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We propose a generalized model of image “appearance change” in which bright-
ness variation over time is represented as a probabilistic mixture of different causes.
We define four generative models of appearance change due to (1) object or cam-
era motion; (2) illumination phenomena; (3) specular reflections; and (4) “iconic
changes” which are specific to the objects being viewed. These iconic changes in-
clude complex occlusion events and changes in the material properties of the objects.
We develop a robust statistical framework for recovering these appearance changes
in image sequences. This approach generalizes previous work on optical flow to
provide a richer description of image events and more reliable estimates of image
motion in the presense of shadows and specular reflections.c© 2000 Academic Press
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1. INTRODUCTION

As Gibson noted, the world is made up of surfaces that “flow or undergo stretch-
ing, squeezing, bending, and breaking in ways of enormous mechanical complexity” [21,
p. 15]. These events result in a wide variety of changes in the appearance of objects in the
scene. While motion and illumination changes are examples of common scene events that
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ROBUST ESTIMATION OF APPEARANCE CHANGE 9

result inappearance change, numerous other events occur in nature that cause changes
in appearance. For example, the color of objects can change due to chemical processes
(e.g., oxidation), objects can change state (e.g., evaporation, dissolving), or objects can un-
dergo radical changes in structure (e.g., exploding, tearing, rupturing, boiling). In this paper
we formulate a robust statistical framework for representing certain classes of appearance
change. In so doing we have three primary goals. First, we wish to explain appearance
changes in an image sequence as resulting from a mixture of causes. Second, we wish to
locate where particular types of appearance change are taking place in an image. And, third,
we want to provide a framework that generalizes previous work on motion estimation.

The estimation of motion in image sequences is a difficult problem that involves pooling
noisy measurements to make reliable estimates. This assumes somemodelof the image
variation within a region. For example, it is commonly assumed that the brightness within a
region is conserved through time, that a single motion is present, and that the motion can be
described by a low-order polynomial. For natural scenes, this model is a crude approximation
that fails to capture many kinds of appearance change such as those mentioned above.

When our models of the scene are violated, we have two choices, namely, formulate
more realistic models or adopt robust statistical techniques to cope with the violations of
the assumptions. In general we should pursue the former while recognizing its limitations.
For example, better models may require that more parameters be estimated, which may be
undersirable, since even simple models may be underconstrained. Furthermore, although
simple models used for optical flow are typically linear in the unknown parameters and admit
closed form or efficient iterative solutions, significantly better models may be nonlinear and
computationally prohibitive. Finally, in natural scenes, any models we formulate will be
approximate and certain appearance changes will remain unmodeled. These unmodeled
image variations require us to maintain a robust statistical formulation even as our models
improve.

In this paper we pursue a strategy of both constructing more realistic models of appearance
change and formulating the problem using robust statistical techniques. Specifically, we
discuss the use of four generative models to explain the classes of appearance change
illustrated in Fig. 1. A change in form is modeled as the motion of pixels in one image to

FIG. 1. Four classes of appearance change (explained in text).
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those in the next image; that is, an image at timet + 1 can be explained by warping the
image at timet using this image motion. Our framework uses a layered representation to
model multiple motions in a region due to occlusion and limited forms of transparency.

Illumination variations may be global, occurring throughout the entire image due to
changes in the illuminant. They may also be local like the cast shadow of the hand that
appears in Fig. 1 (upper right). In this paper we model illumination change simply as
a smooth function that amplifies/attenuates image contrast. By comparison, specular re-
flections (Fig. 1, lower right) are typically local, especially near regions of high surface
curvature, and can be modeled, in the simplest case, as a near saturation of image intensity.

The fourth class of events considered in this paper is iconic change [9]. We use the
word iconic to indicate changes that are pictorial. These aresystematicchanges in image
appearance that are not readily explained by physical models of motion, illumination, or
specularity. A simple example is the blinking of the eye in Fig. 1 (lower left). Examples
of physical phenomena that give rise to iconic change include occlusion, disocclusion,
changes in surface materials, and motions of nonrigid objects. In this paper we consider
iconic changes to be object-specific and we learn models of the iconic structure for particular
objects using eigenspace techniques [38].

These different types of appearance change commonly occur together with natural ob-
jects, for example, with articulated human motion or the textural motion of plants, flags,
water, etc. We employ a probabilistic mixture model formulation [30] to recover the var-
ious types of appearance change and to perform a soft assignment, or classification, of
pixels to causes. This is illustrated in Fig. 2. In natural speech, the appearance change of

FIG. 2. Two generative models of an image at timet . Motion is represented by a parameterized deformation
from the image at timet + 1 to the image at timet . Iconic change is represented by a linear combination of learned
basis images. The weights represent the probability that the pixels inI (t) were generated (or are explained) by
each of the models.
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a mouth between frames can be great due to the appearance/disappearance of the teeth,
tongue, and mouth cavity. While changes around the mouth can be modeled by a smooth
deformation (imaget + 1 warped to approximate imaget), the large disocclusions are best
modeled as an iconic change (taken here to be a linear combination of learned basis im-
ages).

Both deformation and iconic change can be viewed as generative models and our goal is
to estimate the parameters of these models. We define the probability of observing the image
at timet given each of these causes. Given this formulation, the Expectation-Maximization
(EM) algorithm [16, 30] is used to iteratively compute maximum likelihood estimates for
the deformation and iconic model parameters as well as the probabilities that pixels at time
t are explained by each of the causes. These probabilities are the weights in Fig. 2 and they
provide a soft assignment of pixels to causes.

