t)) = (�I= cos(�(xj ;�t)))
2 : (4)

3.3 Temporal Dynamics

Finally we must specify the temporal dynamics as part the generative model.

Towards this end we parameterize the motion of the shape in terms of a vector

of velocities,Vt, whose elements correspond to temporal derivatives of the shape

and pose parameters in �. Furthermore, we assume a �rst-order Markov model
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on shape and velocity. Let the entire history of the shape and motion parameters

up to time t be denoted by ��t = [�t; : : : ;�0] and
�Vt = [Vt; : : : ;V0]. Then, the

temporal dynamics of the model are given by

p(�t j ��t�1;
�Vt�1) = p(�t j�t�1;Vt�1) ; (5)

p(Vt j ��t�1;
�Vt�1) = p(Vt jVt�1) : (6)

Humans move is a variety of complex ways, depending on the activity or ges-

tures being made. Despite this complexity, the movements are often predictable.

In Section 6, we explore two speci�c models of human motion. The �rst is a sim-

ple, general model of constant angular velocity. The second is an activity-speci�c

model of walking.

4 Bayesian Formulation

The goal of tracking a human �gure can now be formulated as the computation

of the posterior probability distribution over the parameters of the generative

model at time t, given a sequence of images, �It; i.e., p(�t;Vt;Rt j�It). This can
be expressed as a marginalization of the joint posterior over all states up to time

t given all images up to time t:

p(�t;Vt;Rt j�It) =
Z

p(��t;
�Vt; �Rt j�It)d��t�1d

�Vt�1d �Rt�1 : (7)

Using Bayes' rule and the Markov assumptions above, it can be shown that

the dependence on states at times before time t� 1 can be removed, to give

p(�t;Vt;Rt j�It) =
� p(It j�t;Vt;Rt)

Z �
p(�t;Vt;Rt j�t�1;Vt�1;Rt�1; It�1)

p(�t�1;Vt�1;Rt�1 j�It�1)
�
d�t�1dVt�1dRt�1 (8)

where � is a normalizing constant that does not depend on the state variables.

Here, p(It j�t;Vt;Rt), which we refer to as the \likelihood," is the probability of

observing the image at time t, given the shape, motion and appearance states at

time t. The integral in (8) is referred to as a temporal prior, or a prediction, as it

is equivalent to the probability over states at time t given the image measurement

history; i.e., p(�t;Vt;Rt j�It�1). It is useful to understand the integrand as the

product of two terms; these are the posterior probability distribution over states

at the previous time, p(�t�1;Vt�1;Rt�1 j�It�1), and the dynamical process that

propagates this distribution over states from time t� 1 to time t.

Before turning to the computation of the posterior in (8), it is useful to

simplify it using the generative model described above. For example, the like-

lihood of observing the image at time t does not depend on the velocity Vt,

and therefore p(It j�t;Vt;Rt) = p(It j�t;Rt). Also, the probability distribu-

tion over the state variables at time t, conditioned on those at time t � 1, can
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be factored further. This is based on the generative model, and the assumption

that the evolution of velocity and shape from time t � 1 to t is independent of

the evolution of appearance. This produces the following factorization

p(�t;Vt;Rt j�t�1;Vt�1;Rt�1; It�1) =

p(�t j�t�1;Vt�1)p(Vt jVt�1)p(Rt j It�1;�t�1) :

Finally, these simpli�cations, taken together, produce the posterior distribu-

tion

p(�t;Vt;Rt j�It) =
� p(It j�t;Rt)

Z �
p(�t j�t�1;Vt�1)p(Vt jVt�1)p(Rt j It�1;�t�1)

p(�t�1;Vt�1;Rt�1 j�It�1)
�
d�t�1dVt�1dRt�1 : (9)

4.1 Stochastic Optimization

Computation of the posterior distribution is diÆcult due to the nonlinearity of

the likelihood function over model parameters. This is a consequence of self-

occlusions, viewpoint singularities, and matching ambiguities. While we cannot

derive an analytic expression for the likelihood function over the parameters of

the entire state space, we can evaluate the likelihood of observing the image given

a particular state (�s
t ;V

s
t ;R

s
t ); the computation of this likelihood is described

in Section 5.

