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Abstract
This paper exploits physical models of time-varying

brightness in image sequences to estimate optical flow and
physical parameters of the scene. Previous approaches han-
dled violations of brightness constancy with the use of ro-
bust statistics or with generalized brightness constancy con-
straints that allow generic types of contrast and illumina-
tion changes. Here, we consider models of brightness vari-
ation that have time-dependent physical causes, namely,
changing surface orientation with respect to a directional
illuminant, motion of the illuminant, and physical models
of heat transport in infrared images. We simultaneously es-
timate the optical flow and the relevant physical parame-
ters. The estimation problem is formulated using total least
squares (TLS), with confidence bounds on the parameters.

1. Introduction
This paper uses physical models of time-dependent

brightness variation in image sequences to estimate optical
flow and physical parameters of the scene. Physical causes
of brightness variation include changing surface orientation
with respect to a directional illuminant, motion of the illu-
minant, and physical models of heat transport in infrared
images such as diffusion and decay. We wish to estimate
optical flow and the relevant physical parameters.

Many computer vision applications require accurate esti-
mates of the optical flow field. Although studied extensively
[1, 11], reliable optical flow computation still remains diffi-
cult in many cases. Problems arise from the complex physi-
cal processes involved in scene illumination, surface reflec-
tion, and the transmission of radiation through surfaces and
the atmosphere [12, 24, 19]. Without a model of image for-
mation it is not possible to unambiguously relate spatiotem-
poral brightness to motion.
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Figure 1. Illustration of errors in the optical flow estimation
due to brightness changes. (a) constant brightness (correct
flow field), (b) exponential decay, (c) diffusion.

Common optical flow techniques assume brightness con-
stancy. For graylevel images ��x� ��, where x � ��� ��, the
tracking of points of constant brightness amounts to finding
a path x��� along which image brightness is constant, i.e.,

��x���� �� � � � (1)

for some constant �. Taking the total temporal derivative of
both sides of (1) yields the well-known brightness change
constraint equation (BCCE) [12]:

d�
d�

� ���� � ���� � �� � �� (2)

where v � ���� ���
�

� �d��d�� d��d��� is the optical flow
that we wish to estimate, and �� denotes the partial deriva-
tive of � with respect to the coordinate � � ��� �� ��. Be-
cause (2) provides one constraint in two unknowns it is
common to combine constraints at neighboring pixels, as-
suming that the optical flow field is locally constant or affine
[1, 2]. This produces a system of linear equations that can
be solved using standard (weighted) least squares [14], or
total least squares (TLS) [25, 26]. To further constrain
the estimates, the regions can be extended into time if v is
smooth within local temporal windows [7, 27]. For the en-
hanced brightness change models (Section 3) we consider
here, it is very important that the neighborhoods are ex-
tended to more than two frames. With only two frames, one
can only model brightness changes that are linear in time.



If brightness is not conserved, then the optical flow field
estimated from (2) can be severely biased [4, 17, 18, 24,
3, 20, 9, 19]. Causes of brightness variation include moving
illumination envelopes, changing orientation of surfaces un-
der directional illumination, and atmospheric influences in
outdoor applications. Other instances occur in scientific ap-
plications that quantitatively investigate dynamic processes
[13]. Figure 1 illustrates the influence of brightness changes
on optical flow estimation with two examples of physical
transport processes in infrared images, namely, exponential
decay and diffusion; although the surface translates in each
case, the flow field that conserves brightness may converge
or diverge.

This paper describes a generalized framework for in-
corporating brightness changes into motion analysis using
physical models. Brightness changes are either parameter-
ized as time-varying analytical functions or by the differen-
tial equations that model the underlying physical processes.
We only require that the brightness variation be linear in
the model parameters, not in the image brightness or in the
spatiotemporal coordinates. With this, we obtain a linear
system of equations that constitutes a straightforward gen-
eralization of the brightness constancy assumption.

Estimates of the parameters can then be obtained using
TLS. We show that this produces improved optical flow es-
timates, and it allows us to estimate additional information
that characterizes the physical processes. TLS error covari-
ance matrices [21] are used to quantify the accuracy of the
optical flow and the brightness change parameters.