Changes in image appearance that are not modeled well by iconic change, deformation,
illumination variations, or specularities are considered to beoutliers [24]. To represent
them explicitly, the mixture-model contains anoutlier layer that receives high weights for
pixels that are unexplained by any of the models [26]. This helps to ensure robustness when
violations of the models occur. The outlier layer also helps us to identify regions where
our models fall short of explaining the appearance change, and therefore require improve-
ment. Below we describe our mixture-model formulation and a collection of appearance-
change models that generalize the notion of brightness constancy used in estimating optical
flow.

2. CONTEXT AND PREVIOUS WORK

Previous work in image sequence analysis has focused on the measurement of optical
flow using conservation assumptions and smooth models of the optical flow field [4]. One
common assumption, referred to as brightness constancy, is that the image brightnessI (x, t)
at a pixelx= [x, y] and timet can be represented by a deformation of the image at time
t + 1,

I (x, t) = I (x− u(x), t + 1), (1)

whereu(x)= (u(x), v(x)) represents the horizontal and vertical displacement of the pixel.
Although useful in many contexts, it is well known that brightness constancy is often
violated by shadows, global illumination changes, specular reflections, and the occlusion or
disocclusion of surfaces. In the remainder of this section we review approaches for making
optical flow estimation robust to changes such as these and relate these to our formulation
of appearance change.

Image preprocessing.One appraoch to coping with violations of brightness constancy
has been to preprocess the image to extract image properties whose deformations through
time provide a more reliable measure of the desired flow field. Common approaches in-
clude bandpass filtering and contrast gain normalization to remove smooth illumination
variations, or the extraction of image features such as edges or regions to achieve ro-
bustness with respect to even more significant appearance changes [1, 32, 39]. Fleet and
Jepson [19] proposed the use of local phase information (from the output of bandpass
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filters). Phase is stable with respect to smooth variations in illumination and smooth geo-
metric deformations between frames. Moreover, locations of phase instability can be de-
tected and therefore ignored, making the subsequent estimation of optical flow more robust
[20].

Robust estimation. Image preprocessing, although useful, will not always account for
the full range of ways in which image brightness may change. Models of brightness change
will be an approximation to the true physical processes and hence will be violated. These
violations can be viewed as statistical outliers and suggest the need for robust estimation.

The assumption of smooth optical flow fields, although useful in many situations, is also
violated often in practice. Models of smoothness have been applied in image patches using
regression techniques or through the propagation of local information using regularization
techniques. In particular, with linear parameterized models, the optical flow field is of-
ten represented by a low-order polynomial (constant, affine, or planar) [5, 8, 14, 19, 36]
and is estimated by collecting hundreds or thousands of constraints over an image region
and using regression methods or other search techniques. These approaches can recover
accurate motion estimates when the motion model is a good approximation to the im-
age motion. In real scenes, however, simple motion models are often inappropriate either
because the motion is more complex or there are multiple objects moving with different
velocities.

Early attempts at robust optical flow estimation involved least-squares regression fol-
lowed by outlier detection and rejection, and then re-estimation of the motion for the re-
maining image pixels [25]. Black and Anandan [8] introduced robust statistical techniques
(M-estimation) [24] to compute a dominant motion while automatically downweighting
outliers. Multiple motions can be computed in a region by successively applying robust
estimation techniques to the outliers [8, 37]. Bab-Hadiashar and Suter [3] developed a ro-
bust approach using the Least Median of Squares (LMedS) technique [35] to estimate the
dominant motion in a region. These robust methods can typically cope with a small number
of motions within a region but not with general flow fields. Other methods add further
robustness by allowing regions to vary in size [10] or by regularizing flow both within and
between image regions [28].

Layered models. The robust estimation techniques above typically assume a single
dominant motion within a given region. Layered models relax this assumption and estimate
multiple motions in a region. Darrell and Pentland [15] introduced the idea of estimating
global motions in layers and presented an optimization scheme using ideas from robust
statistics. Wang and Adelson [42] also formulated a model that groups coherent velocity
estimates into layers but their approach did not exploit the layered model to directly estimate
motion from images. Jepson and Black [26] assumed that the motion in the scene could
be represented by a mixture of distributions and used the Expectation Maximization (EM)
algorithm to decompose the motion into a fixed number of layers. These layered approaches,
and the EM algorithm in particular, have become popular methods for motion estimation
[2, 28, 43–45].

One issue with layered models concerns the estimation of the appropriate number of
layers. A number of authors have used a minimum description length criterion to strike
a balance between accurate encoding of the motion and the number of layers needed to
represent it [2, 15, 27].
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With parameterized models, the estimation of the motion of a given surface may be
adversely affected by distant, and quite unrelated, image points. These distant motions can
act as “leverage points” [35] that pull the solution away from the desired local motion. A
spatial smoothness constraint can be added to the computation of the weights that assign
pixels to layers [27, 44]. This may reduce the effect of leverage points by encouraging layers
to have spatially coherent support.

