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Abstract. We describe a 2.5D layered representation for visual motion analysis.
The representation provides a global interpretation of image motion in terms of
several spatially localized foreground regions along with a background region.
Each of these regions comprises a parametric shape model and a parametric mo-
tion model. The representation also contains depth ordering so visibility and oc-
clusion are rightly included in the estimation of the model parameters. Finally,
because the number of objects, their positions, shapes and sizes, and their relative
depths are all unknown, initial models are drawn from a proposal distribution, and
then compared using a penalized likelihood criterion. This allows us to automat-
ically initialize new models, and to compare different depth orderings.

1 Introduction
One goal of visual motion analysis is to compute representations of image motion that
allow one to infer the structure and identity of moving objects. For intermediate-level vi-
sual analysis one particularly promising type of representation is based on the concept of
layered image descriptions [4, 12, 26, 28]. Layered models provide a natural way to esti-
mate motion when there are sevaral regions having different velocities. They have been
shown to be effective for separating foreground objects from backgrounds. One weak-
ness of existing layered representations is that they assign pixels to layers independently
of pixels at neighboring locations. In doing so their underlying generative model does
not manifest the constraint that most physical objects are spatially coherent and have
boundaries, nor does it represent relative depths and occlusion.

In this paper we develop a new, 2.5D layered image representation. We are moti-
vated by a desire to find effective descriptions of images in terms of a relatively small
number of simple moving parts. The representation is based on a composition of lay-
ered regions called polybones, each of which has compact spatial support and a proba-
bilistic representation for its borders. This representation of opaque spatial regions and
soft boundaries, along with a partial depth ordering among the polybones, gives one an
explicit representation of visibility and occlusion. As such, the resulting layered model
corresponds to an underlying generative model that captures more of the salient proper-
ties of natural scenes than existing layered models.

Along with this 2.5D representation we also describe a method for parsing image
motion to find global image descriptions in terms of an arbitrary number of layered, mov-
ing polybones (e.g., see Figure 1 (right)). Since the number of objects, their positions,



motions, shapes, sizes, and relative depths are all unknown, a complete search of the
model space is infeasible. Instead we employ a stochastic search strategy in which new
parses are drawn from a proposal distribution. The parameters of the individual poly-
bones within each such proposal are refined using the EM-algorithm. Alternative parses
are then compared using a penalized-likelihood model-selection criterion. This allows
us to automatically explore alternative parses, and to select the most plausible ones.

2 Previous Work

Many current approaches to motion analysis over long image sequences are formulated
as model-based tracking problems. In most cases we exploit prior knowledge about the
objects of interest. For example, one often uses knowledge of the number of objects,
their shapes, appearances, and dynamics, and perhaps an initial guess about object po-
sition. With 3D models one can take the effects of directional illumination into account,
to anticipate shadows for instance [14]. Successful 3D people trackers typically assume
detailed kinematic models of shape and motion, and initializationis still often done man-
ually [2, 3, 7, 21]. Recent success with curve-based tracking of human shapes relies on a
user defined model of the desired curve [11, 17]. For complex objects under variable il-
luminants, one could attempt to learn models of object appearance from a training set of
images prior to tracking [1, 8]. Whether one tracks blobs to detect activities like football
plays [9], or specific classes of objects such as blood cells, satellites or hockey pucks,
it is common to constrain the problem with a suitable model of object appearance and
dynamics, along with a relatively simple form of data association [16, 19].

To circumvent the need for such specific prior knowledge, one could rely on bottom-
up, motion-based approachs to segmenting moving objects from their backgrounds, prior
to tracking and identification [10, 18]. Layered image representations provide one such
approach [12, 20, 25, 28]. With probabilistic mixture models and the EM (Expectation-
Maximization)algorithm [6], efficient methods have been developed for determining the
motion and the segmentation simultaneously. In particular, these methods give one the
ability to softly assign pixels to layers, and to robustly estimate the motion parameters
of each layer. One weakness in most of these methods, however, is that the assignment
of pixels to layers is done independently at each pixel, without an explicit constraint on
spatial coherence (although see [23, 27]). Such representations, while powerful, lack the
expressiveness that would be useful in layered models, namely, the ability to explicitly
represent coherence, opacity, region boundaries, and occlusion.

