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Abstract
We describe a probabilistic framework for detecting and

tracking motion boundaries. It builds on previous work [4]
that used a particle filter to compute a posterior distribu-
tion over multiple, local motion models, one of which was
specific for motion boundaries. We extend that framework
in two ways: 1) with an enhanced likelihood that combines
motion and edge support, 2) with a spatiotemporal model
that propagates beliefs between adjoining image neighbor-
hoods to encourage boundary continuity and provide bet-
ter temporal predictions for motion boundaries. Approx-
imate inference is achieved with a combination of tools:
Sampled representations allow us to represent multimodal
non-Gaussian distributions and to apply nonlinear dynam-
ics. Mixture models are used to simplify the computation of
joint prediction distributions.

1 Introduction
The detection of dynamic occlusion and the reliable es-

timation of 2D motion and relative surface depths at motion
discontinuities are long-standing problems in visual motion
analysis. Black and Fleet [4] proposed a Bayesian approach
with a generative model for local motion in which the 2D
flow is either smooth or discontinuous, along with a par-
ticle filter to approximate the posterior probability distri-
bution over the models and model parameters. This paper
extends that framework in two respects. First, while Black
and Fleet [4] considered local image regions in isolation,
here we consider a dense array of smaller neighborhoods,
combined with a probabilistic model for neighborhood de-
pendencies. Second, we extend the original motion-based
likelihood function to include an empirical edge-based like-
lihood function to improve boundary localization.

Particle filters have become a popular method of approx-
imate inference for dynamical systems [10, 13, 15, 17, 31].
With point-mass approximations to probability distribu-
tions, they are effective for non-Gaussian, multimodal dis-
tributions that occur with nonlinear dynamics and obser-
vation equations. Multimodal distributions are particularly
significant with hybrid state-space models having continu-
ous and discrete variables that depend on one another. Here
we use discrete and continuous states to represent motion
classes and their corresponding motion parameters.

Figure 1. Motion estimates at frame 6 without (left) and
with (right) spatiotemporal dependence. Each region de-
picts the mean of the principal mode of the posterior. Empty
circles depict smooth motion. Filled regions are motion
boundaries, with white dots on the foreground side.

One issue with particle filters is computational cost. Al-
though effective for low-dimensional tracking, it is not clear
how they scale to high-dimensional problems (e.g., see
[5, 7, 18]). A related concern is the effectiveness of par-
ticle filters for inference with dynamic random fields. Iter-
ative solutions using MCMC can be prohibitively slow, and
Bayesian belief propagation may be impractical with Monte
Carlo approximations to complex, hybrid distributions.

For approximate inference, Black and Fleet assumed that
the motion in each image region could be modeled by an in-
dependent Markov chain, estimating the motion in each lo-
cal region separately. But, by assuming independence this
fails to exploit the information that one region could ob-
tain from its neighbors; it is difficult to encourage continu-
ity along motion boundaries, and to make accurate predic-
tions about boundary locations from one time to the next.
As an example, Fig. 1(left) depicts motion estimates ob-
tained from isolated particle filters in each circular region.
Fig. 1(right), by comparison, depicts the motions estimated
with neighborhood dependencies as described below.

This paper explores the use of spatiotemporal predic-
tions with Bayesian filtering to detect and track motion
boundaries. We use a simplified dependency graph (see
Fig. 2(right)) in which it is assumed that regions at time
�, conditioned on nearby regions at time � � �, are inde-
pendent of other regions at current and past times. We also



make use of several different inference tools: First, we ap-
proximate the joint distribution over multiple regions by a
collection of marginals [19]. Second, we use Monte Carlo
approximations to these distributions to deal with the non-
linear dynamics and non-Gaussian likelihoods. Finally, we
use mixture models to efficiently approximate the predic-
tion distributions from multiple neighborhoods.

2 Previous Work
There are more methods for detecting motion bound-

aries and estimating discontinuous motion than we can ade-
quately review here. But, broadly speaking, there are two
classes of related approaches: 1) those that treat motion
boundaries as a source of error for optical flow techniques,
and 2) those that explicitly try to detect motion boundaries.