Specialized spatial models.Parameterized approaches may perform poorly when the
spatial variation of the image motion is more complex than a low-order polynomial. To
handle complex motions with concise models, Blacket al. [13] proposed linear parame-
terized models learned from training examples using principal component analysis (PCA).
Similarly, Fleetet al. [18] modeled motion features, such as dynamic occlusion edges, and
moving bars, using linear combinations of steerable basis flow fields. These linear models
constrain the interpretation of image motion, and are used in the same way as translational
or affine motion models. Similar approaches have been used in modeling the deformations
between individual faces in a database of face images [6, 17, 23, 33, 40, 41].

Generalizing brightness constancy.Much of the recent work in motion estimation
has focused on achieving increased robustness in the presence of unmodeled appear-
ance changes. In this paper we take the approach of explicitly modeling many of these
events and hence extend the notion of “constancy” to more complex types of appearance
change.

One motivation for this is our interest in recognizing complex nonrigid and articulated
motions, such as human facial expressions. Previous work in this area has focused on
analyzing the image motion of face regions such as mouths [12]. But image motion alone
does not capture appearance changes such as the systematic appearance/disappearance of
the teeth and tongue during speech and facial expressions. For machine recognition we
would like to be able to model these intensity variations.

Our framework extends several previous approaches that generalize the brightness con-
stancy assumption. Mukawa [31] extended the brightness constancy assumption to allow
illumination changes that are a smoothly varying function of the image brightness. In a
related paper, Negahdaripour [34] proposed a general linear brightness constraint

I (x, t) = m(x, t)I (x− u(x), t + 1)+ c(x, t), (2)

wherem(x, t) andc(x, t) allow for multiplicative and additive deviations from brightness
constancy and are assumed to be constant within an image region.

Another generalization of brightness constancy was proposed by Nastaret al.[33]. Treat-
ing image intensityI as the height of a surface in 3DXY I-space, they proposed a physically
based appraoch for finding the deformation from anXY I surface at timet to theXY I surface
at t + 1. This allows for a general class of smooth deformations between frames, including
both multiplicative and additive changes to intensity.

One variation on the general form of (2) is the the use of object-specific models of image
brightness [7, 22, 23, 41]. Hager and Belhumeur [22] used principal component analysis to
find a set of orthogonal basis images,{Bj (x)}nj=1, that spanned the ensemble of images of
an object under a wide variety of illuminant directions. They constrained deviations from
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brightness constancy to lie in the subspace of illumination variations, giving the constraint

I (x, t) = I (x− u(x; m), t + 1)+
n∑

j=1

bj Bj (x), (3)

whereu(x; m) is a parameterized (affine) model of image motion. The authors estimated
the motion coefficientsm and the subspace coefficientsb1 . . .bn.

This is similar to our model of illumination variation but does not allow mixtures of
multiple causes within a region. These approaches are also related to the EigenTracking
work of Black and Jepson [11], in which subspace constraints were used to help account
for iconic changes in appearance while an object was being tracked.

3. MIXTURE MODEL OF APPEARANCE CHANGE

The appraoch presented here recasts a number of the above approaches in a probabilistic
mixture model framework [30]. We propose a set of generative models that can be used to
construct or explain an image. Unlike the approaches above, the mixture model framework
decomposes the appearance change into multiple causes. It also performs a soft assignment
of pixels to the different models while allowing for outliers, i.e., pixels that are not well
explained by any one model.

In particular, we assume that the imageI (x, t) at locationx at time t is generated, or
explained, by one ofn causesICi , i = 1, . . . ,n. The causes,ICi (x, t ; ai ), can be thought of
as overlappinglayersand are simply images that are generated given a vector of parameters
ai . We will consider four causes below, namely, motion (IM ), illumination variations (I L ),
specular reflections (IS), and iconic (pictorial) changes (I P). A fifth cause (IO) will represent
outliers.

Givenn of the above causes, the probability of observing the imageI (x, t) is a mixture
model [30] given by

p
(
I (x, t) | {a j , σ j }nj=1

) = n∑
i=1

wi (x)pi (I (x, t) | ai , σi ). (4)

Thewi (x) are “ownership probabilities.” They specify the relative probabilities that the dif-
ferent models account for the appearance change at pixelx. At each pixel, these probabilities
sum to unity; that is,

∑
i wi (x)= 1. In practice, we use a single outlier model while we may

employ any number of motion, illumination, specularity, or iconic models to explain the
image region.

The dependence ofwi (x) on image location allows for the fact that the appearance
change at different pixels will often be explained by different causes that vary across the
image. This generalizes the more common formulation in which mixture probabilitiesπi

replace thewi in (4), and are given as the average weights over an image region (or over an
ensemble ofN independent samples from the distribution); that is,πi =

∑
xwi (x)/N. In

our formulation, the causes provide parametric models over the entire image region, while
the weights represent the relative likelihoodspi (I (x, t) | ai , σi ) of each cause at every pixel.

Finally, theσi in (4) are scale parameters that are used to control a from of deterministic
annealing in the estimation of the parameters (to be discussed below).
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FIG. 3. A robust likelihood function,pi (I (x, t) | ai , σi ).