Our goal here is to develop a compositional representation for image motion with a
somewhat greater degree of generic expressiveness than existing layered models. Broadly
speaking, we seek a representation that satisfies three criteria: 1) it captures the salient
structure of the time-varying image in an expressive manner; 2) it allows us to generate
and elaborate specific parses of the image motion within the representation in a compu-
tationally efficient way; and 3) it allows us to compare different parses in order to select
the most plausible ones.

Towards this end, like previous work in [23, 24], we assume a relatively simple para-
metric model for the spatial support of each layer. However, unlike the Gaussian model
in [23], where the spatial support decays exponentially from the center of the object, we
use a polybone in which support is unity over the interior of the object, and then smoothly
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Fig. 1. (left) The spatial support of each polybone used in the experiments is a simple transform
of a canonical octagonal shape. The allowed transforms include translation, rotation and inde-
pendent scaling along two object-centered axes. (middle) These plots depict boundary position
density ps(d) and the occupancy probability w(x). The occupancy probability is unity inside the
polygon with a Gaussian-shaped soft shoulder. (right) An example parse with polybones from an
image sequence.

decays to zero only in the vicinity of the spatial boundary. This representation embodies
our uncertainty about exact boundary position, it allows us to separate changes in object
size and shape from our uncertainty about the boundary location, and it allows us to dif-
ferentiate the associated likelihood function with respect to object shape and position.
Most importantly, it allows us to explicitly express properties like visibility, occupancy,
opacity and occlusion in a straightforward way.

One of the central issues in this research is whether or not the extraction and selec-
tion of a layered polybone description for image motion is computationally feasible. The
space of possible descriptions is large owing to the unknown number of polybones, the
unknown depth relations between the different polybones, and the dimension of the con-
tinuous parameter space for each polybone. We therefore require effective methods to
search this space for plausible models.

3 Layered Polybones
A layered polybone model consists of a background layer and K depth-ordered fore-
ground layers. Formally, a model M at time t can be written as

M = (K(t); b0(t); :::; bK(t)) ; (1)

where bk � (ak; mk) is the vector of shape and pose parameters, ak, together with the
motion parameters, mk, for the kth polybone. By convention, the partial depth ordering
of the layers is given by the order of the polybone indices. The background corresponds
to k = 0, and the foremost polybone corresponds to k = K.

In the interests of a simple shape description, the interior of each polybone is de-
fined by a closed convex polygon. These interior regions are assumed to be opaque, so
anything behind a polybone interior is occluded. Given the simplicity of the polybone
shape, we do not expect them to fit any particular region accurately. We therefore give
each polybone a soft border to quantify our uncertainty in the true boundary location.
More precisely, we define the probability density of the true boundary location, ps, as a
function of the distance, d(x; bk), from a location x to the polygon specified by bk (see
Fig. 1(middle)). Given ps, the probability that x lies inside of the true boundary is then
expressed as w(x; bk) = ps(d > d(x; bk)), the cummulative probability that the dis-
tance d, in the direction x, is greater than d(x; bk). This occupancy probability,w(x; bk),



serves as our definition of spatial support from which we can formulate visbility and oc-
clusion. As depicted in Fig. 1(middle), we model ps so that the occupancy probability,
w(x; bk), is unity in the interior of the polygon, and decays outside the polygon with the
shape of a half-Gaussian function of the distance from the polygon. For convenience,
the standard deviation of the half-Gaussian, �s;k, is taken to be a constant. In practice
we truncate the polybone shoulders to zero after a distance of 2.5�s.

