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We propose a generalized model of image “appearance change” in which bright-
ness variation over time is represented as a probabilistic mixture of different causes.
We define four generative models of appearance change due to (1) object or cam-
era motion; (2) illumination phenomena; (3) specular reflections; and (4) “iconic
changes” which are specific to the objects being viewed. These iconic changes in-
clude complex occlusion events and changes in the material properties of the objects.
We develop a robust statistical framework for recovering these appearance changes
in image sequences. This approach generalizes previous work on optical flow to
provide a richer description of image events and more reliable estimates of image
motion in the presense of shadows and specular reflectiangioo Academic Press

Key Words: optical flow; mixture models; outliers; probabilistic models; illumi-
nation change; specularities; iconic change.

1. INTRODUCTION

As Gibson noted, the world is made up of surfaces that “flow or undergo stretch
ing, squeezing, bending, and breaking in ways of enormous mechanical complexity” [2
p. 15]. These events result in a wide variety of changes in the appearance of objects in
scene. While motion and illumination changes are examples of common scene events t
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ROBUST ESTIMATION OF APPEARANCE CHANGE 9

result inappearance changewumerous other events occur in nature that cause change
in appearance. For example, the color of objects can change due to chemical proces
(e.g., oxidation), objects can change state (e.g., evaporation, dissolving), or objects can
dergo radical changes in structure (e.g., exploding, tearing, rupturing, boiling). In this pap
we formulate a robust statistical framework for representing certain classes of appearat
change. In so doing we have three primary goals. First, we wish to explain appearan
changes in an image sequence as resulting from a mixture of causes. Second, we wis
locate where particular types of appearance change are taking place in animage. And, th
we want to provide a framework that generalizes previous work on motion estimation.

The estimation of motion in image sequences is a difficult problem that involves poolin
noisy measurements to make reliable estimates. This assumegrsueéof the image
variation within a region. For example, it is commonly assumed that the brightness within
region is conserved through time, that a single motion is present, and that the motion can
described by alow-order polynomial. For natural scenes, this model is a crude approximati
that fails to capture many kinds of appearance change such as those mentioned above.

When our models of the scene are violated, we have two choices, nhamely, formule
more realistic models or adopt robust statistical techniques to cope with the violations
the assumptions. In general we should pursue the former while recognizing its limitation
For example, better models may require that more parameters be estimated, which may
undersirable, since even simple models may be underconstrained. Furthermore, altho
simple models used for optical flow are typically linear in the unknown parameters and adn
closed form or efficient iterative solutions, significantly better models may be nonlinear ar
computationally prohibitive. Finally, in natural scenes, any models we formulate will be
approximate and certain appearance changes will remain unmodeled. These unmode
image variations require us to maintain a robust statistical formulation even as our modt
improve.

In this paper we pursue a strategy of both constructing more realistic models of appeara
change and formulating the problem using robust statistical techniques. Specifically, v
discuss the use of four generative models to explain the classes of appearance cha
illustrated in Fig. 1. A change in form is modeled as the motion of pixels in one image t
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FIG. 1. Four classes of appearance change (explained in text).
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those in the next image; that is, an image at tirdael can be explained by warping the
image at time using this image motion. Our framework uses a layered representation t
model multiple motions in a region due to occlusion and limited forms of transparency.

Illumination variations may be global, occurring throughout the entire image due ftc
changes in the illuminant. They may also be local like the cast shadow of the hand th
appears in Fig. 1 (upper right). In this paper we model illumination change simply a
a smooth function that amplifies/attenuates image contrast. By comparison, specular
flections (Fig. 1, lower right) are typically local, especially near regions of high surface
curvature, and can be modeled, in the simplest case, as a near saturation of image inten

The fourth class of events considered in this paper is iconic change [9]. We use tl
word iconic to indicate changes that are pictorial. Thesesgstematichanges in image
appearance that are not readily explained by physical models of motion, illumination, ¢
specularity. A simple example is the blinking of the eye in Fig. 1 (lower left). Examples
of physical phenomena that give rise to iconic change include occlusion, disocclusio
changes in surface materials, and motions of nonrigid objects. In this paper we consic
iconic changes to be object-specific and we learn models of the iconic structure for particul
objects using eigenspace techniques [38].