2. Previous Work
Brightness variations have been modeled by [4, 17, 18,

24, 3, 20, 9]. A general framework is proposed in [20]
where the brightness change between two frames consists
of a multiplier and an offset field:

���� Æ��� ���� � 	������� � ����� (3)

where, for notational convenience, � �
�
�
� � �

��
denotes a

space-time 3D vector. It is certainly true that all changes
between two images can be modeled according to (3).
However, this approximation only yields the instantaneous
brightness change, which does not allow us to discriminate
different physical causes of brightness changes, or to con-
strain the estimation to satisfy particular physical models.

In related work on target tracking, Hager and Belhumeur
[9] combine illumination changes and pose-dependent geo-
metric image distortions into a parameterized model. They
use robust area-based regression to fit the image to a linear
combination of basis templates (eigenmodels). One disad-
vantage of the approach is that the basis set must be com-
puted from the target, under varying illumination, prior to
the tracking. Also, the resulting parameters specify a lo-
cation in the eigenspace of training images, rather than a
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Figure 2. Illustration of the generalized model that allows
the object brightness to change within a few images. Solu-
tions of the brightness constancy assumption are confined
to the gray plane (��x� ��� ��x�� ��� � �).

physical model of the brightness variation. Black et al. [3]
express the change between two frames of an image se-
quence as a mixture of causes, including both motion and
illumination effects. But they have not considered realis-
tic, time-varying, physical models. Moreover, their use of
mixture models, robust statistics, and the EM algorithm are
computationally expensive compared to the linear solution
developed here.

The techniques mentioned above are confined to bright-
ness changes between two images; they do not exploit the
physical nature of brightness variation over more than two
frames. Our approach generalizes the temporal brightness
changes in ways governed by the underlying physical pro-
cess. By confining the classes of permitted solutions to
those of physical relevance we constrain the solutions and
simultaneously estimate the parameters of interest.

3. Physics-Based Brightness Variation

Given a physical model, constraints on brightness varia-
tions can be specified by a functional relation or, more di-
rectly, by differential equations that relate temporal bright-
ness changes to the spatial image structure. As a general-
ization of brightness conservation (1), shown in Fig. 2, we
define a temporal trajectory x��� along which brightness can
change according to a parameterized function, 
 :

��x���� �� � 
���� �� �� � (4)

where �� � ��x����� ��� denotes the image at time �, and
� � ���� � � � � ���

� denotes a
-dimensional parameter vec-
tor for the brightness change model. Without loss of gener-
ality, we choose a parameterization such that a�� produces
the identity transformation, 
���� �� a � �� � ��. While a
is assumed to be constant within small temporal windows,

 is expressed as a function of time to be able to capture
nonlinear temporal brightness changes.

Taking the total derivative of both sides of (4) yields a



generalized brightness change constraint equation:

���� � ���� � �� � ����� �� a�� (5)

where � is defined as:

����� �� a� �
d
d�

�
���� �� a�� � (6)

With the constant brightness model (1), � � �, and (5) re-
duces to (2). Given constraints like that in (5), our goal is
to estimate the parameters of the optical flow field v, and
the parameters a of the physical model � . In (5) we used
a constant flow model for which the flow parameters are ��
and ��. But it is straightforward to use other linear parame-
terized models such as affine motion [6].

Finally, there are two different ways to specify the form
of � . One can compute � by (6) using a known analytical
form of 
, or one can choose � according to the differential
equations of the underlying physical processes. We will il-
lustrate this below in Sections 3.1 - 3.4, before returning to
the general formulation in Section 3.5.

3.1. Exponential Decay

In certain instances, brightness in infrared images is well
modeled using exponential decay. This occurs in applica-
tions where heat is removed from the thin layer on an ob-
ject surface that infrared cameras are imaging. In many such
cases the brightness function 
 in (4) has the analytical form


���� �� �� � �� ��	 ��� �� � (7)

In this case, the parameter vector a reduces to a scalar decay
constant, � � �. Therefore, from (6) it follows that

����� �� �� � � ��� ��	 ��� �� � � ���x���� �� � (8)

This is the well known differential equation of exponential
decay. It states that the rate of change at any time is propor-
tional to the current value. Because � is linear in �, we can
estimate v and � using linear methods (see Section 4).