Robustness in the current framework occurs in two ways, namely, with the use of an
outlier layer and with the form of the likelihood function used. In contrast to a Gaussian
mixture formulation, the component probabilities used here for the generative models of
appearance change,pi (I (x, t) | ai , σi ), are defined to be

pi (I (x, t) | ai , σi ) = 2σ 3
i

π
(
σ 2

i +1I 2
Ci

)2 , (5)

where1ICi = I (x, t)− ICi (x, t ; ai ). This is at-distribution of degree 3 centered atICi (x, t ; ai )
with standard deviationσi [29]. Simply put, the probability that an image pixel at timet
is explained by each cause is a function of the difference between the observed intensity
and that predicted by the model. This likelihood function (Fig. 3) has the properties that it
falls off more rapidly than a Gaussian distribution and has heavier tails. This reflects our
expectation that the residuals1ICi contain outlines [24]. The fact that the likelihood drops
rapidly will have the effect of forcing large residuals for a given model to be accounted
for by other models, thereby helping to separate the explanation of image data into distinct
causes.

3.1. Sources of Appearance Change

In what follows, we describe the four generative models of appearance change and the
outlier model in more detail.

Motion. Motion is a particularly important type of appearance change that is modeled
by

IM (x, t ; aM ) = I (x− u(x; aM ), t + 1).

The image at timet is generated by warping the image at timet + 1 by a flow fieldu(x; aM ).
We use a parametric description of optical flow in which the motion in an image region is
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FIG. 4. Affine flow basis set.

modeled as a linear combination ofk basis flow fields{M j (x)}kj=1,

u(x; aM ) =
k∑

j=1

mj M j (x), (6)

whereaM = [m1, . . . ,mk] is the vector of parameters to be estimated.
For the experiments in Section 5 we use an affine flow model. For an image region about

pixel (xc, yc), the affine model is given by

u(x, y) = m0+m1(x − xc)+m2(y− yc), (7)

v(x, y) = m3+m4(x − xc)+m5(y− yc). (8)

Equivalently, we can express affine motion as in (6) with an explicit set of constant and
linear basis flow fields, as shown in Fig. 4.

Illumination variations. Illumination changes may be global, resulting from changes
in the illuminant, or local, as a result of shadows cast by objects in the scene. The mixture
formulation allows both of these types of variation to be modeled, where the (ownership)
weights in the mixture indicate where illumination variations have occurred in the image.

With simple changes in illumination, an image at timet can be written as a scaled version
of the image at timet + 1, i.e., [1+ L(x; aL )] I (x, t + 1), where 1+ L(x; aL ) is the scaling
function parameterized byaL . The change in appearance is thenL(x, aL )I (x, t + 1). If we
allow for motion as well as illumination change, then the change in image appearance can
be written as

I L ,M (x, t ; aM , aL ) = L(x; aL )I (x− u(x; aM ), t + 1). (9)

This states that the illumination change is a scaled version of the motion-compensated image
at timet + 1. When estimating the parametersaL here we assume that the motionu(x; aM )
is known and fixed.

We takeL(x; aL ) to be a parametric model, expressed as a weighted sum of basis images.
For example, in the case of linear spatial variation,L is given by

L(x; aL ) = l1+ l2(x − xc)+ l3(y− yc) =
3∑

i=1

l i Li (x),

where (xc, yc) is the center of the relevant image region,aL = [l1, l2, l3] are the model
parameters, andLi (x) denote the basis images, shown for the linear model in Fig. 5.
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FIG. 5. Linear illumination-change basis images: (left)L1= 1; (center)L2= x− xc; (right) L3= y− yc.

Specularity model. Specularities are typically local and result in near saturation of image
brightness. While more sophisticated models of specularities may be formulated, we have
experimented with a simple model which works well in practice,

IS(x, t ; aS) = s1+ s2(x − xc)+ s3(y− yc) =
3∑

i=1

si Si (x),

whereSi are the same linear basis images as in Fig. 5 andaS= [s1, s2, s3]. Note that unlike
the illumination model above, the specularity term is independent of the image.

Iconic change. In addition to the generic types of appearance change above, there are
image appearance changes that are specific to particular objects or scenes. Systematic
changes in appearance exhibit spatial or temporal structure that can be modeled and used to
help explain appearance changes in image sequences. Recall the example of human mouths
in Fig. 2. As people talk, their lips deform smoothly but there are also changes that cannot
be characterized as smooth deformation, such as the appearance and disappearance of the
teeth as the mouth opens and closes (Fig. 6).

As with the models above, we use a linear, parametric model of iconic change. However,
here we learn the appropriate model from the individual frames of a training image sequence
using principal component analysis. This is described in Section 6; for now it is sufficient
to think of the iconic model, like the specularity model, as a linear combination of basis

FIG. 6. Object-specific deformation and iconic change.
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imagesAi (x),

I P(x, t ; aP) =
q∑

i=1

ai Ai (x), (10)

whereaP = [a1, . . . ,aq] is the vector of scalar values to be estimated.

Outlier model. For the outlier layer, we adopt a simple model in which image intensity
is uniformly distributed between the minimum and maximum intensity values; that is, the
model can generate (explain) any pixel with uniform probability. ChoosingσO such that it
satisfies

pO(I (x, t) | σO) = 2σ 3
O

π
(
σ 2

O + (2.5σO)2
)2 = 1/256,

for 8-bit images, gives the likelihood of an outlier.