These different types of appearance change commonly occur together with natural c
jects, for example, with articulated human motion or the textural motion of plants, flags
water, etc. We employ a probabilistic mixture model formulation [30] to recover the var-
ious types of appearance change and to perform a soft assignment, or classification,
pixels to causes. This is illustrated in Fig. 2. In natural speech, the appearance change
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FIG. 2. Two generative models of an image at tim&/otion is represented by a parameterized deformation
from the image at time+ 1 to the image at time Iconic change is represented by a linear combination of learned
basis images. The weights represent the probability that the pixélé)invere generated (or are explained) by
each of the models.
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a mouth between frames can be great due to the appearance/disappearance of the t
tongue, and mouth cavity. While changes around the mouth can be modeled by a smo
deformation (imagé+ 1 warped to approximate imagp the large disocclusions are best
modeled as an iconic change (taken here to be a linear combination of learned basis
ages).

Both deformation and iconic change can be viewed as generative models and our gog
to estimate the parameters of these models. We define the probability of observing the ims
at timet given each of these causes. Given this formulation, the Expectation-Maximizatio
(EM) algorithm [16, 30] is used to iteratively compute maximum likelihood estimates for
the deformation and iconic model parameters as well as the probabilities that pixels at tir
t are explained by each of the causes. These probabilities are the weights in Fig. 2 and tl
provide a soft assignment of pixels to causes.

Changes in image appearance that are not modeled well by iconic change, deformati
illumination variations, or specularities are considered tambtiers [24]. To represent
them explicitly, the mixture-model contains antlier layerthat receives high weights for
pixels that are unexplained by any of the models [26]. This helps to ensure robustness wt
violations of the models occur. The outlier layer also helps us to identify regions wher
our models fall short of explaining the appearance change, and therefore require impro
ment. Below we describe our mixture-model formulation and a collection of appearanc
change models that generalize the notion of brightness constancy used in estimating opt
flow.

2. CONTEXT AND PREVIOUS WORK

Previous work in image sequence analysis has focused on the measurement of opt
flow using conservation assumptions and smooth models of the optical flow field [4]. Or
common assumption, referred to as brightness constancy, is that the image brigptrgss
at a pixelx =[x, y] and timet can be represented by a deformation of the image at time
t+1,

I(x,t) = I (x —u(x),t + 1), Q)

whereu(X) = (u(x), v(x)) represents the horizontal and vertical displacement of the pixel
Although useful in many contexts, it is well known that brightness constancy is oftel
violated by shadows, global illumination changes, specular reflections, and the occlusion
disocclusion of surfaces. In the remainder of this section we review approaches for maki
optical flow estimation robust to changes such as these and relate these to our formulat
of appearance change.

Image preprocessing.One appraoch to coping with violations of brightness constancy
has been to preprocess the image to extract image properties whose deformations thro
time provide a more reliable measure of the desired flow field. Common approaches i
clude bandpass filtering and contrast gain normalization to remove smooth illuminatic
variations, or the extraction of image features such as edges or regions to achieve
bustness with respect to even more significant appearance changes [1, 32, 39]. Fleet
Jepson [19] proposed the use of local phase information (from the output of bandpa
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filters). Phase is stable with respect to smooth variations in illumination and smooth ge:
metric deformations between frames. Moreover, locations of phase instability can be d
tected and therefore ignored, making the subsequent estimation of optical flow more robt
[20].

Robust estimation. Image preprocessing, although useful, will not always account for
the full range of ways in which image brightness may change. Models of brightness chan
will be an approximation to the true physical processes and hence will be violated. The
violations can be viewed as statistical outliers and suggest the need for robust estimatio

The assumption of smooth optical flow fields, although useful in many situations, is als
violated often in practice. Models of smoothness have been applied in image patches us
regression techniques or through the propagation of local information using regularizatic
techniques. In particular, with linear parameterized models, the optical flow field is of
ten represented by a low-order polynomial (constant, affine, or planar) [5, 8, 14, 19, 3!
and is estimated by collecting hundreds or thousands of constraints over an image reg
and using regression methods or other search techniques. These approaches can re
accurate motion estimates when the motion model is a good approximation to the ir
age motion. In real scenes, however, simple motion models are often inappropriate eitt
because the motion is more complex or there are multiple objects moving with differer
velocities.