Techniques that view motion discontinuities as a source
of noise (outliers) include MRF and regularization formu-
lations where robust statistics, weak continuity, or line pro-
cesses are used to disable smoothing across motion discon-
tinuities [6, 11, 12, 16, 21, 24, 25, 28]. Robust regression
[3, 23] and mixture models [1, 14, 30] allow for multiple
motions to occur in a region, and thus provide some degree
of robustness at boundaries. These methods improve mo-
tion estimation, but they fail to explicitly estimate the struc-
ture of local motion boundaries; e.g., they do not estimate
which side of the boundary is the foreground.

Other approaches to detecting discontinuities include the
detection of bimodality in local distributions of optical flow
[27], the application of edge detectors to estimated flow
fields [24, 28], and the detection of spectral signatures
[2, 22]. Still others have used the presence of unmatched
features to detect dynamic occlusions [20, 28]. Few of these
methods model the spatial structure of the motion in the im-
mediate neighborhood of a motion boundary, and they have
not proved reliable in practice.

3 Bayesian Inference of Motion Boundaries
Following [4] we take a Bayesian approach. We assume

a hybrid state space with two motion classes for each lo-
cal region of the image: 1) a translational model to capture
smooth motion; and 2) an explicit nonlinear model of mo-
tion boundaries. The state space description, s � ��� c��,
includes discrete and continuous random variables. The
discrete variable � encodes the type of motion, and the
continuous vector c� encodes the parameters for the corre-
sponding motion class �. Smooth motion is parameterized
by image translation, �. As shown in Fig. 2(left), motion
boundaries are parameterized by the foreground and back-
ground velocities, the edge orientation and the normal dis-
tance from the edge to the region center, c� � ��� ���� �� ��.

With Bayes’ rule and the assumption that the motion in
each image neighborhood forms a Markov chain, the usual
recursive filtering equation takes the form

���� � ��� � � ���� � ��� ����� ���� � ����� (1)
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Figure 2. (left) Motion boundary parameterization: u� and
u� denote foreground and background velocities, � denotes
edge orientation with normal n� , and � is the signed per-
pendicular distance of the edge from the region center x�.
(right) The assumed spatiotemporal dependency.

where �� is the state variable for an image region at time
�, � is a normalization constant, and �� � ���� � � � � ���
is the observation history. In (1), the conditional observa-
tion density, ���� � ��� �����, is called the likelihood func-
tion. The second factor, ���� � �����, is the prediction distri-
bution. With the Markov assumption, and conditional inde-
pendence of the observations, it can be expressed as

���� � ����� �

�
����

���� � ����� ������ � ����� ����� (2)

where the conditional distribution ���� � ����� embodies the
temporal dynamics, and ������ � ����� is the posterior dis-
tribution at the previous time, �� �.

With simple dynamical models, Gaussian process noise,
and a likelihood function derived from intensity conserva-
tion, the prediction and posterior distributions are easy to
formulate. However, because of the nonlinear dynamics of
the motion boundary model, and because likelihoods are
typically non-Gaussian and multimodal, the posterior (1)
does not have an analytical solution. Fleet & Black [4]
therefore used a particle filter to approximate the poste-
rior. Although this approach produced promising results, it
does have some drawbacks. First, by modeling the motion
in each region independently of its neighbors, one ignores
the wealth of information that one region can share with its
neighbors. Second, their motion-based likelihood function
fails to use the available information in images at occlusion
boundaries. In particular, they do not exploit the fact that
static edges often coincide with motion boundaries.

4 Neighborhood Prediction Distribution
In this paper we continue to approximate the joint pos-

terior distribution over the motion in all image regions by
the marginal distributions in each region. But rather than
computing these marginals independently, we exploit pre-
dictions from several neighborhoods at the previous time.
This provides a modest amount of influence from neighbors
that helps to encourage edge continuity. It also helps to di-
rect particles (in a particle filter) to the appropriate part of
the state space. This is important when an edge is about to
leave one neighborhood and enter another.