4. EM-ALGORITHM

We seek a maximum likelihood estimate of the global model parameters,a1, . . . ,an

and the ownership probabilities,w1(x), . . . , wn(x) that yield a soft assignment of pixels
to models. If the parameters of the different models are known, then we can compute the
probability that pixelx belongs to causei . These probabilities, referred to as ownership
weights, are given by [30]

wi (x, σi ) = pi (I (x, t) | ai , σi )∑n
j=1 pj (I (x, t) | a j , σ j )

. (11)

These ownership weights force every pixel to be explained by some combination of the
different causes. As theσ j go to zero, the likelihood function approaches a delta function.
Therefore, for small values ofσ j the weights will tend toward zero or one.

The maximum likelihood estimate of the model parameters, given the ownership weights,
satisfies [30]

∑
x

n∑
i=1

wi (x, σi )
∂

∂ai
log pi (I (x, t) | ai , σi ) = 0, (12)

where it can be shown that the derivative of the log likelihood is given by

∂ log pi (I (x, t) | ai , σi )

∂ai
= 9(1ICi , σi

)∂ ICi (x, t ; ai )

∂ai
, (13)

where

9
(
1ICi , σi

) = −41ICi

σ 2
i +1I 2

Ci

, (14)

and1ICi = I (x, t)− ICi (x, t ; ai ) for thei th model. Note the similarity between the derivative
of the log likelihood used here in Fig. 7 and the shape of the influence functions of common
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FIG. 7. 9(r, σ ) (the derivative of the log likelihood).

robust M-estimators [24]. In M-estimation this shape has the effect of reducing the influence
of outliers on the maximum likelihood estimate. The9-function here has the same effect.

In the case of Gaussian mixtures with linear models, the model parameters can be com-
puted in closed form given the ownership weights. However, with the robust likelihood func-
tion and the nonlinear models used here, we incrementally compute theai satisfying (12).
Briefly, we replaceai with ai + δai , whereδai is an incremental update. We approximate
(12) by its first-order Taylor expansion, simplify, and solve forδai using gradient ascent.
We then updateai ← ai + δai . This algorithm is similar to that described in [8, 11] for the
robust estimation of optical flow.

Estimation of large image motions requires a coarse-to-fine process in which the images
are represented with a Gaussian pyramid. TheaM are updated at a coarse level and then
projected to the next finer level where they are used to warp the image at timet + 1 towards
the image att , thereby incrementally reducing the difference between the images (see
[5, 8] for details).

The EM algorithm [16] alternates between solving for the weights,wi (x, σi ), given an
estimate of the parameters,a1 . . .an (the Expectation step), and then updating the param-
eters,a1 . . .an, with the weights held fixed (the Maximization step). It should be noted
that although the EM algorithm works well in practice, its validity with finite mixtures of
t-distributions remains unclear.

Each model has an associated value ofσi which determines what residual values are
considered to be outliers. A common approach for improving the stability of the estimation
process and for avoiding local maxima is to use a deterministic annealing scheme in which
the values ofσi start at a high value and are lowered to the value that gives the desired outlier
rejection properties. Here, these values are determined empirically. For all the experiments
in this paper the value ofσi began at 45.0 and was lowered by a factor of 0.95 at each
iteration of the optimization to a minimum of 10.0. These same values ofσ were used for
all the models.

The effect ofσ on the interaction between the models is interesting to consider. For
high values ofσ , the likelihood function falls off slowly and hence models tend to “share”
the explanation of pixels; that is, thewi (x) are close to 1/n. When the residual errors,
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1ICi = I (x, t)− ICi (x, t ; ai ), result in likelihoods that are lower thanpO, then the normal-
ization in (11) has the effect of shifting the weight to the outlier layer. At the beginning of
the annealing process the high value ofσ means that the outlier probability is much smaller
than the generative model would suggest, that is, smaller thanpO= 1/256. In this case
the outlier layer accounts for few if any of the pixels. Asσ is annealed the outlier prob-
ability monotonically increases toward 1/256 and more pixels are accounted for by that
layer.

5. GENERIC APPEARANCE CHANGE

This section presents examples of generic appearance changes that are common in natural
scenes, namely, motion, illumination variations, and specularities.

5.1. Multiple Motions

We begin with an experiment involving multiple motions within a region. Figure 8 shows
a person moving behind a plant. We assume that there are two affine motions present and
solve for them using the robust mixture formulation. The figure shows the weights for
the foreground layer (wM1(x)) and the background layer (wM2(x)), where white indicates a
weight near 1.0 and black near 0.0. The outlier layer receives high weight in regions that
border occlusion boundaries. This simple model of layers does not account for the appear-
ance/disappearance of image pixels and hence these regions are assigned automatically to
the outlier layer.

5.2. Shadows

We next consider a mixture of motion and illumination variation (Fig. 9).The appearance
variation between Figs. 9a and 9b includes both global motion and an illumination change

FIG. 8. Multiple Motion Experiment (see text). (a)I (x, t); (b) I (x, t + 1); (c)wM1(x); (d)wM2(x); (e)wO(x)
(outliers).
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FIG. 9. Illumination Experiment 1 (cast shadow of a hand). Appearance change estimated using a single motion
layer with outliers (see text). (a)I (x, t); (b) I (x, t + 1); (c) flow; (d) Imean(x); (e)|I (x, t) − Imean(x)|; (f ) wM (x);
(g)wO(x) (outliers).

caused by the shadow of a hand in framet + 1. The true motion field contains expansion
due to the motion of the background. Figure 9 shows the results of assuming just a single
motion within the region. A three level pyramid is used in the coarse-to-fine estimation and
the motion is computed using the affine model presented in Section 3.