Early attempts at robust optical flow estimation involved least-squares regression fc
lowed by outlier detection and rejection, and then re-estimation of the motion for the re
maining image pixels [25]. Black and Anandan [8] introduced robust statistical technique
(M-estimation) [24] to compute a dominant motion while automatically downweighting
outliers. Multiple motions can be computed in a region by successively applying robu:
estimation techniques to the outliers [8, 37]. Bab-Hadiashar and Suter [3] developed a |
bust approach using the Least Median of Squares (LMedS) technique [35] to estimate t
dominant motion in a region. These robust methods can typically cope with a small numb
of motions within a region but not with general flow fields. Other methods add furthe
robustness by allowing regions to vary in size [10] or by regularizing flow both within and
between image regions [28].

Layered models. The robust estimation techniques above typically assume a singls
dominant motion within a given region. Layered models relax this assumption and estima
multiple motions in a region. Darrell and Pentland [15] introduced the idea of estimatin
global motions in layers and presented an optimization scheme using ideas from rob
statistics. Wang and Adelson [42] also formulated a model that groups coherent veloci
estimates into layers but their approach did not exploit the layered model to directly estima
motion from images. Jepson and Black [26] assumed that the motion in the scene col
be represented by a mixture of distributions and used the Expectation Maximization (EN
algorithm to decompose the motion into a fixed number of layers. These layered approach
and the EM algorithm in particular, have become popular methods for motion estimatic
[2, 28, 43-45].

One issue with layered models concerns the estimation of the appropriate nhumber
layers. A number of authors have used a minimum description length criterion to strik
a balance between accurate encoding of the motion and the number of layers neede
represent it [2, 15, 27].
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With parameterized models, the estimation of the motion of a given surface may t
adversely affected by distant, and quite unrelated, image points. These distant motions ¢
act as “leverage points” [35] that pull the solution away from the desired local motion. A
spatial smoothness constraint can be added to the computation of the weights that as¢
pixels to layers [27, 44]. This may reduce the effect of leverage points by encouraging laye
to have spatially coherent support.

Specialized spatial modelsParameterized approaches may perform poorly when the
spatial variation of the image motion is more complex than a low-order polynomial. Tt
handle complex motions with concise models, Blatlal [13] proposed linear parame-
terized models learned from training examples using principal component analysis (PC/
Similarly, Fleetet al.[18] modeled motion features, such as dynamic occlusion edges, an
moving bars, using linear combinations of steerable basis flow fields. These linear mod
constrain the interpretation of image motion, and are used in the same way as translatio
or affine motion models. Similar approaches have been used in modeling the deformatic
between individual faces in a database of face images [6, 17, 23, 33, 40, 41].

Generalizing brightness constancyMuch of the recent work in motion estimation
has focused on achieving increased robustness in the presence of unmodeled apg
ance changes. In this paper we take the approach of explicitly modeling many of the
events and hence extend the notion of “constancy” to more complex types of appearat
change.

One motivation for this is our interest in recognizing complex nonrigid and articulatec
motions, such as human facial expressions. Previous work in this area has focused
analyzing the image motion of face regions such as mouths [12]. But image motion alol
does not capture appearance changes such as the systematic appearance/disappeara
the teeth and tongue during speech and facial expressions. For machine recognition
would like to be able to model these intensity variations.

Our framework extends several previous approaches that generalize the brightness c
stancy assumption. Mukawa [31] extended the brightness constancy assumption to all
illumination changes that are a smoothly varying function of the image brightness. In
related paper, Negahdaripour [34] proposed a general linear brightness constraint

[(x,t) = m(x, t)I (x — u(x), t + 1) + c(x, t), (2)

wherem(x, t) andc(x, t) allow for multiplicative and additive deviations from brightness
constancy and are assumed to be constant within an image region.