We assume a spatiotemporal pattern of neighborhood de-
pendence like that in Fig. 2. Each location at time � receives
predictions from nearby locations at the previous time ���.
Combining these predictions requires that we reformulate
the prediction distribution in (2). Following the graphical
model in Fig. 2, let the set of nodes that contribute to s � be
denoted by ������������. We begin by writing the prediction
distribution as the marginalization of the joint distribution
over s� and its neighbors ������������ :

���� � ����� �

�
��������

����� ��������
�
��� � ����� � (3)

Factoring the integrand into the state dynamics and the joint
posterior from the previous time �� � yields

���� � ����� �

�
��������
���� � ��������� ���������� � ����� � (4)

The dynamics, ���� � ���������, can be factored if we as-
sume that the neighbors at time � � � have uniform pri-
ors and are independent when conditioned on � �. The joint
posterior over all neighbors can not be factored in general.
However, for computational convenience we approximate
the joint posterior as a product of its marginals, as in [19],
to yield

���� � ����� � �
�
���

�
������

���� � ������� �������� � ����� (5)

where � is a constant. The resulting prediction distribution
is product of the predictions from each neighboring loca-
tion, each of which has the form of (2). This can be viewed
as one iteration of loopy belief propagation [19, 29].

4.1 Particles and Gaussian Mixtures

The simplified prediction distribution in (5) allows us to
combine predictions from each of the neighbors from time
��� in a straightforward manner. If the marginal posteriors
were Gaussian, and the dynamics were linear with Gaussian
noise, then the prediction in (5) would also be Gaussian.
However, the temporal dynamics for the motion boundary
model are nonlinear, and the likelihood functions for both
models are non-Gaussian and multimodal in general. This
precludes an analytical solution to the integrals in (5).

Instead, we use Monte Carlo methods. As with a particle
filter, each distribution �������� � ����� is represented by a

weighted set of 	 samples �s�	������� 

�	�
������



	��. Then, the

approximate prediction distribution from a single neighbor
(as in (2)) can be viewed as a mixture model [31],�

	�����




�	�
����� ��s� � s

�	�
������ � (6)

From this perspective, the prediction distribution in (5)
amounts to a product of mixture models.

Neigh�Curr �� � � �� � �

���� � � ������ ����

���� � � ���� ������

Table 1. Transition probabilities ����������� c����.

However, because we typically use thousands of parti-
cles (e.g.,	 � ���), and about� � � neighbors, the num-
ber of components in such a product, i.e., 	 � , quickly be-
comes unmanageable. We overcome this problem by fitting
a mixture model to the individual prediction distributions
prior to their multiplication in (5). We use mixture models
with a small number of Gaussian components (often 3 to
5) plus a uniform outlier process. As a result, the product
in (5) reduces to fewer than ��� components. The mixture
models are fit with a simple version of the EM algorithm.

Note that we first propagate individual samples from the
neighboring posteriors at the previous time, and then we fit
the mixture model. As with assumed density filtering and
unscented filtering, this is done because it is relatively easy
to propagate individual samples through nonlinear dynam-
ics. The final prediction distribution in (5) is obtained mul-
tiplying the individual mixture model predictions.

5 Computational Method
Given weighted sample sets that approximate the pos-

terior distribution in each local region at time � � �, the
steps toward the computation of the posterior distribution in
a specific region at time � can be summarized as follows:

1. For each neighbor � at the previous time �� �:
– Draw	 samples with replacement from the posterior

at time �� � given by �s�	������� 

�	�
������



	��.

– Propagate the samples using the model dynamics
(Sec. 5.1), and then sample from the prediction
density (6) to get a new sample set at time �.

– Use EM to fit a mixture of� Gaussians and a uniform
outlier component to the new sample set.

2. Take the product of the individual mixture model pre-
dictions to form the joint prediction distribution (5).

3. Draw	 samples with replacement from this distribution
and compute the likelihood of each sample.

4. Normalize the likelihoods to obtain the sample weights.

This yields a weighted sample set �s�	�� � 

�	�
� � that approxi-

mates the posterior for a region at time �, i.e., ���� � ���.