With these definitions, the visibility of the j th polybone at a pixel x depends on the
probabilities that closer layers do not occupy x; i.e., the visibility probability is

vk(x) =

KY
j=k+1

(1�w(x; bj)) = (1�w(x; bk+1)) vk+1(x) ; (2)

where all pixels in the foremost layer are defined to be visible, so vK(x) = 1. It may be
interesting to note that transparency could also be modeled by replacing (1�w(x; bj))
in (2) by (1��jw(x; bj)), where �j 2 [0; 1]denotes the opacity of the jth polybone (cf.
[5, 22]). Previous layered models correspond to the special case of this in which �j=0

and each polybone covers the entire image, so w(x; bk) � 1.
In our current implementation and the examples below we restrict the polybone shape

to be a simple transformation of a canonical octagonal boundary (see Fig. 1(left)), and
we let�s=4 pixels. The shape and pose of the interior polygon is parameterized with re-
spect to its local coordinate frame, with its scale in the horizontal and vertical directions
s = (sx; sy), its orientation �, and the image position of the polygon origin, c = (cx; cy)

(see Fig. 1(left)). Together with the boundary uncertainty parameter, �s, these parame-
ters define the shape and pose of a polybone:

ak = (sk; �k; ck; �s;k) : (3)

This simple description for shape and pose was selected, in part, to simplify the exposi-
tion in this paper and to facilitate the parameter estimation. It would be straightforward
to include more complex polygonal or spline based shape descriptions in the represen-
tation (although local extrema in the optimization may be more of a problem).

Finally, in addition to shape and pose, the polybone parameters also specify the mo-
tion within the layer. In particular, the motion parameters associated with the kth poly-
bone, denoted by mk, specify a parametric image warp, w(x;mk(t)), from pixels at time
t+ 1 to pixels at time t. In the current implementation we use similarity deformations,
where mk specifies translation, rotation and uniform scaling between frames.

4 Model Likelihood
The likelihood of a layered polybone model Mt depends on how well it accounts for
the motion between frames t and t + 1. As is common in optical flow estimation, our
motion likelihood function follows from a simple data conservation assumption. That
is, let d(x; t) denote image data at pixel x and frame t. The warp parameters for the kth

polybone specify that points (x; t) map to points in the next frame given by (x 0; t+ 1)

= (w(x;mk(t)); t+ 1). The similarity of the image data at these two points is typically
measured in terms of a probability distribution for the difference

�dk(x; t) = d(w(x;mk(t)); t+ 1) � d(x; t) : (4)



The distribution for the deviation �d is often taken to be a Gaussian density, say
p1(�d), having mean 0 and standard deviation �m. To accommodate data outliers, a lin-
ear mixture of a Gaussian density and a broad outlier distribution, p0(�d), can be used.
Such mixture models have been found to improve the robustness of motion estimation in
the face of outliersand unmodelled surfaces [12, 13]. Using a mixture model, we then de-
fine the likelihood (i.e., the observation density) of a single data observation, �dk(x; t),
given the warp, w(x;mk(t)), to be

pk(�dk(x; t)) = (1� �0;k) p1(�dk(x; t)) + �0;k p0(�dk(x; t)) ; (5)

where �0;k 2 [0; 1] is the outlier mixing proportion. The additional parameters required
to specify the mixture model, namely �m and �0, are also included in the motion param-
eter vector mk(t) for each polybone. Note that, as with the shape and pose parameteri-
zations, we chose simple forms for the parametric motion model and the data likelihood.
This was done to simplify the exposition and to facilitate parameter estimation.

The likelihoodfor the kth polybone at a pixel x can be combined with the likelihoods
for other polybones in the model Mt by incorporating each polybone’s visibility, vk(x),
and occupancy probability,w(x; bk(t)). It is straightforward to show that the likelihood
of the entire layered polybone model at a single location x and frame t is given by

p(f�dk(x; t)gKk=0 jMt) =

KX
k=0

vk(x)w(x; bk) pk(�dk(x; t)) : (6)

Finally, given independent noise at different pixels, the log likelihood of the layered
polybone model Mt over the entire image is

log p(Dt jMt) =
X
x

logp(f�dk(x; t)gKk=0 jMt) : (7)

Note that the use of Dt here involves some abuse of notation, since the image data at
both frames t and t+ 1 are required to compute the deviations �dk(x; t); moreover, the
model itself is required to determine corresponding points.