Another generalization of brightness constancy was proposed by aatdB3]. Treat-
ing image intensity as the height of a surface in 30Y I-space, they proposed a physically
based appraoch for finding the deformation fronXanl surface attimétotheXY | surface
att + 1. This allows for a general class of smooth deformations between frames, includir
both multiplicative and additive changes to intensity.

One variation on the general form of (2) is the the use of object-specific models of imac
brightness [7, 22, 23, 41]. Hager and Belhumeur [22] used principal component analysis
find a set of orthogonal basis imag¢B, (x)}}_;, that spanned the ensemble of images of
an object under a wide variety of illuminant directions. They constrained deviations fror
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brightness constancy to lie in the subspace of illumination variations, giving the constrail

(X, 1) = 1(x —uGGm). t + 1)+ > by B;(x), (3)
j=1

whereu(x; m) is a parameterized (affine) model of image motion. The authors estimate
the motion coefficientsn and the subspace coefficietts. . . by.

This is similar to our model of illumination variation but does not allow mixtures of
multiple causes within a region. These approaches are also related to the EigenTrack
work of Black and Jepson [11], in which subspace constraints were used to help accol
for iconic changes in appearance while an object was being tracked.

3. MIXTURE MODEL OF APPEARANCE CHANGE

The appraoch presented here recasts a number of the above approaches in a probabil
mixture model framework [30]. We propose a set of generative models that can be used
construct or explain an image. Unlike the approaches above, the mixture model framewc
decomposes the appearance change into multiple causes. It also performs a soft assigni
of pixels to the different models while allowing for outliers, i.e., pixels that are not well
explained by any one model.

In particular, we assume that the imabf, t) at locationx at timet is generated, or
explained, by one afi causedc,,i =1, ..., n. The causedg (X, t; &), can be thought of
as overlappindpyersand are simply images that are generated given a vector of paramete
& . We will consider four causes below, namely, motibg ), illumination variations [} ),
specular reflectiond §), and iconic (pictorial) changesy). A fifth cause (o) will represent
outliers.

Givenn of the above causes, the probability of observing the imdget) is a mixture
model [30] given by

p(1x 1) [{ay. o1}1_y) = D wi)p (1 (x. 1) &, o). (4)

i=1

Thew; (x) are “ownership probabilities.” They specify the relative probabilities that the dif-
ferent models account for the appearance change atpi&eeach pixel, these probabilities
sum to unity; thatisy ; wi(x) = 1. In practice, we use a single outlier model while we may
employ any number of motion, illumination, specularity, or iconic models to explain the
image region.

The dependence afj;(x) on image location allows for the fact that the appearance
change at different pixels will often be explained by different causes that vary across tt
image. This generalizes the more common formulation in which mixture probabitities
replace thew; in (4), and are given as the average weights over an image region (or over ¢
ensemble oN independent samples from the distribution); thatris= >, wi(x)/N. In
our formulation, the causes provide parametric models over the entire image region, wh
the weights represent the relative likelihoquiél (x, t) | &, o;) of each cause at every pixel.

Finally, theo; in (4) are scale parameters that are used to control a from of deterministi
annealing in the estimation of the parameters (to be discussed below).
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FIG. 3. Arobust likelihood functionp; (1 (x, t) | &, oi).

Robustness in the current framework occurs in two ways, namely, with the use of ¢
outlier layer and with the form of the likelihood function used. In contrast to a Gaussial
mixture formulation, the component probabilities used here for the generative models
appearance changp,(l (x,t) | &, oi), are defined to be

20i3
pl(l(x’t”ahm)_n(aiz—i——Alczi)T )

whereAlc, =1(x, t) — I (X, t; ). Thisis a@-distribution of degree 3 centeredat(x, t; &)
with standard deviation; [29]. Simply put, the probability that an image pixel at titne

is explained by each cause is a function of the difference between the observed inten:
and that predicted by the model. This likelihood function (Fig. 3) has the properties that
falls off more rapidly than a Gaussian distribution and has heavier tails. This reflects ol
expectation that the residuald ¢, contain outlines [24]. The fact that the likelihood drops
rapidly will have the effect of forcing large residuals for a given model to be accounte
for by other models, thereby helping to separate the explanation of image data into distir
causes.