5.1 Dynamical Model

Given (5), we need only to specify the form of the dy-
namics between a state �� and a single neighbor ������ from
the previous time. To this end it is useful to first expand the
state � into its discrete and continuous components, � and
�. We then rewrite the pair-wise prediction distribution as

�����������
�
����

�
c���

� ��c����� ����� c���� ���������� c����

������� c��� � ����� � � (7)



Neigh�Curr �� � � �� � �

���� � � �c�u��u���� � � �u���� �
�

���

�c�c����u���� � ����� ��� ��u�� �u���� ��u�� �u����
where
����� ��� � ����	
����� ����
�� 	����
� ������	
�
if x��� is in current foreground

��u�� �u������ � � �u���� �
�

���� ��u�� �u������ � � ��� ���� (broad prior);
else ��u�� �u������ � � ��� ���� (broad prior); ��u�� �u������ � � �u���� �

�

����

���� � �
if x� is in neighbor’s foreground

�c�u��c������ � � �u���� � �
�

���
else �c�u��c������ � � �u���� � �

�

���

�c�c����c������ � ��c����c������������� � �� 	 ��������
where
������� � �� � � when ���� � �, and 0 otherwise

Table 2. Model dynamics, ��������� ����� �����, for the continuous parameters, conditioned on the discrete motion classes. Here,
���� and �� are the centers of the current and neighbor regions at times � and � � �. The variances, 
��� 


�
� , and 
�
 , control the

process noise in the dynamics; we let each of them increase as a function of the spatial distance between the region centers ����
and ��. We have omitted the dependence on the neighbor (�) for notational simplicity.

where ���������� c���� and ��c����� ����� c���� denote the
discrete and continuous transition distributions. To avoid
singularities (where probabilities go to 0) and to allow for
modeling errors in the dynamics, we let both distributions
be robust; i.e., we use

���������� c���� � ������������ c���� � ���������

��c����� ����� c���� � ��c�c����� ����� c���� � ������c��

where ���� and �c�� are uniform outlier distributions for dis-
crete and continuous state variables, with mixing probabil-
ities � and �. The inlier dynamics, ����������� c���� and
�c�c����� ����� c����, are summarized in Tables 1 and 2.

Referring to Table 1, we assume there is a sponta-
neous rate at which smooth motion regions encounter mo-
tion boundaries, denoted by ����. For motion boundaries
we assume a simple generative model for the dynamics in
which an edge propagates forward with the foreground ve-
locity, but otherwise there is mean-zero Gaussian process
noise in the velocities and the boundary orientation. More
precisely, with respect to a region �� at time �, a motion
boundary, parameterized with respect to a neighbor � ���, is
propagated to states distributed according to

��c����c������ � � ��u���� � u���� �� 

�
��� � ������ 


�
��

� �����c������� 
�
� (8)

where � ��� 
�� is a normal density with mean � and vari-
ance 
�, ����c������ � ����������� � ����� ��� � �����
is the mean edge location at time � relative to ��, and
����� � �	
�������� �
	�������. We then define the prob-
ability of changing from an edge state at � ��� to a smooth
motion state at �� as the probability of the edge moving to
points that do not intersect the region at ��:

���� �

�
�
����

�
������c������� 

�

� (9)

where �
� is the PDF for ��, and � is the region radius.
Table 2 defines the continuous prediction distributions

conditioned on the discrete motion classes. For example,

if the neighbor state at time � � � and the current state are
both smooth motions, then the current velocity is normally
distributed about the velocity of the previous state. If the
previous state was a motion boundary and the current state
is smooth, then the current velocity is normally distributed
about the foreground or background velocity, depending on
whether the current region is on the foreground or back-
ground side of the previous region. If the previous state
was smooth and the current state is a boundary, then � � and
�� are uniformly distributed over values for which the edge
does not intersect the previous region, and the velocity dis-
tributions depend on the previous velocity state. Finally, if
previous and current states are motion boundaries, then the
distribution over the current state is Gaussian, but only for
parameters such that the edge intersects the current region.

