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Abstract

We propose an approach to incorporating dynamic mod-
els into the human body tracking process that yields full 3–
D reconstructions from monocular sequences. We formu-
late the tracking problem in terms of minimizing a differen-
tiable criterion whose differential structure is rich enough
for successful optimization using a simple hill-climbing ap-
proach as opposed to a multi-hypotheses probabilistic one.
In other words, we avoid the computational complexity of
multi-hypotheses algorithms while obtaining excellent re-
sults under challenging conditions.

To demonstrate this, we focus on monocular tracking of
a golf swing from ordinary video. It involves both deal-
ing with potentially very different swing styles, recovering
arm motions that are perpendicular to the camera plane and
handling strong self-occlusions.

1. Introduction

In spite of having received considerable attention,
monocular tracking of human motion remains a difficult
problem, especially in the presence of self-occlusions and
movements perpendicular to the image plane. Even though
early approaches used determinisitic optimization [6] to
track simple motions, most current approaches rely on
multi-hypotheses optimization techniques [7, 9, 10, 12, 20]
to resolve the inherent ambiguities of this problem and to
escape the local-minima that are usually involved. They
have been shown to be effective but entail ever increasing
computational burdens as the number of degrees of freedom
in the model increases.

In earlier work [22, 23], we have advocated the use
of temporal motion models based on Principal Component
Analysis (PCA) and inspired by those proposed in [18, 19,
24] to formulate the tracking problem as one of minimizing
differentiable objective functions when using stereo data.
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The differential structure of these objective functions is rich
enough to take advantage of standard hill-climbing opti-
mization methods, whose computational requirements are
much smaller than those of multiple-hypotheses ones and
can nevertheless yield very good results.

Here, as shown in Figs. 1, 8, and 9, we extend this ap-
proach to monocular tracking, and demonstrate its ability
to track such a complex fully 3–D motion as a golf swing.
Unlike some recent approaches to incorporating dynamic
models in 2–D [2], we recover full 3–D from a single fixed
camera. This is important for golf because, at the top of the
swing, the arm motion perpendicular to the camera plane is
both large and very significant.

Of course, it could be argued that by using a strong mo-
tion model, we constrain the problem to the point where it
becomes almost trivial. We will show that this is not the
case and that our model still has sufficient flexibility not
only to model very different golf swings, such as those of
Figs. 1 and 9, but also to produce totally meaningless results
if the image data is not properly exploited. In other words,
our implementation embodies a happy middle ground be-
tween an over-constrained model that is too inflexible and
one that is so loose that it makes the optimization very dif-
ficult. In our earlier work [23], we have found walking,
running, and jumping, to be amenable to the kind of mod-
eling we use here. We therefore believe our approach to be
applicable not only to golf but also to many other motions
that involve predictable movements.

In the remainder of this paper we first discuss related
approaches and introduce our deterministic motion model.
We then show how we use it to incorporate the kind of im-
age information that can actually be extracted from video
sequences acquired on golf courses under uncontrolled cir-
cumstances. Finally, we discuss our results in more detail.

2. Related Work

Modeling the human body and its motion is of enormous
interest in the Computer Vision community, as attested by
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Figure 1: Tracking a full swing in a 45 frame sequence. First two rows: The skeleton of the recovered 3–D
model is projected into a representative subset of images. Middle two rows: Volumetric primitives of the
recovered 3–D model projected into the same views. Bottom two rows: Volumetric primitives of the 3–D
model as seen from above.

recent surveys [15, 16]. However, existing techniques re-
main fairly brittle for many reasons: Humans have a com-
plex articulated geometry overlaid with deformable tissues,
skin and loose clothing. They move constantly, and their
motion is often rapid, complex and self-occluding. Further-
more, the 3–D body pose is only partially recoverable from
its projection in one single image. Reliable 3–D motion
analysis therefore requires reliable tracking across frames,
which is difficult because of the poor quality of image-data
and frequent occlusions. Recent approaches to handling
these problems can roughly be classified into those that

• Detect: This implies recognizing postures from a sin-
gle image by matching it against a database and has
become increasingly popular recently [1, 11, 17, 21]
but requires very large sets of examples to be effective.

• Track: This involves predicting the pose in a frame
given observation of the previous one. This can easily
fail if errors start accumulating in the prediction, caus-
ing the estimation process to diverge. This is usually

mitigated by introducing sophisticated statistical tech-
niques for a more effective search [7, 9, 10, 12, 20]
or by using strong dynamic motion models as pri-
ors [2, 18, 19].

Neither technique is proven to be superior, and both are ac-
tively investigated. However, the tracking approach is the
most natural one to use when a person is known a priori
to be performing a given activity, such as walking, running,
or jumping. Introducing a motion model becomes an ef-
fective means to constrain the search and increase robust-
ness. Furthermore, instead of a separate pose in each frame,
the output are the parameters of the motion model, that are
physically usefull in subsequent tasks such as sport training,
physiotherapy, diagnostics or recognition.