Representation of the posterior is further complicated by the use of a non-

linear dynamical model of the state evolution as embodied by the temporal prior.

While we cannot assume that the posterior distribution will be Gaussian, or

even unimodal, robust tracking requires that we maintain a representation of the

entire distribution and propagate it through time. For these reasons we represent

the posterior as a weighted set of state samples, which are propagated using a

particle �lter with sequential importance sampling. Here we brie
y describe the

method (for foundations see [11, 13], and for applications to 2D image tracking

with non-linear temporal models see [1, 2]).

Each state, st, is represented by a vector of parameter assignments, st =

[�s
t ;V

s
t ]. Note that in the current formulation we can drop the appearance model

Rs
t from the state as it is completely determined by the shape parameters and the

images. The posterior at time t� 1 is represented by N state samples (N � 104

in our experiments). To compute the posterior (9) at time t we �rst draw N

samples according to the posterior probability distribution at time t � 1. For

each state sample from time t� 1, we compute Rt given the generative model.

We propagate the angular velocities forward in time by sampling from the prior

p(Vt jVt�1). Similarly, the shape parameters are propagated by sampling from

p(�t j�t�1;Vt�1). At this point we have new values of �t and Rt which can

be used to compute the likelihood p(It j�t;Rt). The N likelihoods are normal-

ized to sum to one and the resulting set of samples approximates the posterior

distribution p(�t;Vt;Rt j�It) at time t.
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ApproximationExact

Fig. 2. Planar approximation of limbs improves eÆciency.

5 Likelihood Computation

The likelihood p(It j�t;Rt) is the probability of observing image It given that

the human model has con�guration �t and appearanceRt at time t. To compare

the image, It, with the generative model, the model must be projected into the

image plane of the camera as described in Section 3. To reduce the in
uence of

camera noise on the matching, the images, It, are smoothed by a Gaussian �lter

with a standard deviation of
p
2. This has the e�ect of smoothing the likelihood

function over model parameters and hence the posterior distribution.

Projection. The projection of limb surface points into the image plane and vice

versa is computationally expensive. Given the stochastic sampling framework,

this operation is performed many times and hence we seek a eÆcient approxima-

tion. To simplify the projection onto the image, we �rst project the the visible

portion of the cylindrical surface onto a planar patch that bisects the cylinder,

as shown in Figure 2. The projection of the appearance of a planar patch into

the image can be performed by �rst projecting the corners of the patch via per-

spective projection. The projection of other limb points is given by interpolation.

This approximation speeds up the likelihood computation signi�cantly.

Recall that the variance in the generative model (3) depends on the angle,

�(xj ;�t), between of the surface normal and the optical axis of the camera.

With the planar approximation, �j becomes the angle between the image plane

and the Z axis of limb j.

Likelihood Model. Given the generative model we de�ne the likelihood of

each limb j independently. We sample, with replacement, i = 1 : : : n pixel lo-

cations, xj;i, uniformly from the projected region of limb j. According to (3),

the grayvalue di�erences between points on the appearance model and the cor-

responding image values are independent and are modeled as a mixture of a

zero-mean normal distribution and a uniform outlier distribution. We expect

outliers, or unmatched pixels, to result from occlusion, shadowing, and wrinkled

clothing.

The image likelihood of limb j is then expressed as:

pimage =
�

256
+

1� �p
2��(�j)

exp(�
nX
i=1

(It(xj;i)� Ît(xj;i))
2

2�2(�j)
) (10)

where Ît(xj;i) = M�1(M(It�1;�t�1);�t;xj;i).
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The likelihood must also account for occlusion which results from the depth

ordering of the limbs or from the surface orientation. To model occluded regions

we introduce the constant probability, poccluded , that a limb is occluded. poccluded
is currently determined empirically.

To determine self occlusion in the model con�guration �t, the limbs are

ordered according to the shortest distance from the limb surface to the image

plane, using the camera parameters and �t. Limbs that are totally or partly

covered by other limbs with lower depth are de�ned as occluded. This occlusion

detection is sub-optimal and could be re�ned so that portions of limbs can be

de�ned as occluded (cf. [21]).