5 Penalized Likelihood
We now derive the objective function that is used to optimize the polybone parameters
and to compare alternative models. The objective function is motivated by the standard
Bayesian filtering equations for the posterior probability of the model M t, given all the
data up to time t (denoted byDt). In particular, ignoringconstant terms, the log posterior
is given by

U(Mt) = log p(Dt jMt) + log p(Mt j Dt�1) : (8)

The last term above is the log of the conditional distribution over models Mt given all
the previous data, which is typically expressed as

p(Mt j Dt�1) =

Z
~Mt�1

p(Mt j ~Mt�1)p( ~Mt�1 j Dt�1) ; (9)



given suitable independence and Markov assumptions. Given the complexityof the space
of models we are considering, a detailed approximation of this integral is beyond the
scope of this paper. Instead, we use the general form of (8) and (9) to motivate a simpler
penalized likelihood formulation for the objective function, namely

O(Mt) = logp(Dt jMt) + q(Mt;Mt�1) : (10)

The last term in (10), called the penalty term, is meant to provide a rough approximation
for the log of the conditional probability distribution in (9).

The penalty term serves two purposes. First, when the data is absent, ambiguous, or
noisy, the log likelihood term can be expected to be insensitive to particular variations
in the model Mt. In these situations the penalty term provides a bias towards particular
parameter values. In our current implementation we include two terms in q(Mt;Mt�1)

that bias the models to smaller polybones and to smooth shape changes:

q1(Mt) =

KX
k=1

log[L1(sx;k;t � 1)L1(sy;k;t � 1)] (11)

q2(Mt;Mt�1) =
X
k

logN (ak;t � ~ak0;t;�a) (12)

Here q1 provides the bias towards small polybones, with L1(s) equal to the one-sided
Laplace density�se��ss. The second term, q2, provides a bias for smooth shape changes
with a mean zero normal density evaluated at the temporal difference in shape parame-
ters. Here, k0 is the index of the polybone in Mt�1 that corresponds to the kth polybone
in Mt; if such a k0 exists, then ~ak0;t denotes the pose of this polybone at time t�1warped
by the motion defined by mk0;t�1. The sum in (12) is over all polybones in Mt that have
corresponding polybones in Mt�1.

The second purpose of the penalty function is to control model complexity. Without
a penalty term the maximum of the log likelihood in (10) will be monotonically increas-
ing in the number of polybones. However, beyond a certain point, the extra polybones
primarily fit noise in the data set, and the corresponding increase in the log likelihood
is marginal. The penalty term in (10) is used to ensure that the increase in the log likeli-
hood obtained with a new polybone is sufficiently large to justify the new polybone. To
derive this third term of q(Mt;Mt�1) we assume that each polybone parameter can be
resolved to some accuracy, and that the likelihood does not vary significantly when pa-
rameters are varied within such resolution limits. As with conventional Bayesian model
selection, the penalty function is given by the log volume of the resolvable set of models.
In our current implementation, the third term in the penalty function is given by

q3(Mt) =

KX
k=1

log

 �
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where the different factors in (13) correspond to the following resolutions: We assume
the location and size parameters of any given polybone are resolved to ��s over the
image of size nx�ny; the angle � is resolved to 4�s

r
where r is the radius of the polybone;

the inlier mixing proportion used in the motion model is resolved to �0:05 out of the



range [0; 1]; the inlier motion model has flow estimates that are resolved to within��v;k
over a possible range of [�5; 5]; and �v;k is estimated from the inlier motion constraints
to within a factor of 2 (i.e. �

p
2�v;k), with a uniform prior for �v;k having minimum

and maximum values of 0:1 and 2:0 pixels/frame.