Models that represent motion vectors as linear sums of
principal components are of particular interest to us and
have been used effectively to produce realistic computer an-
imations [3, 4, 5]. The PCA components are computed by
capturing as many people as possible performing a specific



Figure 2: Key postures: Beginning of upswing,
end of upswing, ball hit, and end of downswing.

activity, for example by means of an optical motion capture
system, representing each motion as a temporally quantized
vector of joint angles, and performing a Principal Compo-
nent Analysis on the resulting set of vectors.

This representation has already been successfully used in
our community [18, 19, 24], but almost always in a statisti-
cal context and without exploiting the fact that this parame-
terization allows the formulation of the tracking problem as
one of minimizing differentiable objective functions, which
allows for a lower computational complexity.

3. Motion Model

We represent the body of the golfer as a set of volumetric
primitives attached to an articulated 3-D skeleton, as shown
in the bottom rows of Fig. 1. Its pose is given by the po-
sition and orientation of its root node, defined at the level
of the sacroiliac, and a set of joint angles. To build a mo-
tion model, we used the ten golf swing motions of the CMU
database [8]. We identified the 4 key postures depicted by
Fig. 2 in each motion and time warped the swings so that
the key postures are all reached at the same time. We then
sampled them at regular time intervals using quaternion
spherical interpolation so that each swing can be treated as
N = 200 samples of a motion starting at normalized time 0
and ending at normalized time 1.

In the models used here there are D = 72 degrees of
freedom in addition to the 3D orientation and 3D position of
the root. A swing is then represented by an angular motion
vector Ψ of size N ∗D = 14400. Ψ is a column vector of
the form:

Ψ = [ψµ1
, · · · , ψµN

]T (1)

where the ψµi
are column vectors representing the joint an-

gles at normalized time µi. The posture at a given time
0 ≤ µt < 1 is estimated by interpolating the values of the
ψµi

corresponding to postures immediately before and after
µt.

Assuming our set of training motions is representative
of the motion we want to model, a motion vector Ψ can be
approximated as a weighted sum of the mean motion Θ0

and the first few principal directions of the training set, Θi,
as follows:

Ψ ≈ Θ0 +

m
∑

i=1

αiΘi , (2)

where the αi are scalar coefficients that characterize the mo-
tion, m ≤ M controls the fraction of the total variance of
the training data that is captured in the subspace model, and
M = 10 is the number of examples. For the small database
we use, withm = 4 we were able to satisfactorily track golf
swings. As will be discussed in Section 5.2, the database
is clearly too small and we plan to augment it. However,
based on previous experience with walking, running and
jumping [23], we do not expect the required value of m to
grow dramatically for the specific purpose of modeling golf
swings, or more generally constrained athletic motions.

As will be discussed in Section 4, our tracking is formu-
lated as the least-squares minimization of an objective func-
tion F with respect to the motion model parameters αi, µt

and the global motion Gt of the skeleton’s root node, that is
not included in the motion model. This involves computing
the Jacobian of F . Assuming that ∂F

∂θj
is differentiable, that

is that the derivatives of F with respect to the individual
joint angles θj exist, this can be done analytically using the
chain rule [22].

4. Least Squares Framework

Given that we operate outdoors in an uncontrolled en-
vironment and want to track golfers who are wearing their
normal clothes, we cannot rely on any one image clue to
give us all the information we need. Instead, we take ad-
vantage of several sources of information, none of which
is perfect, but that together have proved sufficient for our
purposes.

More specifically, we sequentially fit our motion model
over sliding groups of f frames. For such a set of f frames,
we take the state vector S, to be

S = [α1, . . . , αm, µ1, . . . , µf , G1, . . . , Gf ] , (3)

where the αi are the PCA weights of Section 3 common to
the set of f frames, the µt are the normalized time associ-
ated to each frame, and the Gt represent the corresponding
absolute position and orientation of the root node that vary
in every frame.

We use the image data to write observation equations of
the form Obs(xi,S) = εi , 1 ≤ i ≤ nobs, where xi is
an observation, Obs a differentiable function whose value
is zero for the correct value of S and completely noise free
data, and εi is an error term. We then minimize a weighted
sum of the squares of the εi residuals. Our system must
be able to deal with observations coming from different
sources. We therefore associate to each data point xi an ob-
servation type typei and to each type a weight wtype. The
weights are chosen so that the contribution of the different
terms become commensurate in terms of their derivatives.
Because the image data is noisy, we add a regularization
term that forces the motion to remain smooth.



Figure 3: Poor quality foreground binary mask ex-
tracted from the images of Fig. 8.