3.2. Diffusion

Another elementary physical transport process, used to
model brightness changes in infrared image sequences is
diffusion. If the brightness change can be modeled as
isotropic diffusion in the image coordinates, then it depends
on the spatial image structure according to the well known
diffusion equation:

��

��
� �

�
���

���
�

���

���

�
� � (9)

where� is the scalar diffusion constant. Because � is linear
�, we can use linear methods to estimate v and � (Sec. 4).

3.3. Moving Illumination Envelope

Brightness changes caused by moving, non-uniform il-
lumination envelopes have been considered in the 2-frame
case [20]. Here we focus on illuminants with a relatively
narrow envelope, such as flashlights or spotlights. Diffuse
shadows provide another case of interest when they are cast
on a surface the motion of which we wish to estimate.

We model the image as the product of an underlying sur-
face albedo function �� that translates with image velocity
v, and an illumination envelope � (surface irradiance) that
translates with velocity u:

��x� �� � ���x� � v���x� � u� � (10)

The brightness variation of �� is caused by the relative mo-
tion between the envelope and the surface reflectance. To
characterize this brightness transformation it is convenient
to use a coordinate frame of reference that is fixed on the
underlying surface reflectance, i.e., x� � x � � v. The mo-
tion of the envelope relative to this reference frame is given
by u� � u� v and the image brightness becomes

���x�� �� � ��x�� � v� �� � ���x����x�� � u��� (11)

where ���x�� �� is a warped version of ��x� �� for which the
motion of the surface reflectance is stabilized.

To parameterize the brightness variation through time,
we approximate��x��� u�� by a Taylor series, up to second
order with respect to time, about the point �x�� ��:

��x�� � u�� � ��x��� ����u� �



�
��u��� u�� (12)

where �� and � are the gradient and Hessian of � at
�x�� ��. Substituting (12) into (11) yields a brightness func-
tion:


 � ��

�
� � ����u� �




�
��u��� u�

�
� (13)

Then, from (6), the brightness change, � , is given by

� � �� � ��� � (14)

where �� � �����
�u� and �� � �� u��� u�. The bright-

ness change � is linear in the parameters a � ���� ���
� .

When the moving envelope can be approximated by (12)
the quadratic time-varying model in (13) reduces the bias
in optical flow estimates. By comparison, if the envelope
were nearly linear, a first-order temporal model for 
, and
hence a constant model for � , would suffice. In either case,
solving for the polynomial coefficients of the model in a
does not allow us to separate the exact shape of � from its
motion u�. However, it does provide information about the
combined impact of both.



3.4. Changing Surface Orientation
The last case we address here concerns brightness vari-

ations caused by surface rotation under directional illumi-
nation. As is well known, even Lambertian surfaces exhibit
brightness changes if the angle between the surface normal
n and the direction of incident illumination l changes with
time. Although one might attempt to evenly illuminate a
scene to avoid these effects, directional illumination cannot
be avoided in most cases. Examples include outdoor scenes
in direct sunlight, indoor illumination through a single win-
dow, and exploration of dark scenes using a collimated light
source. In some applications one might intentionally use a
directional source to enhance edges while simultaneously
tracking surface properties.

Given a combination of ambient illumination and a fixed,
distant, point light source from direction l (where ��l�� � 
),
the surface radiance from a Lambertian surface with unit
normal n can be expressed as �����n� l, where �� is the am-
bient component and �� is proportional to surface albedo. If
we assume a rotating body, then we can write the surface
normal at time � as n� � ��n�, where �� is a 3D rota-
tion matrix and n� is the normal at time �. Then, the time-
varying radiance becomes �����n����

� l.
The extent to which the radiance changes with time de-

pends on the angle between the light source direction l and
the axis of rotation l�. To see this, let l � � l� �� l�, where
��l��� � ��l��� � 
, � � l� l�, and �� � �� � 
. With this,
one can show that the time varying radiance becomes

���� � �� � ��

�
� n�� l� � � n����

� l�
�
� (15)

Finally, with some manipulation of the second term, one can
show that this reduces to the general form of

���� � �� � �� �
� ���� �� � (16)

where �� � �� � ��� n�� l�, �� � ���, and � denotes
the frequency of the temporal modulation which depends
directly on the rate of object rotation.