6 Parameter Estimation
Suppose M0

t is an initial guess for the parameters (1) of the layered model. In order to
find local extrema of (10) we use a form of gradient ascent. The gradient of the penalty
term is easy to compute, while that of the log likelihood is simpler to compute if we
exploit the layered structure of the model. We do this by rewriting p(D(x) jM) in a form
that isolates the parameters of each individual polybone.

To simplify the likelihoodexpression, first note from (2) and (6) that the contribution
top(D(x) jM) from only those polybones that are closer to the camera than the kth bone
can be expressed as

nk(x) =

KX
j=k+1

vj(x)w(x; bj) p(D(x)jbj)

= vk+1(x)w(x; bk+1) p(D(x) j bk+1) + nk+1(x) : (14)

We refer to nk(x) as the near term for the kth polybone. Equations (14) and (2) provide
recurrence relations, decreasing ink, for computing the near terms and visibilitiesvk(x),
starting with nK(x) = 0 and vK(x) = 1.

Similarly, we collect the polybones that are further from the camera than the kth

polybone into the ‘far term’,

fk(x) =
k�1X
j=0

w(x; bj)

2
4 k�1Y
l=j+1

(1� w(x; bl))

3
5p(D(x)jbj)

= w(x; bk�1) p(D(x) j bk�1) + (1� w(x; bk�1)) fk�1(x) : (15)

Here we use the convention that
Pm

j=n
qj = 0 and

Qm

j=n
qj = 1 whenever n > m.

Notice that (15) gives a recurrence relation for fk, increasing in k, and starting with
f0(x) = 0.

It now follows that, for each k 2 f0; : : : ;Kg, the data likelihood satisfies

p(D(x) jM) = nk(x) + vk(x)w(x; bk) p(D(x) j bk)
+ vk(x)(1� w(x; bk)) fk(x) : (16)

Moreover, it also follows that nk(x), vk(x), and fk(x) do not depend on the parameters
for the kth polybone, bk. That is, the dependence on bk has been isolated in the two
terms w(x; bk) and p(D(x) j bk) in (16). This greatly simplifies the derivation and the
computation of the gradient of the likelihood with respect to bk.

The gradient ofO(M) is provided by the gradient of logp(DjM), which is evaluated
as described above, along with the gradient of the penalty term, q(M;Mt�1). In order
to optimize O(M) we have found several variations beyond pure gradient ascent to be



effective. In particular, for a given model M we use a front-to-back iteration through the
recurrence relations in (2) and (14). In doing so we compute the visibilitiesvk(x) and the
near polybone likelihoods nk(x) (from the nearest polybone at k = K to the furthest at
k = 0), without changing the model parameters. Then, from the furthest polybone to the
nearest, we update the kth polybone’s parameters, namely bk, while holding the other
polybones fixed. Once bk has been updated, we use the recurrence relation in (15) to
compute the corresponding far term fk+1(x). We then proceed with updating the pa-
rameters bk+1 for the next nearest polybone. Together, this process of updating all the
polybones is referred to as one back-to-front sweep.

Several sub-steps are used to update each bk during a back-to-front sweep. First we
update the internal (motion) parameters of the kth polybone. This has the same structure
as the EM-algorithm in fitting motion mixture models [12], except that here the near
and far terms contribute to the data ownership computation. The M-step of this EM-
algorithmyields a linear solution for the motion parameter update. This is solved directly
(without using gradient ascent). The mixing coefficients and the variance of the inlier
process are also updated using the EM-algorithm. Once these internal parameters have
been updated, the pose parameters are updated using a line search along the gradient
direction in the pose variables.4 Finally given the new pose, the internal parameters are
re-estimated, completing the update for bk.