The total energy F that we minimize therefore becomes

nobs
∑

i=1

wtypei
∥

∥Obstypei(xi,S)
∥

∥

2
+ wG

∥

∥

∥
Gt − Ĝt

∥

∥

∥

2

(4)

+wµ(µt − µ̂t)
2 + wα

m
∑

i=1

(αi − α̂i)
2 ,

where Obstype is the function that corresponds to a particu-
lar observation type, Ĝt and µ̂t are predicted values for the
position and orientation of the root node and the predicted
normalized time, and wG, wµ and wα are scalar weights.
We take Ĝt to beGt−1+∆Gt−1 and µ̂t to be µt−1+∆µt−1,
where ∆Gt−1,∆µt−1are the speeds observed in the previ-
ous set of frames.

We now turn to the description of the Obstype functions
for the data types we use and conclude the section by de-
scribing their complementarity.

4.1. Foreground and Background

Given an image of the background without the golfer,
we can extract rough binary masks of the foreground such
as those of Fig. 3. Note that because the background is
not truly static, they cannot be expected to be of very high
quality. Nevertheless, they can be exploited as follows.
We sample them and for each sample x we define a Back-
ground/Foreground function Obsfg/bg(xi,S) that is 0 if the
line of sight defined by x intersects the model and is equal
to the distance of the model to the line of sight otherwise.
In other words,Obsfg/bg is a differentiable function that in-
troduces a penalty for each point in the foreground binary
mask that does not backproject to the model. That penalty
increases with the 3–D distance of the model to the corre-
sponding line of sight.

Minimizing Obsfg/bg in the least squares sense tends to
maximize the overlap between the model’s projection and
the foreground binary mask. This prevents the pose esti-
mates from drifting, potentially resulting in the model even-
tually projecting at the wrong place and tracking failure.

4.2. Projection Constraints

To further constrain the location of six key joints—
knees, ankles and wrists —and the head, we track their ap-
proximate image projections across the sequence.

Figure 5: Detected club trajectories for the driving
swing of Fig. 1 and the approach swing of Fig. 8.
Note that one trajectory is much more extended
than the other.

As shown in Fig. 4, for the ankles, knees and head, we
use the WLS tracker [13] to take advantage of the slow
dynamics of changes in image patches. WSL is a robust,
motion-based 2–D tracker that maintains an online adaptive
appearance model. The model adapts to slowly changing
image appearance with a natural measure of the temporal
stability of the underlying image structure. By identifying
stable properties of appearance the tracker can weight them
more heavily for motion estimation, while less stable prop-
erties can be proportionately down-weighted.

For the wrists, because the hand tends to rotate during
the motion, we have found it more effective to use a club
tracking algorithm [14] that takes advantage of the infor-
mation provided by the whole shaft. It is depicted by Fig. 5
and does not require any manual initialization. It is also
very robust to mis-detections and false alarms and has been
validated on many sequences. Hypotheses on the position
are first generated by detecting pairs of close parallel seg-
ments in the frames, and then robustly fitting a 2D motion
model over several frames simultaneously. From the recov-
ered club motion, we can infer 2–D hand trajectories.

For joint j, we therefore obtain approximate 2–D po-
sitions x

j
t in each frame. Given that the joint’s 3–D

position and therefore its projection are a function of S,
we simply take the corresponding joint projection function
Obsjoint(xj

t,S) to be the 2–D Euclidean distance between
the joint projection and its estimated 2-D location.

4.3. Point Correspondences

We use 2–D point correspondences in pairs of consec-
utive images as an additional source of information: We
project the 3–D model into the first image of the pair, sam-
ple the projection, and establish correspondences for those
samples in the second one using a simple correlation-based
algorithm. Given a couple xi = (p1

i , p
2
i ) of corresponding

points found in this manner , we define a correspondence
function Obscorr(xi,S) as follows: We backproject p1

i to
the 3–D model surface and reproject it to the second image.
We then takeObscorr(xi,S) to be the Euclidean distance in
the image plane between this reprojection and p2

i .



Figure 4: 2-D tracking of the ankles, knees, and vc2, using the WSL appearance-based tracker.

Figure 6: Tracking using only joint constraints vs
using the complete objective function. Top: Us-
ing only joint constraints the problem is under-
constrained and a multiple set of solutions are
possible. Bottom: The set of solutions is reduced
using correspondences.

4.4. Complementarity of the Data Terms

The projection observations of Section 4.2 more pre-
cisely constrain the projections of the ankles, knees, wrists
and head. However, as shown in the top row of Fig. 6, these
projection constraints are not sufficient by themselves. The
correspondences of Section 4.3 are required to fully con-
strain the motion of both the lower and upper body. Of
course, the correspondences by themselves would not be
enough either: They are too noisy to be used alone be-
cause the golfer is wearing untextured clothing and the
wrinkles produce correspondence motion that does not nec-
essarily follow the golfer’s true motion. As discussed above
the foreground/background observations of Section 4.1 stop
the estimates from drifting by guaranteeing that the model
keeps on projecting roughly at the right place.