Similarly as the limb is viewed at narrow angles (all visible surface normals

are roughly perpendicular to the viewing direction) the linearized limb shape

formulation makes the appearance pattern highly distorted. In this case, the

limb can be thought of as occluding itself.

We then express the likelihood as a mixture between pimage and the constant

probability of occlusion, poccluded . The visibility q, (i.e. the in
uence of the actual

image measurement), decreases with the increase of the angle �j between the

limb j principal axis and the image plane. When the limb is exactly perpendicular

to the image plane, it is by this de�nition considered occluded. The expression

for the image likelihood of limb j is de�ned as:

pj = q(�j)pimage + (1� q(�j))poccluded (11)

where q(�j) = cos(�j) if limb j is non-occluded, or 0 if limb j is occluded.

According to the generative model, the appearance of the limbs are indepen-

dent and the likelihood of observing the image given a particular body pose is

given by the product of the limb likelihoods:

p(It j�t;Rt) =
Y
j

pj : (12)

6 Temporal Model

The temporal model encodes information about the dynamics of the human

body. Here it is formulated as a prior probability distribution and is used to

constrain the sampling to portions of the parameter space that are likely to cor-

respond to human motions. General models such as constant acceleration can

account for arbitrary motions but do not constrain the parameter space greatly.

For a constrained activity such as walking or running we can construct a tempo-

ral model with many fewer degrees of freedom which makes the computational

problem more tractable. Both types of models are explored below.

6.1 Generic Model: Smooth Motion

The smooth motion model assumes that the angular velocity of the joints and the

velocity of the body are constant over time. Recall that the shape parameters
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Fig. 3. Learning a walking model. (a) Joint angles of di�erent people walking were

acquired with a motion capture system. Curves are segmented into walking cycles

manually and an eigenmodel of the cycle is constructed. (b) Mean angle of left knee as

a function of time. (c) First three eigenmodes of the left knee Bj , j 2 [1; 3], scaled by

their respective variance �j . (1 = solid ; 2 = ��; 3 = � � �.)

are given by �t = [�
g
t ;�

g
t ;�

l
t] where �

g
t and �

g
t represent the translation and

rotation that map the body into the world coordinate system and �lt represents

the relative angles between all pairs of connected limbs. Let Vt = [ _�
g
t ;
_�
g

t ;
_�
l

t]

represent the corresponding velocities. The physical limits of human movement

are modeled as hard constraints on the individual quantities such that �t 2
[�min;�max].

Our smooth motion model assumes that all elements �k;t 2 �t and Vq;t 2 Vt

are independent. The dynamics are represented by

p(�i;t j�i;t�1; Vi;t�1) =
�
G(�i;t � (�i;t�1 + Vi;t�1); �

�

i ) if �i;t 2 [�i;min; �i;max]

0 otherwise

p(Vi;t jVi;t�1) = G(Vi;t � Vi;t�1; �
V
i );

where G(x; �) denotes a Gaussian distribution with zero mean and standard

deviation �, evaluated at x. The standard deviations �
�

i and �Vi are empiri-

cally determined. The joint angles of heavy limbs typically have lower standard

deviations than those in lighter limbs.

This model works well for tracking individual body parts that are relatively

low dimensional. This is demonstrated in Section 7 for tracking arm motion

(cf. [7]). This is a relatively weak model for constraining the motion of the

entire body given the current sampling framework and limited computational

resources. In general, one needs a variety of models of human motion and a

principled mechanism for choosing among them.

6.2 Action Speci�c Model: Walking

In order to build stronger models, we can take advantage of the fact that many

human activities are highly constrained and the body is often moved in symmet-

ric and repetitive patterns. In what follows we consider the example of walking

motion.
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Training data corresponding to the 3D model parameters was acquired with

a commercial motion capture system. Some of the data are illustrated in Fig-

ure 3. From the data, m = 13 example walking cycles from 4 di�erent subjects

(professional dancers) were segmented manually and scaled to the same length.

These cycles are then used to train a walking model using Multivariate Princi-

pal Component Analysis (MPCA) [3, 19, 23]. In addition to the joint angles, we

model the speed, vi of the torso in the direction of the walking motion i. This

speed, vi;�, at time step � in the cycle is vi;� = k� gi;�+1 � � gi;�k. The curves cor-
responding to the speed of the torso and the relative angles of the limbs, �l

i, are

concatenated forming column vectors Ai for each training example i = 1 : : :m.