The result of the estimation process is a mixture model for the image at timet based
on the image at timet + 1 and the appearance change parameters. The mixture model
forms a generative model from which we can sample reconstructions of the image at time
t . We can also compute the expectationE[ I (x, t) | {a j , σ j }nj=1] as a way of illustrating
the generative model. Think of drawing samples (images) from the generative model. At
a given pixelx, with probabilitywM (x) the intensity sample isIM (x, t ; aM ), while with
probabilitywO(x) the intensity sample is drawn from the outlier distribution. The expected
value of the outlier model is 128. The expected image,Imean, from the generative model is
thereforeImean(x)=wM (x)IM (x)+wO(x)128. For example, Figure 9d shows this “mean
reconstruction” image (at timet) that results from the mixture of the deformation (from time
t + 1) and the outlier layer. Note that the uniform expected intensity of the outlier model
means that the outlier pixels corresponding to the shadowed hand region appear roughly as
a uniform gray.

The absolute difference between this model image and the actual image at timet is shown
in Fig. 9e, and Figs. 9f and 9g show the weights for the single motion layer and the outlier
layer. Note first that, while this robust formulation of the motion-only model is able to
detect the correct outliers, the recovered optical flow is inaccurate. The large number of
unmodeled intensity changes pulls the solution away from the true motion. Outlier maps
like this, with large numbers of outliers, provide a clear indication that the model fails to
explain the appearance changes caused by the shadow, and that a richer class of models is
required.

If, instead, we allow a mixture of the affine motion model (IM ) and the linear illumination
model (I L ,M ), we see an improvement in the image motion. We estimate the ownership
weightswM (x) andwL ,M (x) that assign pixels to the models, and the motion parametersaM

and illumination parametersaL as described in the previous section. Figure 10b shows the
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FIG. 10. Illumination Experiment 2. Appearance change estimated using a mixture of motion and illumi-
nation change models (see text). (a)I (x, t); (b) Imean(x); (c) flow; (d) |I (x, t)− Imean(x)|; (e)wM (x); (f ) wL ,M (x);
(g)wO(x) (outliers).

mean reconstruction of the image at timet , which is now much closer to the actual image
in Fig. 10a. This image is given byImean(x)=wM (x)IM (x)+wL ,M (x)I L ,M (x)+wO(x)128.
Figures 10d–10f show the reconstruction error, the weight imageswM (x) andwL ,M (x),
and the outlier image. The motion weightswM (x) are near 1 (white) when the appearance
change is captured by motion alone. Where there is illumination change as well as motion,
in the region of the hand, the weightswM (x) are near 0 (black) and weightswL ,M (x) are
near 1. The gray regions indicate weights near 0.5 which are equally well described by the
two models.

The outlier layer (Fig. 10g) indicates which pixels had appearance changes that were
not well explained by either model. Compared with the motion-only model in Fig. 9f, the
motion+illumination model exhibits far fewer outliers, most of which now occur around
the boundary of the shadow. Our simple illumination model only accounts for a linear
illumination change while the actual shadow fades non-linearly at the edges of the hand.
Thus the boundary regions are not well explained by the illumination change model. To
better account for local variations in illumination one could replace the linear modelL
with a regularized model of the illumination variation (see [43] for regularization in a
mixture-model framework).

Finally, note that there is a significant difference between the flow fields computed using
these two different models, as shown in Figs. 9c and 10c. The motion is Fig. 10c is qual-
itatively correct. Explicitly accounting for the illumination change thus results in a more
accurate representation of the true motion.

5.3. Specularities

Consider the example in Fig. 11 in which a stapler with a prominent specularity on the
metal plate is moved. We first apply a single affine motion model with outliers to explain
the appearance change. A four-level pyramid was employed to capture the large motion
between frames; other parameters remained unchanged. The recovered motion is relatively
accurate despite the fact that very few pixels were actually used in computing it. Examining
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FIG. 11. Specularity Experiment 1 (a moving stapler). Appearance change estimated using a single mo-
tion layer with outliers (see text). (a)I (x, t); (b) I (x, t + 1); (c) flow; (d) Imean(x); (e)|I (t)− Imean(x)|; (f ) wM (x);
(g)wO(x) (outliers).

the motion layer weights,wM (x) in Fig. 11f, we see that the motion layer receives high
weight in the uniform regions which provide few constraints on the motion. The outlier
layer, by comparison captures the majority of the metal plate where the specularity occurs.
As above, this indicates that the structure of the appearance change in this region could not
be explained by the single motion model.

We next model this situation using a mixture of motion (IM ) and specularity (IS) models.
The simplified model of specularities assumes that some regions of the image at timet can
be modeled as a warp of the image at timet + 1 while others are best modeled as a linear
brightness function.