One final refinement involves the gradient ascent in the pose parameters, where we
use a line-search along the fixed gradient direction. Since the initial guesses for the pose
parameters are often far from the global optimum (see Section 7), we have found it useful
to constrain the initial ascent to help avoid some local maxima. In particular, we found
that unconstrained hill-climbingfrom a small initial guess often resulted in a long skinny
polybone stuck at a local maximum. To avoid this behaviour we initially constrain the
scaling parameters sx and sy to be equal, and just update the mean position (cx; cy), an-
gle �, and this uniform scale. Once we have detected a local maximum in these reduced
parameters, we allow the individual scales sx and sy to evolve to different values. This
behaviour is evident in the foreground polybone depicted in Fig. 2.

7 Model Search

While this hill-climbing process is capable of refining rough initial guesses, the number
of local maxima of the objective function is expected to be extremely large. Local max-
ima occur for different polybone placements, sizes, orientations, and depth orderings.
Unlike tracking problems where one may know the number of objects, one cannot enu-
merate and compare all possible model configurations (cf. [19]). As a consequence, the
method by which we search the space of polybone models is critical.

Here we use a search strategy that is roughly based on the cascade search developed
in [15]. The general idea is that it is useful to keep suboptimal models which have small
numbers of polybones in a list of known intermediate states. The search spaces for sim-
pler models are expected to have fewer local maxima, and therefore be easier to search.
More complex polybone models are then proposed by elaborating these simpler ones.

4 Before this line-search, the angle parameter �k is first rescaled by the radius of thekth polybone
to provide a more uniform curvature in the objective function.



Fig. 2. Growth of a single foreground polybone in the first 6 frames (shown in lexicographic order)
of a short sequence. The background polybone that is occluded by the foreground layer covers the
entire image but is not shown. For the first three frames the two scale parameters, sx and sy , are
constrained to be equal, afterwhich they are allow to vary independently (see text).

This elaboration process is iterated, generating increasingly more complex models. Re-
visions in the simpler models may therefore cause distant parts of the search space for
more complex models to be explored. This process creates, in a sense, a ‘garden web’ of
paths from simpler models to progressively more complex ones. Our hypothesis is that
optimal model(s) can often be found on this web.

In this paper, the suboptimal intermediate states that we retain in our search are the
best models we have found so far having particular numbers of polybones. We denote
the collection of layered polybone models at frame t by

M(t) = (M0(t);M1(t); : : : ;M �K(t)) ; (17)

whereMN (t) is a list of the best models found at frame t having exactly N foreground
polybones and one background polybone, and �K is a constant specifying the maximum
number of foreground polybones to use. The sub-listMN (t) is sorted in decreasing or-
der of the objective functionO(M), and is pruned to have at most L models (in the ex-
periments, we used L = 1).

To describe the general form of the search strategy, assume that we begin with a par-
titioned list M(t � 1) of models for frame t � 1 and an empty list M(t) for a new
frame t. We then use temporal proposals to generate seed models (denoted by St) for
frame t. These temporal proposals arise from the assumed model dynamics suggested
by p(Mt jMt�1), for each model Mt�1 2 M(t � 1). These seed models are used as
initial guesses for the hill-climbing procedure described in Sec. 6. The models found by



the hill-climbing are then inserted intoM(t), and if necessary, the sub-listsMN (t) are
pruned to keep only the best L models with N foreground polybones.

In addition to the temporal proposals there are revision proposals, which help ex-
plore the space of models. These are similar to temporal proposals, except that they op-
erate on models Mt at the current time rather than at the previous time. That is, given a
model Mt 2M(t), a revision proposal generates a seed model St that provides an initial
guess for hill-climbing. The resulting model ~Mt is then inserted back into the partitioned
listM(t). Broadly speaking, useful revisions include birth and death proposals, which
change the number of polybones, and depth ordering proposals which switch the depth
orderings among the polybone layers.

Finally, in order to limit the number of complex polybone models considered, we
find the optimal model M�

t 2M(t) (i.e. with the maximum value of the objective func-
tionO(M)) and then prune all the models with more polybones than M�

t . The temporal
proposals for the next frame are obtained from only those models that remain inM(t).