The mean vector Â is subtracted from all examples: Ai = Ai � Â. Since the

walking speed [m/frame] and the joint angles [radians] have approximately the

same scales they need not be rescaled before applying MPCA.

The eigenvalues �j and eigenvectors Bj , j 2 [1;m] of the matrix A =

[A1; � � � ;Am] are now computed from A = B�DT using Singular Value De-

composition (SVD) where B = [B1; � � � ;Bm] and � is a diagonal matrix with

�j along the diagonal. The eigenvectors represent the principal modes of varia-

tion in the training set, while the eigenvalues re
ect the variance of the training

set in the direction of the corresponding eigenvector. The eigenvectorsBj can be

viewed as a number of eigencurves, one for each joint, stacked together. Figure

3c shows three eigencurves corresponding to the left knee walking cycle.

The smallest number d of eigenvectors Bj such that
Pd

j=1
�2j > 0:95 is se-

lected; in our case d = 5. With ~B = [B1; � � � ;Bd] we can, with d parameters

c = [c1; � � � ; cd]T , approximate a synthetic walking cycle A� as:

A� = Â+ ~Bc: (13)

The set of independent parameters is now fct; �t; � gt ;�gt g where �t denotes

the current position (or phase) in the walking cycle. Thus, this model reduces

the original 25-dimensional parameter space, �, to a 12-dimensional space.

Recall that the global translation and rotation, �
g
t , �

g
t , can be expressed as

a homogeneous transformation matrix T. We also de�ne vt�1 to be the learned

walking speed at time t� 1. The parameters are propagated in time as:

p(ct j ct�1) = G(ct � ct�1;�
cId) (14)

p(�t j�t�1) = G(�t � �t�1; �
�) (15)

p(�
g
t jTt�1; ct�1) = G([�

g
t ; 1]

T �T�1t�1[vt�1 0 0 1]T ;�� I3) (16)

p(�gt j�t�1) = G(�t � �t�1;��I3) (17)

where ��, �� and �� represent the empirically determined standard deviations,

In is an n � n identity matrix, and �c = "� where " is a small scalar with

� = [�1; � � � ; �d]T . " is expected to be small since we expect the c parameters to

vary little throughout the walking cycle for each individual

From a particular choice of f�t; ctg, the relative joint angles are �lt = A�(�t) =

Â(�t) + ( ~Bc)(�t), where A
�(�t) indicates the interpolated value of each joint
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cycle,A�

i , at phase �. The angular velocities,
_�
l

t = A�(�t+1)�A�(�t), are not es-

timated independently and the velocities _�
g
t ;
_�
g

t are propagated as in the smooth

motion case above. The Gaussian distribution over �t and ct implies a Gaussian

distribution over joint angles which de�nes the distribution p(�t j �t�1;Vt�1)

used in the Bayesian model.

7 Experiments

We present examples of tracking people or their limbs in cluttered images. On

an Ultra 1 Sparcstation the C++ implementation takes approximately 5 min-

utes/frame for experiments with 10,000 state samples. At frame 0, the posterior

distribution is derived from a hand-initialized 3D model. To visualize the poste-

rior distribution we display the projection of the 3D model corresponding to the

expected value of the model parameters: 1

N

PN

i=1
pi�i where pi is the normalized

likelihood of state sample �i.

Arm Tracking. The smooth motion prior is used for tracking relatively low

dimensional models such as a single arm as illustrated in Figure 4. The model

has 8 parameters corresponding to the orientation and velocity of the 3 shoulder

angles and the elbow angle.

The twist of the upper arm �z is ambiguous when the arm is straight since

the only information about the change in �z in that situation is the rotation

of the texture pattern on the upper arm. If the upper arm texture is of low

contrast (as in Figure 4) this will provide a very weak cue. This ambiguity is

easily represented in a particle �ltering framework. In our case, �z is assigned

a uniform starting distribution. Some frames later (around frame 20), the arm

bends slightly, and the distribution over �z concentrates near the true value. The

rotation of a straight arm is an example of a kinematic singularity [7, 17].