The estimated flow field is shown in Fig. 12c. The mean reconstructed image, computed
from the mixture of the motion and the linear brightness models, is shown in Fig. 12b; this
is given by Imean(x)=wM (x)IM (x)+wS(x)IS(x)+wO(x)128. The reconstruction error is
shown in Fig. 12d. The ownership weights for the two model components, along with

FIG. 12. Specularity Experiment 2. Appearance changed accounted for using a mixture of motion and spec-
ularity models (see text). (a)I (x, t); (b) Imean(x); (c) flow; (d) |I (x, t)− Imean(x)|; (e)wM (x); (f ) wS(x); (g)wO(x)
(outliers).
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the weights for the outlier layer are shown in Figs. 12e–12g. Note how the weights in
Fig. 12e are near zero for the motion model where the specularity changes significantly.
The weights also show that the outlier layer (Fig. 12g) no longer accounts for the majority
of the specularity. The region of specularity in the lower right corner of the metal plate is
similar in both frames and hence is shared by both models.

5.4. Combining Models of Appearance Change

We consider a final example of appearance change that combines all the generic models.
Figure 13 shows two frames from a sequence in which a pair of scissors move rigidly
and casts a shadow on a stationary, roughly planar, surface. The change in orientation of
the scissors with respect to the light source causes a significant specular reflection. Four
appearance models, plus the outlier model, are required to explain the change between this
pair of images. The parameters were the same as in all the other experiments and a three
level pyramid was used for motion estimation.

The ownership weights corresponding to each of the models are shown in Fig. 13
and include the motion of the background (Fig. 13e,wM1(x)), the illumination change
caused by the shadow cast on background (Fig. 13f,wL ,M1(x)), the motion of the scissors
(Fig. 13j,wM2(x)), and the specular reflection (Fig. 13k,wS(x)). Difference images help
illustrate which parts of the image are accounted for by each of the models. Notice that the
motion model,M1, accounts for much of the background but the area where the scissors
cast a shadow has lower probability of being explained by that model. This same region
is accounted for by the illumination model as can be seen in the weightswL ,M1(x). Notice
that in dark regions of the image the illumination model can account for the appearance
nearly as well as the simple motion model; this is due to the multiplicative nature of the
illumination term.

The motion,M2, accounts for motion of the hand and portions of the scissors. The blades
of the scissors exhibit a large change due specular reflection and this is accounted for by
the specularity model, as can be seen in the weightswS(x). Additionally, the outlier layer,
wO(x) (Fig. 13d), largely accounts for the regions around the edges of the scissors and
hand which correspond to regions of occlusion or disocclusion for which we do not have
a generative model. Finally, the expected image,Imean(x) (Fig. 13c), provides a reasonable
reconstruction of the imageI (x, t) (Fig. 13a); the difference image (Fig. 13o) are well
modeled with the mixture model than with any of the individual models alone.

This example raises a number of interesting issues. For this experiment, we manually
selected the number and type of models to employ. Ideally we would like to determine
the models automatically, but to do so will require us to model the prior probabilities of
observing the different types of appearance change in typical image sequences. Appropriate
prior models will be required to choose among competing hypotheses. As the number of
models increases, so does the danger of overparameterization and computational instability.
Here a notion of spatial locality of the causes (modeled as a prior probability) may be useful
(cf. [43, 44]).

6. EXPERIMENTS: ICONIC CHANGE

Unlike the generic illumination and reflection events in the previous section, here we
consider image appearance changes that are specific to particular objects or scenes. Fol-
lowing previous work on eigen-based representations of image structure and image motion
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FIG. 13. Combination of two motions, a shadow, and a specular reflection; see text. (a)I (x, t); (b) I (x, t + 1);
(c) Imean(x); (d) flow 1; (e)wM1(x); (f ) wL ,M1(x); (g) flow 2; (h) diffM1

(x); (i) diffM1,L
(x); ( j) wM2(x); (k) wS(x);

(l) wO(x) (outliers); (m) diffM2
(x); (n) diffS(x); (o) |I (x, t)− Imean(x)| =diffmean(x).

[7, 9, 13, 18, 22, 23, 41], we learn parameterized models of motion and iconic structure
from examples. We then use these in our mixture model framework to explain motion and
iconic change in human mouths.

6.1. Learned Iconic Model

To capture the iconic change in domain-specific cases, such as the mouths in Fig. 14,
we construct a low-dimensional model of thep images in the training set using principal
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FIG. 14. Example frames from training sequences of facial expressions (anger, joy, sadness).

component analysis (PCA). For eachs= n×m training image we construct a 1D column
vector by scanning the pixels in the standard lexicographic order. Each 1D vector becomes
a column in ans× p matrix B. We use singular value decomposition to decomposeB as

B = A6aVT
a . (15)

Here,A is an orthogonal matrix of sizes× p, the columns of which represent the principal
directions in the training set.6a is a diagonal matrix with singular valuesλ1, λ2, . . . , λp

sorted in decreasing order along the diagonal.
Because there is a significant amount of redundancy in the training sequence, the effective

rank of B will be much smaller thanp. Accordingly, the first few columns ofA provide a
basis that spans the majority of the structure inB. Here we express thei th column ofA as
a 2D basis image,Ai (x), so that we can approximate images like those in the training set as

I P(x, t ; a) =
q∑

i=1

ai Ai (x), (16)

wherea= [a1, . . . ,aq] is the vector of scalar values to be estimated andq< p.
Figure 14 shows samples of mouth images taken from a training set of approximately

500 images. The training set included image sequences of different subjects performing the
facial expressions “joy,” “anger,” and “sadness.” The faces of each subject were stabilized
with respect to the first frame in the sequence using a planar motion model [12]. The mouth
regions were extracted from the stabilized sequences and PCA was performed. The first 11
basis images account for 85% of the variance in the training data and the first eight of these
are shown in Fig. 15.