Initially, given the first frame at time t0, each sub-list inM(t0) is taken to be empty.
Then, given the second frame, one seed model St0 is proposed that consists of a back-
ground polybone with an initial guess for its motion parameters. The background poly-
bone is always taken to cover the entire image. Here we consider simple background
motions, and the initial guess of zero motion is sufficient. A parameterized flow model
is then fit using the EM-algorithm described in Sec. 6.5 This produces the initial model
Mt0 that is inserted into M(t0). Revision proposals are then used to further elaborate
M0(t0), afterwhich the models for subsequent frames are obtained as described above.

Our current implementation uses two kinds of proposals, namely temporal propos-
als and birth proposals. Given a model Mt�1 2 MN (t � 1), the temporal proposal
provides an initial guess, St, for the parameters of the corresponding model in the next
frame. Here St is generated from Mt�1 by warping each polybone (other than the back-
groundmodel) in Mt�1 according to the motion parameters for that polybone. The initial
guess for the motion in each polybone is obtained from a constant velocity prediction.
Notice that temporal proposals do not change the number of polybones in the model, nor
their relative depths. Rather they use a simple dynamical model to predict where each
polybone will be found in the subsequent frame.

In order to change the number of polybones or find models with different depth re-
lations, we currently rely solely on birth proposals. For a given Mt 2MN (t), the birth
proposal computes a sparsely sampled outlier map that represents the probability that
the data at each location x is owned by the outlier process, given all the visible poly-
bones within Mt at that location. This map is then blurred and downsampled to reduce
the influence of isolated outliers. The center location for the new polybone is selected
by randomly sampling from this downsampled outlier map. Given this selected location,
the initial size of the new polybone is taken to be fixed (we used 16�16), the initial an-
gle is randomly selected from a uniform distribution, the initial motion is taken to be
zero, and the relative depth of the new polybone is randomly selected from the range 1
to N + 1 (i.e. it is inserted in front of the background bone, but otherwise at a random

5 The camera was stationary in all sequences except that in Fig. 2, so only the standard deviation
of the motion constraints and the outlier mixing coefficient needed to be fit for the background
in these cases. For the Pepsi sequence a translational flow was fit in the background polybone.



Fig. 3. The development of the optimal known model. The top row shows results for the first three
frames. The bottom row shows results for frames 11, 15, and 19.

position in the depth ordering). Thus, the birth proposal produces a seed model St that
has exactly one more polybone.

8 Examples
The results of the entire process are shown in Fig. 2. Here we limited the maximum num-
ber of foreground polybones to one in order to demonstrate the sampling and growth of
a single polybone. The image sequence is formed by horizontal camera motion, so that
the can is moving horizontally to the left faster than the background. Given the first two
frames, the background motion was fit. An initial guess for a foreground polybone was
generated by the birth process which, in this case, was sampled from the background
motion outliers. The hill-climbing procedure then generated the polybone model shown
in Fig. 2 (top-left). This polybone grows in subsequent frames to cover the can. The top
of the can has been slightly underestimated since the horizontal structure is consistent
with both the foreground and background motions, and the penalty function introduces
a bias towards smaller polybones. Conversely, the bottom of the can was overestimated
because the motion of the can and the table are consistent in this region. In particular,
the end of the table is moving more like the foreground polybone than the background
one, and therefore the foreground polybone has been extended to account for this data
as well.

A more complex example is shown in Fig. 3, where we allow at most four foreground
polybones. Notice that in the first few frames a new polybone is proposed to account for



previously unexplained motion data. By the 10th frame the polybones efficiently cover
the moving figure. Notice that the polybone covering the arm is correctly interpreted to
be in front of the torso when it is moving differently from the torso (see Fig. 3 bottom left
and right). Also, at the end of the arm swing (see Fig. 3 bottom middle) the arm is moving
with approximately the same speed as the torso. Therefore the polybone covering the
torso can also explain the motion of the arm in this region. The size prior causes the
polybone on the arm to shrink around only the unexplained region of the hand.