The example of Fig. 6 is significant because it shows that
the model has sufficient flexibility to do the wrong thing
given insufficient image data. In other words, even though
we use a motion model, the problem is not so constrained
that we are guaranteed to get valid postures or motions with-
out using the images correctly.

5. Tracking

In this section, we first discuss the initialization of our
tracking procedure, which only requires a minimal amount
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Figure 7: Assigning normalized times to the
frames of Fig. 1. Fist two rows: We use the au-
tomatically detected club positions to identify the
key postures of Fig. 2. Bottom row: The cor-
responding normalized times are denoted by red
dots. Spline interpolation is then used to initialize
µt for all other frames in the sequence.

of manual intervention. We then present our results in more
detail.

5.1. Initialization

For each sequence, we first run the golf club tracker [14]
discussed in Section 4.2. As shown in the first row of Fig. 7,
the detected club positions let us initialize the µt parame-
ters by telling us in which four frames the key postures of
Fig 2 can be observed. As discussed in Section 3, the cor-
responding normalized times were defined when creating
the database. We can therefore assign a normalized time



to all other frames in the sequence by spline interpolation,
as shown in the bottom row of Fig. 7. As not everybody
performs the motion at the same speed, this time is only
a guess and will be refined during the actual optimization.
This temporal alignment does not need to be precise, but
it gives a rough initialization for each frame. This will not
limit the application to other type of motions, since detec-
tion techniques [1, 11, 17, 21] has been proved effective for
walking, running and could be easily extended to other ath-
letic activities.

We then roughly position the root node of the body so
that it projects approximately at the right place in the first
frame and specify in that first frame the locations of the five
joints to be tracked by WSL [13]. Note that all of this only
requires a few mouse clicks and could easily be automated
using posture detection techniques, given the fact that the
position at the beginning of a swing is completely stereo-
typed. We can now start the tracking algorithm by setting
all the PCA weights to zero and minimizing in a fully auto-
mated fashion the criterion of Eq. 5 three frames at a time.

5.2. Results

Figs. 1 and 8 depict complete driving swings performed
by two different subjects whose motions were not recorded
in the CMU database [8]. In both cases, we show projec-
tions of the recovered 3D model in a representative subset
of the images. In Fig. 1, we also display the recovered 3D
model, first projected in the original view and then as seen
from above. Note the quality of the tracking in spite of the
facts that the golfers are wearing relatively untextured cloth-
ing, their sizes are unknown and the cameras uncalibrated.
To perform our computation, we used rough estimates of
both the subjects size and the cameras focal length. In prac-
tice, this information could be made available to the system,
thereby simplifying its task.

Fig 9 depicts a much shorter approach swing, where the
club does not go as high as in a full swing, as evidenced
by the very different club trajectories of Fig. 5. This is chal-
lenging for our system because the CMU database only con-
tains driving swings. Our model nevertheless has sufficient
flexibility to generalize to this new motion. Note, however,
that the right leg bends too much at the end of the motion,
which is a reflection of the small size of the database and
of the fact that all the exemplars in it bend their legs in this
particular fashion. One possible way to avoid this problem
in the future is to use a larger database containing a great
variety of training motions.

6. Conclusion

We have presented an approach to incorporating
strong motion models that yields full 3–D reconstructions

from monocular sequences using a single-hypothesis hill-
climbing approach. This results in much lower computa-
tional complexity than current multi-hypotheses techniques.
We have demonstrated it for monocular tracking of a golf
swing from ordinary videos, which involves dealing with
potentially very different swing styles, recovering arm mo-
tions that are perpendicular to the camera plane, and han-
dling strong self-occlusions. The major limitation of the
current implementation stems from the small size of the mo-
tion database we used, which we will remedy in the coming
months.

We have obviously placed ourselves in a relatively con-
strained context, which is nevertheless far from simple
and makes sense in terms of potential industrial applica-
tions. Furthermore, we believe there is also ample scope
for broadening this approach given a ”library” of models
such as the ones we have used here or those we developed
in our earlier walking, running and jumping work [22, 23]:
In a broader context, with specific motion models, we have
traded the complexity of tracking for the complexity of
knowing which model to apply. This might mean keeping
several models active at any one time and selecting the one
that fits best. This brings us back to multiple hypotheses
tracking, but the multiple hypotheses are over models and
not states. This might be much more effective than what
many particle filters do because it ensures that the multiple
hypotheses are sufficiently different to be worth exploring.
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