3.1. Sources of Appearance Change

In what follows, we describe the four generative models of appearance change and
outlier model in more detail.

Motion. Moation is a particularly important type of appearance change that is modele
by

Im(X t;am) = T (X —u(x;am), t + 1).

The image at timéis generated by warping the image at titae 1 by a flow fieldu(x; am).
We use a parametric description of optical flow in which the motion in an image region i
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FIG. 4. Affine flow basis set.
modeled as a linear combinationlobasis flow fieldd M; (x)}‘j‘zl,

k
u(x;am) = > m;M;(x), (6)

j=1

whereay =[my, ..., my] is the vector of parameters to be estimated.
For the experiments in Section 5 we use an affine flow model. For an image region abc
pixel (¢, Ye), the affine model is given by

u(x, y) = mo + my(X — Xc) + ma(y — Ye), (7)
v(X, y) = M3 + mMy(X — Xc) + Ms(Y — Yc). ®)

Equivalently, we can express affine motion as in (6) with an explicit set of constant an
linear basis flow fields, as shown in Fig. 4.

lllumination variations. lllumination changes may be global, resulting from changes
in the illuminant, or local, as a result of shadows cast by objects in the scene. The mixtu
formulation allows both of these types of variation to be modeled, where the (ownershij
weights in the mixture indicate where illumination variations have occurred in the image

With simple changes inillumination, an image at tirean be written as a scaled version
of the image at timé+ 1, i.e., [1+ L(x;a.)]l (X, t + 1), where 1 L(x; a.) is the scaling
function parameterized g . The change in appearance is them, a; )l (X, t +1). If we
allow for motion as well as illumination change, then the change in image appearance ¢
be written as

lem(X, t;am, a) = L a )l (x — u(x;am), t + 1). )

This states that the illumination change is a scaled version of the motion-compensated imz¢
at timet + 1. When estimating the parameteyshere we assume that the motiofx; ay)
is known and fixed.

We takeL (x; a_ ) to be a parametric model, expressed as a weighted sum of basis image
For example, in the case of linear spatial variatibris given by

3
LOGa) =1+ la(x — %) +13(y — Yo) = >_liLi(),
i=1

where ., Yc) is the center of the relevant image regi@p,=[l1, 12, I3] are the model
parameters, antd; (x) denote the basis images, shown for the linear model in Fig. 5.
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FIG.5. Linear illumination-change basis images: (ldft)=1; (center)L, =X — X; (right) Lz =Yy — Y.

Specularity model. Specularities are typically local and resultin near saturation ofimage
brightness. While more sophisticated models of specularities may be formulated, we hg
experimented with a simple model which works well in practice,

3
Is(x, t;8s) = 1+ S(X — Xe) + S3(y — Ye) = ) _ S S(X),
i=1

where§ are the same linear basis images as in Fig. 5aand[s;, S, s3]. Note that unlike
the illumination model above, the specularity term is independent of the image.

Iconic change. In addition to the generic types of appearance change above, there a
image appearance changes that are specific to particular objects or scenes. Systen
changes in appearance exhibit spatial or temporal structure that can be modeled and use
help explain appearance changes in image sequences. Recall the example of human mc
in Fig. 2. As people talk, their lips deform smoothly but there are also changes that canr
be characterized as smooth deformation, such as the appearance and disappearance
teeth as the mouth opens and closes (Fig. 6).

As with the models above, we use a linear, parametric model of iconic change. Howev:
here we learn the appropriate model from the individual frames of a training image sequer
using principal component analysis. This is described in Section 6; for now it is sufficier
to think of the iconic model, like the specularity model, as a linear combination of basi

Deformation
o |
i
-.___.-'"--.
lconic change

FIG. 6. Object-specific deformation and iconic change.
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imagesA; (x),

q
lp(x.tiap) = > _a A(x), (10)

i=1
whereap =[ay, ..., 8] is the vector of scalar values to be estimated.

Outlier model. For the outlier layer, we adopt a simple model in which image intensity
is uniformly distributed between the minimum and maximum intensity values; that is, th
model can generate (explain) any pixel with uniform probability. Choosinguch that it
satisfies

3
203

7 (03 + (2.500)?)