This dynamical model is applied to individual parti-
cles. The nonlinear components of the dynamics include
the model switching and the computation of the propagated
edge distance, which depends on the normal to the edge
direction ����� � �	
�������� �
	�������. Nonlinearities
make it difficult to propagate distributions analytically, even
if the neighbor posterior at the time ��� had been Gaussian.

5.2 Likelihood Function
Given a set of states drawn from the prediction distribu-

tion, the weights for a particle approximation to the poste-
rior are proportional to the likelihoods, ��� � � �

�	�
� � ����� for

� � ����	 . Here, we factor the likelihood into a motion
likelihood that depends on intensity differences between
frames at times � and � � �, and an edge likelihood that
depends solely on the band-pass image properties at time �.

The un-normalized motion likelihood is given by

����� � �
�	�
� � ����� �

�
���

�
��

�
��

�
���

��x� �� s�	�� �

���

�

(10)

where��x� �� s�	�� � � ���x�s�	�� �� �����x� ������, � � ���
is the number of pixels in the circular image region, and
x�s�	�� � denotes the warped image coordinates that depend



Figure 3. This shows a single image from the pepsi se-
quence along with the dominant level phase contours at
	��� at orientations near vertical and horizontal.

on the deformation encoded by s�	�� . The warped values
��x�s�	�� �� �� are computed with bi-linear interpolation. This
motion likelihood is derived from a generative model based
on brightness constancy and I.I.D. Gaussian image noise.
The exponent of ��� , however, is computationally, rather
than probabilistically, motivated. A large value of � effec-
tively broadens the peaks of the likelihood. With a particle
filter, this allows a more effective search of the parameter
space, reducing the chances of missing a significant peak.

In addition to motion, we also exploit static edge in-
formation. Not all static edges are motion boundaries,
but because motion boundaries are generally caused by
depth discontinuities, they often coincide with static edges
(see Fig. 3). Static edge information also improves the
inference of motion boundaries because the correct fore-
ground/background assignment depends on accurate pre-
diction of the edge locations through time.

We chose the edge likelihood to be the observation den-
sity over the responses of an oriented band-pass filter tuned
to the edge orientation (cf. [26]). This removes all oriented
image structure except that near the orientation of the edge.
To do this efficiently for many edges we first apply a steer-
able pyramid transform to the image. From the steerable ba-
sis set we can quickly compute responses of filters tuned to
any orientation. Here, we use the ���� ��� quadrature-pair
filters defined in [9]. These are complex-valued filters so we
express their response at each (subsampled) spatial location
in terms of amplitude and phase [8]. The edge likelihood is
simply the observation density over phase and amplitude of
the subsampled filters responses at points along the edge.

However, modeling the observation density is not sim-
ple because the appearance of edges at surface boundaries
varies significantly with surface reflectance properties and
local illumination. Rather than attempt to design an edge
model that captures the variability of edge appearance from
first principles, we develop an empirical likelihood from the
statistics of natural images.

We identified 800 surface boundaries by hand in 25 im-
ages. Band-pass filters were steered to each edge orienta-
tion. We then extracted phase � and amplitude � responses

7

Phase ( radians)� Log Amplitude2

Figure 4. Histograms are shown of (left) phase conditioned
on amplitude and the edge, and of (right) log amplitude con-
ditioned on the edge.

along each edge with a sampling distance of one wavelength
of the filters’ tuning frequency. This sparse sampling allows
us to treat measurements at different locations as condition-
ally independent. The resulting ensemble of phase and am-
plitude measurements exhibits a striking regularity that sug-
gests a factorization of the joint observation density:

����� � � s� � ���� � �� s� ���� � s� � (11)

As shown in Fig. 4(left), phase responses, �, are typically
close to 	���, depending on sign of the intensity gradient
at the edge. These conditional phase distributions are very
well described by a mixture of two Gaussian modes at ���
and ����, and a uniform outlier density. A maximum like-
lihood fit of this model to the data with the EM algorithm is
shown as the solid curve in Fig. 4A. Wrapping phase about
� gives yields the equivalent density for � � ��mod��:

���� � �� s� �  �������
�

�
� 
�� � ��� ������ � (12)

where �� � ��� is the phase outlier probability, and  is
the Gaussian mixing probability.