Tracking Walking People. The walking model described in Section 6.2 is used

to track a person walking on a straight path parallel to the camera plane over 50

frames (Figure 5). The global rotation of the torso was held constant, lowering

the number of parameters to 9: the 5 eigencoeÆcients, c, phase, �, and global

3D position, � g . All parameters were initialized manually with a Gaussian prior

at time t = 0 (Figure 5, frame 0). As shown in Figure 5 the model successfully

tracks the person although some parts of the body (often the arms) are poorly

estimated. This in part re
ects the limited variation present in the training set.

The next experiment involves tracking a person walking in a circular path

and thus changing both depth and orientation with respect to the camera. Fig-

ure 6 shows the tracking results for frames from 0 to 50. In frame 50 notice that

the model starts to drift o� the person since the rotation is poorly estimated.

Such drift is common with optical 
ow-based tracking methods that rely solely

on the the relative motion between frames. This argues for a more persistent

model of object appearance. Note that, while a constant appearance model (i.e.
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Fig. 4. Tracking of one arm (2000 samples). Upper rows: frames 0, 10, 20, 30, 40 and

50 with the projection of the expected value of model the model parameters overlaid.

Frame 0 corresponds to the manual initialization. Lower row: distributions of the shoul-

der angles �x, �y and �z as function of frame number. Brightness values denote the log

posterior distribution in each frame.

a template) would not su�er the same sort of drift it would be unable to cope

with changes in view, illumination, and depth. Note also that the training data

only contained examples of people walking in a straight line. While the circu-

lar walking motion here di�ers signi�cantly, the temporal model is suÆciently

general that it can approximate this new motion.

How signi�cant is the temporal walking prior model? Figure 7 illustrates

the e�ect of repeating the above experiment with a uniform likelihood function,

so that the evolution of the parameters is determined entirely by the temporal

model. While the prior is useful for constraining the model parameters to valid

walking motions, it does not unduly a�ect the tracking.

8 Conclusion

This paper has presented a Bayesian formulation for tracking of articulated hu-

man �gures in 3D using monocular image motion information. The approach

employs a generative model of image appearance that extends the idea of pa-

rameterized optical 
ow estimation to 3D articulated �gures. Kinematic singu-
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Fig. 5. Tracking a human walking in a straight line (5000 samples, no rotation). Upper

rows: projection of the expected model con�guration at frames 0, 10, 20, 30, 40 and 50.

Lower row: 3D con�guration for the expected model parameters in the same frames.

larities, depth ambiguities, occlusion, and ambiguous image information result

in a multi-modal posterior probability distribution over model parameters. A

particle �ltering approach is used to represent and propagate the posterior dis-

tribution over time, thus tracking multiple hypotheses in parallel. To constrain

the distribution to valid 3D human motions we de�ne prior probability distri-

butions over the dynamics of the human body. Such priors help compensate

for missing or noisy visual information and enable stable tracking of occluded

limbs. Results were shown for a general smooth motion model as well as for an

action-speci�c walking model.

A number of outstanding issues remain and are the focus of our research.

The current model is initialized by hand and will eventually lose track of the

object. Within a Bayesian framework we are developing a fully automatic system

that samples from a mixture of initialization and temporal priors. We are also

developing new temporal models of human motion that allow more variation than

the eigencurve model yet are more constrained than the smooth motion prior.

We are extending the likelihood model to better use information at multiple

scales and to incorporate additional generative models for image features such

as edges. Additionally, the likelihood computation is being extended to model the

partial occlusion of limbs as in [21]. Beyond this, one might replace the cylindrical

limbs with tapered superquadrics [9, 15] and model the prior distribution over

these additional shape parameters. Finally, we are exploring the representation

of the posterior as a mixture of Gaussians [6]. This provides a more compact
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Fig. 6. Person walking in a circle (15000 samples). Upper rows: frames 0, 10, 20, 30,

40, 50 with the projection of the expected model con�guration overlaid. Lower row:

expected 3D con�guration in the same frames.

representation of the distribution and interpolates between samples to provide

a measure of the posterior in areas not covered by discrete samples.
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