A similar example of the search process is depicted in Fig. 4. In this case the sub-
ject walks towards the camera, producing slow image velocities. This makes motion
segmentation more difficult than in Fig. 3. To alleviate this we processed every second
frame. The top row in Fig. 4 shows the initial proposal generated by the algorithm, and
development of a model with two foreground polybones. The two component model
persisted until about frame 40 when the subject began to raise their right arm. A third
foreground polybone, and then a fourth, are proposed to model the arm motion (frames
40-50). At the end of the sequence the subject is almost stationary and the model dis-
solves into the background model. This disappearance of polybones demonstrates the
preferance for simpler models, as quantified by q3(Mt) in (13).

The results on a common test sequence are shown in Fig. 5.6 The same configura-
tion is used as for the previous examples except, due to the slow motion of the people
(especially when they are most distant and heading roughly towards the camera), we
processed every fourth frame of the sequence. Shortly after the car appears in the field
of view, the system has selected four polybones to cover the car (three can be seen in
Fig. 5 (top-left) and the fourth covers a tiny region on the roof). But by frame 822 (five
times steps later) the system has found a presumably better model using just two poly-
bones to cover the car. These two polybones persist until the car is almost out of view,
at which point a single polybone is deemed optimal. The reason for the persistence of
two polybones instead of just one is that the simple spatial form of a single polybone
does not provide a sufficiently accurate model of the shape of the car, and also that the
similarity motion model does not accurately capture the deformation over the whole re-
gion. An important area for future work is to provide a means to elaborate the motion
and shape models in this type of situation.

Fig. 5 (middle and bottom) shows that three pedestrians are also detected in this se-
quence, indicating the flexibility of the representation. Composite images formed from
three successive PETS subsequences are shown in Fig. 5(bottom). All of the extracted
foreground polybones for the most plausible model have been displayed in one of these
three images (recall that only every fourth frame was processed). These composite im-
ages show that the car is consistently extracted in the most plausbile model. The leftmost
person is initially only sporadically identified (see Fig. 5 bottom-left), but is then con-
sistently located in subsequent frames when the image motion for that person is larger.
The other two people are consistently detected (see Fig. 5 bottom middle and right).

6 This sequence is available from the First IEEE International Workshop on Performance Eval-
uation of Tracking and Surveillance, March, 2000. We selected frames 750 to 1290 from the
sequence as the most interesting.



Fig. 4. The optimal known models for frames (top) 0, 2, 4, (second row) 10, 20, 40, (third) 42, 44,
46, (fourth) 48, 50, 60 and (bottom) 70, 80, 90 of the sequence.

9 Conclusions
We have introduced a compositional model for image motion that explicitly represents
the spatial extent and relative depths of multiple moving image regions. Each region
comprises a parametric shape model and a parametric motion model. The relative depth



Fig. 5. The optimal models found for the PETS2000 sequence, (top) frames 802, 842, and 882,
(middle) 1002, 1042, 1202. The the car, three pedestrians,and bushesblowing in the wind (middle-
right) are detected. (bottom) Composite images formed from all the polybones of the optimal mod-
els in every fourth frame, for frames (bottom-left) 750 to 850, (bottom-middle) 850 to 1070, and
(bottom-right) 1070 to 1290. Note that the car and the pedestrians are consistently detected.

ordering of the regions allows visibility and occlusion relationships to be properly in-
cluded in the model, and then used during the estimation of the model parameters.

This modelling framework was selected to satisfy two constraints. First, it must be
sufficiently expressive to be able to provide at least a preliminary description of the dom-
inant image structure present in typical video sequences. Secondly, a tractable means of
automatically estimating the model from image data is essential. We believe that our re-
ported results demonstrate that both of these constraints are satisfied by our polybone
models together with the local search technique.
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