With this mixture model (12), we find that the mixing
proportion depends significantly on log amplitude; phase
becomes more stable with increasing amplitude [8]. Us-
ing a Bayesian model selection criteria we find that a good
model for the phase density is the mixture in (12), with the
standard deviation of the Gaussian held fixed at ���, and the
mixing probability ��� given by ��� � ����������
���
where � ! �
� � ! � on 8 bit images.

To model response amplitude, we find that a beta dis-
tribution fits the conditional distribution of log amplitude
well (e.g. see Fig. 4(right)). The beta distribution is a natu-
ral choice since it is defined on a finite interval, appropriate
for images with a limited dynamic range, and it provides a
reasonable approximation to a Gaussian.

Our edge-based likelihood is given by the factorization
in (11), along with the parametric models for the phase
and amplitude densities. Given a set of " phase and am-
plitude measurements, conditioned on a motion boundary
state, s�	�� , the joint likelihood is

������� ���� � s
�	�
� � �

��
�

����� � ��� s�	�� � ����� � s
�	�
� �

� �

�



Figure 5. Pepsi results for frames 3–10 (in lexicographic order and cropped slightly for the visibility of the detected boundaries).

When the state is a smooth motion model, the observation
density is taken to be uniform.

6 Experimental Results
We demonstrate our approach with the well-known pepsi

and flower garden image sequences. We use circular regions
with radii of 8 and 12 pixels which overlap by 2 and 3 pixels.
We use 5000 samples for particle approximations in each
region. We draw 10% of the particles from the initializa-
tion prior in [4], and the remaining 90% from the prediction
density in (5). The parameters for the dynamics between a
location at time � and a neighbor at time ��� depend on the
spatial separation between the two locations. For the same
spatial location at � and ��� we use 
������ pixel/frame,

� ���� radians, and 

 �� pixel. For an adjacent region
at ��� we use 
����� pixels/frame, 
����� radians, and


 � ���. In both cases � � ����� and � � ����. Finally,
the probability of a motion boundary, conditioned on the
motion of a neighboring being smooth, is ���� ����; this
value reflects the fact that edges occur in roughly 10% of
the image regions, and that such motion boundary predic-
tions are relatively unconstrained, requiring a large number
of samples to search the state space effectively.

For display, we use a straightforward Bayesian model se-
lection criterion to decide among 3 motion models, namely
smooth motion and the two foreground/background assign-
ments associated with the dominant local orientation in the
motion boundary model. Regions where smooth motion is
most probable are displayed as empty circles. Filled regions
depict motion boundaries, the white/black dots of which lie
on the foreground/background. For these motion bound-
aries we only show the mean position and orientation of the

boundary. Note that when the distributions are skewed or
multimodal the mean does not necessarily reflect how well
the distribution captures the underlying motion.

Figure 5 shows results from frames 3–10 of the pepsi
sequence. Compared to the results of [4] in Fig. 1, with
the same parameters and both motion and edge-based like-
lihoods, the current method produces more coherent bound-
ary estimates. Noteworthy in Fig. 5 are the correct assign-
ment of the foreground and the accurate localization of the
motion boundaries. Also evident in Fig. 5, is the impor-
tance of the neighborhood propagation that allows regions
to anticipate the arrival of a boundary from a neighboring
region. This is evident in frames 7–9 on the left boundary
and later in frames 9–10 on the right side. This propaga-
tion allows the correct assignment of the foreground to be
infered quickly, unlike the results of [4] which required 2 or
more frames to correctly estimate relative depths.