It is obvious from (16) that radiance, and hence image
brightness, is not linear in parameters of interest ��� ��.
However, all possible angles between visible (opaque) sur-
faces and the illumination direction are confined to the inter-
val ������ ����. Within this interval the cosine can be ap-
proximated by a second-order polynomial, which provides
our brightness function that is linear in its parameters:


���� �� ��� ��� � ��
�

 � ���� ���

�
	
� (17)

where the parameters �� and �� are functions of � and �.
Using (17), � can be approximated by

� � ���� � ������ � (18)

which is linear in the parameters. Once an approximate pa-
rameter set, �� and ��, is estimated using (18) in (5), the
quadratic approximation of 
 can be fitted to (16) to esti-
mate the parameters � and �.

3.5. Generalized Formulation
In Sections 3.1 - 3.3 the parametric brightness change

models were linear in the parameters a. For the cosinu-
soidal brightness change in Section 3.4 we approximated
the brightness function, 
, with a second-order polynomial
in �. In general, all smoothly varying functions can be lo-
cally expanded by a Taylor series and approximated by a
polynomial of order 
, and therefore we can assume that

 is analytic in a set of parameters a � ���� � � � � ���

�

without loss of generality. Accordingly, remembering that

���� �� a � �� � ��, we can expand 
 as a Taylor series
about a � �:


���� �� �� � �� �

�

	��

�	
�


��	
� (19)

Using (19) we can express � , the temporal brightness vari-
ation defined in (6), as

����� �� a� �
d
���� �� a�

d�
�

�

	��

�	
d
d�

�


��	
� (20)

where �	 is assumed to be constant through time within lo-
cal windows of temporal support. As 
 is analytic in a we
can exchange the order of differentiation to obtain the gen-
eral form of our constraints:

����� �� a� �
�

	��

�	
��

��	
� ��a��� a � (21)

That is, � can be written as scalar product of the parameter
vector a, and a vector containing the partial derivatives of �
with respect to the parameters �	.

4. Computational Framework
In each of the above formulations we obtain linear con-

straints that relate the variables of interest and noisy mea-
surements. The general form of the constraints, assuming a
constant optical flow model, can be expressed as

d�p
 � �� with d �
�
��a��� � ��� � ��

��
(22)

and p
 �
�
p� � 


��
� p �

�
�a� � v�

��
�

where p contains the parameters of interest (the flow field
parameters and the brightness parameters of 
), and p
 de-
notes the homogeneous counterpart of p. The �
 � ��-
dimensional vector d combines the image derivative mea-
surements and the gradient of � with respect to the param-
eters a. This form of constraint is easily generalized from a
constant model to higher-order parameterized motion mod-
els [2, 6], such as an affine model.

Equation (22) is just one constraint in several unknowns.
To further constrain the parameters, p, we assume that p
is constant within a local space-time region. We then use a



collection of� such constraints at neighboring pixels in the
region to obtain a linear system:

� p
 � �� with � � �d�� � � � � d� �
�
� (23)

Assuming IID Gaussian noise in the measurement matrix
�, a maximum likelihood estimate of p is given by the TLS
estimator [21, 23], often formulated as the minimum of

p�
�
�
�p


p�
 p

� (24)

In practice, errors in measuring temporal image deriva-
tives are often larger than errors in measuring the spa-
tial derivatives. Also, derivative measurements at adjacent
pixels are often correlated. Thus, one must renormalize
the constraints before using TLS to avoid bias in the esti-
mates [15, 16]. Although not always referred to as such,
many recent approaches to optical flow computation (e.g.,
[5, 8, 22, 18, 26]) are based on TLS or related techniques.

To quantify the measurement error in terms of an error
covariance matrix, we use the Hessian of the negative log-
likelihood evaluated at the TLS estimate, �p
 � ��p� � 
�� . In
[21], this is shown to be

H � �


�
�
���p

�
���

�
M � �

���p
�
���

��p�
D�p
� I��� �

�

���p
�
���

�
��p�
D�p
��p� ���p
��

��M�p � A� b�
�
�p�
�
�

(25)

where D � ��
� is a �
���	�
��� matrix,� contains

the first �
 � �� columns of �, b is the last column of �,
M � �

�
�, and I��� denotes a �
� �� 	 �
� �� iden-

tity matrix. The factor � is defined as � � ���
�
��� � ��

	
,

where �� denotes the variance of the expected distribution
of gradients in �, and ���I��� is the covariance of the IID
Gaussian noise. If the signal to noise ratio (SNR) is high
��� 
 ����, then � � 
. The error covariance matrix sug-
gested by [21], is then given by� ����.