Po(l(x,t)|oo) = 5 = 1/256,

for 8-bit images, gives the likelihood of an outlier.

4. EM-ALGORITHM

We seek a maximum likelihood estimate of the global model parametgrs,., a,
and the ownership probabilities;; (X), .. ., wa(X) that yield a soft assignment of pixels
to models. If the parameters of the different models are known, then we can compute t
probability that pixelx belongs to cause These probabilities, referred to as ownership
weights, are given by [30]

pi(1(x. 1) | &, 0i)

o) = St 3y 07)

11)

These ownership weights force every pixel to be explained by some combination of tf
different causes. As the; go to zero, the likelihood function approaches a delta function.
Therefore, for small values of; the weights will tend toward zero or one.

The maximum likelihood estimate of the model parameters, given the ownership weight
satisfies [30]

n
ad
Zzwi(X, oi)—logpi(I (x,t) | &, 0i) =0, (12)
X i=1 88,'
where it can be shown that the derivative of the log likelihood is given by
log Pl 013, 0) _ oy oAl tia) (13)
0y 0g;
where
N
Y(Alg,0i) = 5>——5 14
( C|7GI) O’iz—i—AlCi’ ( )

andAlg = 1(x,t) — Ig (X, t; &) for thei th model. Note the similarity between the derivative
of the log likelihood used here in Fig. 7 and the shape of the influence functions of commc
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\

FIG. 7. Y(r, o) (the derivative of the log likelihood).

robust M-estimators [24]. In M-estimation this shape has the effect of reducing the influenc
of outliers on the maximum likelihood estimate. T#efunction here has the same effect.

In the case of Gaussian mixtures with linear models, the model parameters can be cc
puted in closed form given the ownership weights. However, with the robust likelihood func
tion and the nonlinear models used here, we incrementally compuég slagisfying (12).
Briefly, we replacey with g + §a;, wheresa; is an incremental update. We approximate
(12) by its first-order Taylor expansion, simplify, and solve fey using gradient ascent.
We then update; < & + da . This algorithm is similar to that described in [8, 11] for the
robust estimation of optical flow.

Estimation of large image motions requires a coarse-to-fine process in which the imag
are represented with a Gaussian pyramid. afjeare updated at a coarse level and then
projected to the next finer level where they are used to warp the image dttirhéowards
the image at, thereby incrementally reducing the difference between the images (se
[5, 8] for details).

The EM algorithm [16] alternates between solving for the weight$x, oi), given an
estimate of the parametess,. .. a, (the Expectation step), and then updating the param-
eters,a; . .. a,, with the weights held fixed (the Maximization step). It should be noted
that although the EM algorithm works well in practice, its validity with finite mixtures of
t-distributions remains unclear.

Each model has an associated valuesiofvhich determines what residual values are
considered to be outliers. A common approach for improving the stability of the estimatio
process and for avoiding local maxima is to use a deterministic annealing scheme in whi
the values of; start at a high value and are lowered to the value that gives the desired outli
rejection properties. Here, these values are determined empirically. For all the experime
in this paper the value aof; began at 45.0 and was lowered by a factor of 0.95 at eact
iteration of the optimization to a minimum of 10.0. These same valuesveére used for
all the models.

The effect ofo on the interaction between the models is interesting to consider. Fo
high values o, the likelihood function falls off slowly and hence models tend to “share”
the explanation of pixels; that is, the (x) are close to In. When the residual errors,
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Alg =1(x,t) — Ig (X, t; &), result in likelihoods that are lower thawy, then the normal-
ization in (11) has the effect of shifting the weight to the outlier layer. At the beginning of
the annealing process the high value-oheans that the outlier probability is much smaller
than the generative model would suggest, that is, smaller plgag 1/256. In this case
the outlier layer accounts for few if any of the pixels. Ads annealed the outlier prob-
ability monotonically increases toward 256 and more pixels are accounted for by that
layer.

5. GENERIC APPEARANCE CHANGE

This section presents examples of generic appearance changes that are commonin na
scenes, namely, motion, illumination variations, and specularities.