Figure 6 shows results obtained with frames 15–20 of the
flower garden sequence. Like the pepsi sequence above, the
different regions along the edge of the tree depict good de-
tection and localization of the motion boundary. The fore-
ground is usually assigned correctly, and the evidence of
information propagation can be seen in how well the edge
is tracked from region to region. The plots in Fig. 6 show
marginal distributions of the boundary location parameter,
�, from the prediction (dashed) and the posterior (solid)
distributions. Inset in each plot is the total probability for
the motion boundary model. In frame 15 (leftmost plot)
the probability of the edge model is high, but the broad
marginal indicates high uncertainty in the edge location, as
the edge just entered this region. As time progress the edge
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Figure 6. Flower garden results for frames 15–20 (in lexicographic order and cropped for visibility). The bottom plots show the
marginal prediction (dashed) and posterior (solid) distributions for �, at each frame, for the region marked by the arrow in frame 15.
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Figure 7. Detailed flower garden results at frame 10 for the central region in the image. (top plots) Marginal prediction densities
obtained from the right neighbor are shown for the foreground velocity, the edge orientation, and the edge location. Solid curves
show the prediction samples and the dashed curves show the mixture model approximation. (bottom plots) Marginal densities for
the joint prediction density from all neighbors are depicted as dashed curves. The posterior marginals are depicted by solid curves.

moves leftward and the location uncertainty decreases as
the marginal narrows. When the edge leaves the region in
frame 19 the edge probability drops significantly.

Finally, Fig. 7 shows marginal distributions from the pre-
diction densities, the mixture models, and the posterior for
a single region at frame 10 of the flower garden sequence.
In this case, the edge has just moved into the central region

(Fig. 7 (left)), from the region to its right. While the region
to its right is best explained by smooth motion at the cur-
rent time, it was a motion boundary model at the previous
frame. It was therefore able to tell the center region to its
left to anticipate the occurrence of a boundary. This helps
the central region to quickly adapt to the new situation in
which an edge is entering the region, and to accurately esti-



mate the boundary position, and to correctly assign the fore-
ground side. The 3 top plots in Fig. 7 (right) show marginal
distributions of the prediction density that the region on the
right contributes to the central region (solid curve – sampled
prediction; dashed curve – mixture model fit). The bottom
plots in Fig. 7 show the joint spatiotemporal prediction den-
sity (dashed curve) from all neighbors, along with the re-
sulting posterior distribution (solid curve). This shows the
advantage of having predictions from neighboring regions.

7 Conclusions
Particle filters are effective for visual tracking, allowing

for a Bayesian framework even with non-Gaussian distribu-
tions and non-linear dynamics. Here we extend their use,
in conjunction with other methods for approximate infer-
ence, to the detection and estimation of multiple motion
models defined over a random field. In particular, we con-
sider the detection and tracking of motion boundaries for
which causal predictions of motion and of boundary loca-
tions/orientations are obtained from nearby image regions
at the previous time. This helps to encourage boundary con-
tinuity, and to direct samples to the appropriate regions of
the state as an edges leaves one region and enters another.
It also improves the inference of surface depth ordering.

There remain several unresolved research issues con-
cerning the assumptions made here to simplify the math-
ematical analysis and the implementation. Perhaps most
significant is the use of a factored approximation to the pos-
terior distribution over all regions by its individual region
marginals. Future work should examine this in connection
with recent results on Bayesian belief propagation [19, 29].
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[25] D. Shulman and J. Hervé. Regularization of discontinuous
flow fields. Proc. IEEE Work. Vis. Motion, pp. 81–85, 1989

[26] H. Sidenbladh and M. Black. Learning image statistics for
Bayesian tracking. Proc. ICCV, Vol. II, pp. 709–1716, 2001

[27] A. Spoerri and S. Ullman. The early detection of motion
boundaries. Proc. IEEE ICCV, pp. 209–218, 1987

[28] W. Thompson, K. Mutch, and V. Berzins. Dynamic occlu-
sion analysis in optical flow fields. PAMI, 7:374–383, 1985

[29] Y. Weiss. Correctness of local probability propagation in
graphical models with loops. Neural Comp., 12:1–41, 2000

[30] Y. Weiss and E. Adelson. Unified mixture framework for
motion segmentation: Incorporating spatial coherence and
estimating the number of models. CVPR, pp. 321–326, 1996

[31] M. West. Mixture models, Monte Carlo, Bayesian updating
and dynamic models. Comp. Sci. & Stat., 24:325–333, 1992