5. Experimental Results
We have applied the technique to both synthetic and nat-

ural images sequences. These include scientific applica-
tions with infrared image sequences, as well as more con-
ventional computer vision applications. In each case we
measure the optical flow and the brightness change param-
eters. We also compute error covariance matrices, given
above in Sec. 4, that serve as confidence bounds on the es-
timates [21].

5.1. Changing Surface Orientation
Figures 3(a,b) show two frames from a computer gener-

ated image sequence of a randomly textured 3D sphere un-
der directional illumination. The sphere was rendered to be
illuminated under an angle of ��Æ with respect to viewing
direction, and it was rotating about a vertical axis through

a b
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Figure 3. Rotating sphere under directional illumination. (a,
b) Frames 1 and 5. (c, d) Optical flow estimates and un-
certainty ellipses for the constant and quadratic temporal
brightness models.

its center. The angular velocity of the sphere was varied in
several experiments, staying within the spatiotemporal sam-
pling limits imposed by the scale of the spatial texture (this
allowed us to avoid the need for a coarse-to-fine estimation
strategy in the current experiments). The temporal bright-
ness function was modeled with the quadratic approxima-
tion to the cosinusoidal relationship in (17), as described in
Section 3.4. For comparison, we also obtained estimates
using a local linear approximation (3) and the brightness
constancy model (2).

In this and other experiments, we found that the con-
stant brightness model performed poorly compared to the
linear and quadratic models. For slow rotations the lin-
ear and quadratic temporal change models produced very
similar results. Fast motions produce faster brightness
changes, which then show differences between the linear
and quadratic models. To illustrate this while obeying sam-
pling limits, we let the sphere rotate in one direction while
the light source rotated in the other direction.

Figure 3(c,d) shows the optical flow estimates with un-
certainty ellipses. The error ellipses satisfy e�	��e � ���
to capture 90% of the expected errors, where 	 is the 2D
error covariance matrix for �� and ��, and e is the optical
flow error. For convenience, we only display flow estimates
when the norm of� is less than a liberal threshold. It is easy
to see in Figure 3(b,c) that the flow field estimated with the
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Figure 4. A human arm, under directional illumination, is
rotating about its main axis towards the left while slightly
translating to the right. (a) Full image indicating the area
displayed in the lower images. (b, c) Frames 1 and 3. (d,
e) Optical flow estimates and uncertainty ellipses for the
constant and quadratic temporal brightness models.

quadratic model is more accurate than that found with the
constant model.

Another example of brightness variation caused by
changing surface orientation is shown in Figure 4. Here, a
human arm was illuminated by light through a window in a
workplace environment. The arm was turning with respect
to the direction of the illumination. Due to the complex
structure of non-rigid motion of the skin, the surface normal
exhibited fast changes leading to brightness changes. Figure
4 shows the optical flow estimates based on the quadratic
model described in Section 3.4. By comparison one can see
that the estimates with the brightness constancy model are
severely biased.

a b

c d
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Figure 5. Synthetic moving illumination envelope. The
underlying texture and the envelope move with velocities
v � ��� ��� and u� � �������� pixels/frame respectively.
(a, b) Frames 2 and 6. (c, d, e) Difference between the true
and estimated flow, with the uncertainty ellipses, for the
constant, linear, and quadratic temporal brightness models
respectively. (f ) Estimated parameter �� of the combined
curvature and motion of the envelope (see Eqn. (14)).

5.2. Moving Illuminant

To generate a synthetic example of a moving illuminant,
we simply multiplied a sample of smoothed white noise
with a Gaussian envelope. As described in Section 3.3, both
signals translate with constant velocity. The Gaussian sim-
ulates the illumination envelope, and it is the motion of the
noise signal that we wish to estimate.