5.1. Multiple Motions

We begin with an experiment involving multiple motions within a region. Figure 8 shows
a person moving behind a plant. We assume that there are two affine motions present :
solve for them using the robust mixture formulation. The figure shows the weights fo
the foreground layerngy, (X)) and the background layew,(x)), where white indicates a
weight near 1.0 and black near 0.0. The outlier layer receives high weight in regions th
border occlusion boundaries. This simple model of layers does not account for the appe
ance/disappearance of image pixels and hence these regions are assigned automatica
the outlier layer.

5.2. Shadows

We next consider a mixture of motion and illumination variation (Fig. 9).The appearanc
variation between Figs. 9a and 9b includes both global motion and an illumination chang

FIG. 8. Multiple Motion Experiment (see text). (afx, t); (b) I (x, t +1); (C)wm, (X); (d) ww, (X); (&)wo(X)
(outliers).
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FIG.9. lllumination Experiment 1 (castshadow of a hand). Appearance change estimated using a single moti
layer with outliers (see text). (&), t); () 1(x, t + 1); (c) flow; (d) ImearX); (€)1 (X, t) — Imead®)l; (F) ww (X);
(9)wo(x) (outliers).

caused by the shadow of a hand in fratael. The true motion field contains expansion
due to the motion of the background. Figure 9 shows the results of assuming just a sin
motion within the region. A three level pyramid is used in the coarse-to-fine estimation ar
the motion is computed using the affine model presented in Section 3.

The result of the estimation process is a mixture model for the image at tbased
on the image at timé¢ + 1 and the appearance change parameters. The mixture mod
forms a generative model from which we can sample reconstructions of the image at tir
t. We can also compute the expectatigfl (x,t) | {aj, oj}]_;] as a way of illustrating
the generative model. Think of drawing samples (images) from the generative model. .
a given pixelx, with probability wy (x) the intensity sample i$y (X, t; am), while with
probability wo (x) the intensity sample is drawn from the outlier distribution. The expected
value of the outlier model is 128. The expected imdggan from the generative model is
thereforelmeadX) = wm (X)Im(X) + wo(x)128. For example, Figure 9d shows this “mean
reconstruction” image (at tint¢ that results from the mixture of the deformation (from time
t 4+ 1) and the outlier layer. Note that the uniform expected intensity of the outlier mode
means that the outlier pixels corresponding to the shadowed hand region appear roughl
a uniform gray.

The absolute difference between this model image and the actual image istshewn
in Fig. 9e, and Figs. 9f and 9g show the weights for the single motion layer and the outli
layer. Note first that, while this robust formulation of the motion-only model is able to
detect the correct outliers, the recovered optical flow is inaccurate. The large number
unmodeled intensity changes pulls the solution away from the true motion. Outlier maj
like this, with large numbers of outliers, provide a clear indication that the model fails tc
explain the appearance changes caused by the shadow, and that a richer class of mode
required.

If, instead, we allow a mixture of the affine motion modigj} J and the linear illumination
model (. m), we see an improvement in the image motion. We estimate the ownershi
weightswy (X) andw m (X) that assign pixels to the models, and the motion paramajgers
and illumination parameters as described in the previous section. Figure 10b shows the
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FIG. 10. lllumination Experiment 2. Appearance change estimated using a mixture of motion and illumi-
nation change models (see text). (&), t); (b) Imear(X); (€) flow; (d) 1 (X, t) — ImearX)1; (€)wm (X); (F) wr m(X);
(@) wo(x) (outliers).

mean reconstruction of the image at titpevhich is now much closer to the actual image
in Fig. 10a. This image is given ByheadX) = wm () Im (X) + wi m (X)L .m(X) + wo(X)128.
Figures 10d-10f show the reconstruction error, the weight imagge&) and wi m(X),

and the outlier image. The motion weights (x) are near 1 (white) when the appearance
change is captured by motion alone. Where there is illumination change as well as motic
in the region of the hand, the weighis, (X) are near 0 (black) and weights_ v (x) are
near 1. The gray regions indicate weights near 0.5 which are equally well described by tl
two models.