6.2. Learned Deformations

We learn a domain-specific model for the deformation component of the appearance
change in much the same way, using PCA [13]. We first compute image motion for each
training sequence using the brightness constancy assumption and a robust optical flow
algorithm [8]. The training set consists of a set ofp optical flow fields. For images with
s= n×m pixels, each flow field contains 2s quantities (i.e., the horizontal and vertical flow
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FIG. 15. First eight basis appearance images,A1(x), . . . , A8(x), for the facial expression experiment.

components at each pixel). For each flow field we place the 2s values into a column vector
by scanningu(x) and thenv(x) in lexicographic order. The resultingp vectors become the
columns of a 2s× p matrix F .

As above we use PCA to decomposeF as F =M6mVT
m . Flow fields like those in the

training set can then be approximated as

u(x; m) =
k∑

j=1

mj M j (x),

wherek< p, andM j (x) denotes thej th column ofM interpreted as a 2D vector field. Note
that this model is conceptually equivalent to the affine models used above, except that it is
tailored to a domain-specific class of motions.

Figure 16 shows the first eight basis flow fields recovered for this training set. The first
11 basis flow fields account for 85% of the variance in the training set.

6.3. Mixture of Motion and Iconic Change

We model appearance change of a mouth as a mixture of the learned motion and iconic
models. We performed a number of experiments with image sequences of subjects who were
not present in the training set. In our experiments we used 11 basis vectors for both motion
and iconic models. We estimated the parameters for deformationaM , iconic changeaP, the
ownership weights,wM (x) andwP(x), and the outlier weights between each consecutive
pair of frames using a four-level pyramid and the EM-algorithm as described earlier.

Figure 17 shows two consecutive frames from a smiling sequence; notice the appear-
ance of teeth between frames. The motion model,IM (x, t ; aM ), captures the deformation
around the mouth but cannot account for the appearance of teeth. The recovered flow field
is shown in Fig. 17c and one can see the expansion of the mouth. The iconic model,I P,

FIG. 16. First eight basis flow fields,M1(x), . . . ,M8(x), for the facial expression mouth motion.
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FIG. 17. Facial Expression Experiment. Appearance changed modeled as a mixture of motion and iconic
change (see text). (a)I (x, t); (b) I (x, t + 1); (c) flow, u(x; aM ); (d) I P(x); (e) IM (x); (f ) |I (x, t)− IM (x)|;
(g) Imean(x); (h) |I (x, t)− Imean(x)|; (i) wM (x); ( j) wP(x); (k) wO(x) (outliers).

on the other hand, does a reasonable job of recovering an approximate representation of
the image at timet (Fig. 17d). The iconic model, however, does not capture the brightness
structure of the lips in detail. This behavior is typical; the iconic model is an approxima-
tion to the brightness structure, so if the appearance change can be described as a smooth
deformation, then the motion model will likely do a better job of explaining this struc-
ture.

The behavior of the mixture model can be seen in the weights (Figs. 17i and 17j). The
weights for the motion model,wM (x), are near zero in the region of the teeth, near one
around the high contrast border of the lips, and near 0.5 in the untextured skin region, which
is also well modeled by the iconic approximationI P.

Figure 17g is the expected image given the generative model. Note how this image
resembles the original image in Figure 17a. Also notice that the iconic model fills in around
the edges of the stabilized image where no information was available for warping the image.

Not all the changes in the image could be accounted for by the two models. There is a
change on the lower lip that is due to specular reflection. This specularity was apparently
not captured in the learned iconic model and since no specularity model was included here,
those pixels are best explained as outliers (Fig. 17k).

7. FUTURE DIRECTIONS

A research issue that warrants further work is the use of priors on the collection of models
that would enable one to prefer some explanations over others. Without the use of priors,
a mixture model with several sources of appearance change may produce several equally
likely explanations. The probabilistic formulation here should facilitate such an approach.

As in Section 5.4, we may expect more than one instance of each type of appearance
change within an image region. In this case we will need to estimate the number of instances
of each appearance model that are required. There has been recent work on this topic in the
area of multiple motion estimation [2, 28, 44].

A related issue is the use of spatial smoothness in the modeling of appearance change. In
place of the parameterized models we might substitute regularized models of appearance
change with priors on their spatial smoothness. In a mixture model framework for motion
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estimation, Weiss [43, 44] has shown how to incorporate regularized models and smoothness
priors on the ownership weights.

8. CONCLUSIONS

Appearance changes in image sequences result from a complex combination of events
and processes, including motion, illumination variations, specularities, changes in mate-
rial properties, occlusions, and disocclusions. In this paper we propose a robust statistical
framework that models these variations as a probabilistic mixture of causes. To illustrate
these ideas, we have proposed some simple generative models.

Unlike previous work, the approach allows us to pull apart, or factor, image appearance
changes into different causes and to locate where in the image these changes occur. More-
over, multiple, competing, appearance changes can occur in a single image region. We have
implemented and tested the method on a limited suite of image sequences with different
types of appearance change.

One way to view this work is as a generalization of current work in the field of motion
estimation to richer models of appearance change that allow one to relax the brightness
constancy assumption. We expect that more complex models of illumination variation and
iconic change can be accommodated by the framework and we feel that it presents a promis-
ing direction for research in image sequence analysis.
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