Figure 5 shows results for different temporal brightness
models, namely, the constant (2), linear (3), and quadratic
(13) models. Because the synthetic sequence provides
ground truth, we plot the difference vectors e between the
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Figure 6. Moving flashlight illuminates a carpet. The en-
velope moves right while the carpet texture remains al-
most stationary. (a,b) Frames 2 and 6. (c, d) Optical flow
estimates and uncertainty ellipses for constant and linear
brightness models. (e, f ) Flow estimates with the quadratic
model, and an image of estimates of parameter �� which
depends on the curvature and motion of the envelope.

flow estimates and ground truth. Due to the shape of the il-
lumination envelope, no part of the moving pattern remains
at constant brightness along its path. Consequently, the con-
stant brightness model fails to predict the true velocity over
the entire image (Fig. 5 c). The linear model correctly ac-
counts for brightness changes in regions where the instanta-
neous motion of the illumination envelope is mainly parallel
to its level contours (Fig. 5 d). In these regions the param-
eter �� in (14) exceeds the parameter �� and the temporal
brightness changes are nearly linear. However, the linear
model fails in regions of high positive or negative values
of the combined motion/curvature parameter � � (dark and

a b
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Figure 7. Exponentially decaying heat spot on a wavy wa-
ter surface. (a, b, c): Frames 1, 3 and 5. (d) Decay rate �

threshold by the confidence measure. (e, f) Optical flow es-
timates and uncertainty ellipses estimated with the constant
brightness model and the exponential decay model.

bright regions in Figure 5f. The quadratic brightness change
model allows us to accurately estimate the motion of the
pattern (Fig. 5e).

The next example shows an image sequence taken as a
moving observer shone a flashlight on a dark textured carpet
(Fig. 6). Negahdaripour [20] investigated a similar exam-
ple of a non-uniform illumination pattern in an underwater
scene. He showed that the linear brightness change model
(3) performs well in estimating the correct optical flow as
compared to the bias that occurs with the constant bright-
ness model. However, in his case the illuminant was sta-
tionary with respect to the camera. We find the same result;
for small u� � v, the linear model performs as well as a
quadratic model. For faster motions u� 
 v the quadratic
terms in (13) become more significant, so the quadratic
model yields better results (compare Figs. 6 d,e). This is
clearest in regions with high envelope curvature (Fig. 6 f).

5.3. Heat Transport in Infrared Images

Figure 7 shows an application example from physical
oceanography. The scientific task was to estimate the decay
rate of an exponentially decaying heat spot on the water sur-
face in a wind/wave tank. The broader goal is to estimate
the transfer velocity of heat across the air/water interface,
which is known to be related to the heat decay rate on the
water surface. In addition to the exponential decay, the im-
age is expected to deform due to the underlying turbulent
flow field, another important parameter of air/sea interac-



tion. Thus, both the decay rate and the flow field need to be
estimated.

In Figure 7, the images show an area of about 5	 5 cm.
If we assume brightness constancy then the estimated flow
(Fig. 7 e), especially the convergent flow in the center, is
unrealistic. In fact the heat spot is sheared and elongated
from one frame to the next. Using the exponential bright-
ness change model the flow (Fig. 7 f) is accurately estimated
together with the thermal decay rate � (Fig. 7 d).

Further examples of heat transport in infrared images,
including further examples of heat decay and examples of
heat diffusion can be found in [10].

6. Conclusions
This paper presents a new approach to quantitatively esti-

mating motion and physical parameters of image sequences.
We use physical models of brightness change to facilitate
the estimation of both optical flow and physical param-
eters of the scene. Previous approaches have accommo-
dated violations of brightness constancy with the use of ro-
bust statistics or with generalized brightness constancy con-
straints that allow generic types of contrast change. Here,
we consider models of brightness variation that have time-
dependent physical causes, including changing surface ori-
entation with respect to a directional illuminant, motion of
the illuminant, and physical models of heat transport (diffu-
sion and decay) in infrared images.

The new technique is a straightforward extension of the
standard brightness change constraint equation to incorpo-
rate the spatiotemporal signature of particular dynamic pro-
cesses. With our formulation, the resulting problems have
linear solutions using total-least-squares. With the use of
an error covariance, we show that the method provides both
accurate optical flow estimates, and accurate estimates of
the relevant physical parameters. The usual sensitivity of
total-least-squares to measurement noise and conditioning
is mitigated with the use of the error covariance.
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