The outlier layer (Fig. 10g) indicates which pixels had appearance changes that we
not well explained by either model. Compared with the motion-only model in Fig. 9f, the
motion+illumination model exhibits far fewer outliers, most of which now occur around
the boundary of the shadow. Our simple illumination model only accounts for a linea
illumination change while the actual shadow fades non-linearly at the edges of the har
Thus the boundary regions are not well explained by the illumination change model. T
better account for local variations in illumination one could replace the linear model
with a regularized model of the illumination variation (see [43] for regularization in a
mixture-model framework).

Finally, note that there is a significant difference between the flow fields computed usir
these two different models, as shown in Figs. 9c and 10c. The motion is Fig. 10c is que
itatively correct. Explicitly accounting for the illumination change thus results in a more
accurate representation of the true motion.

5.3. Specularities

Consider the example in Fig. 11 in which a stapler with a prominent specularity on th
metal plate is moved. We first apply a single affine motion model with outliers to explair
the appearance change. A four-level pyramid was employed to capture the large moti
between frames; other parameters remained unchanged. The recovered motion is relati
accurate despite the fact that very few pixels were actually used in computing it. Examinir
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FIG. 11. Specularity Experiment 1 (a moving stapler). Appearance change estimated using a single m
tion layer with outliers (see text). (&fx, t); (b) | (x, t + 1); (c) flow; (d) ImearX); (€)1 (t) — ImeadX)|; () wn(X);
(g)wo(x) (outliers).

the motion layer weightspy (X) in Fig. 11f, we see that the motion layer receives high

weight in the uniform regions which provide few constraints on the motion. The outliel
layer, by comparison captures the majority of the metal plate where the specularity occu
As above, this indicates that the structure of the appearance change in this region could
be explained by the single motion model.

We next model this situation using a mixture of motidg ( and specularityl) models.
The simplified model of specularities assumes that some regions of the image atéime
be modeled as a warp of the image at time1 while others are best modeled as a linear
brightness function.

The estimated flow field is shown in Fig. 12c. The mean reconstructed image, comput
from the mixture of the motion and the linear brightness models, is shown in Fig. 12b; thi
is given by lneadX) = wm (X)Im(X) + ws(X)1s(X) + wo(X)128. The reconstruction error is
shown in Fig. 12d. The ownership weights for the two model components, along wit
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FIG. 12. Specularity Experiment 2. Appearance changed accounted for using a mixture of motion and spe
ularity models (see text). (A)(X, t); (b) Imear(X); (€) flow; (d) |1 (X, t) — ImeardX)|; (€) wm (X); (F) ws(X); (9) wo(X)
(outliers).
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the weights for the outlier layer are shown in Figs. 12e—12g. Note how the weights i
Fig. 12e are near zero for the motion model where the specularity changes significant
The weights also show that the outlier layer (Fig. 12g) no longer accounts for the majorif
of the specularity. The region of specularity in the lower right corner of the metal plate i
similar in both frames and hence is shared by both models.

5.4. Combining Models of Appearance Change

We consider a final example of appearance change that combines all the generic mod
Figure 13 shows two frames from a sequence in which a pair of scissors move rigid
and casts a shadow on a stationary, roughly planar, surface. The change in orientatior
the scissors with respect to the light source causes a significant specular reflection. F
appearance models, plus the outlier model, are required to explain the change between
pair of images. The parameters were the same as in all the other experiments and a tf
level pyramid was used for motion estimation.

The ownership weights corresponding to each of the models are shown in Fig. 1
and include the motion of the background (Fig. 13gy,(x)), the illumination change
caused by the shadow cast on background (Fig.#3fu, (X)), the motion of the scissors
(Fig. 13}, wm,(x)), and the specular reflection (Fig. 13kg(x)). Difference images help
illustrate which parts of the image are accounted for by each of the models. Notice that tl
motion model,M4, accounts for much of the background but the area where the scissol
cast a shadow has lower probability of being explained by that model. This same regi
is accounted for by the illumination model as can be seen in the weighig(x). Notice
that in dark regions of the image the illumination model can account for the appearant
nearly as well as the simple motion model; this is due to the multiplicative nature of th
illumination term.

The motion,M,, accounts for motion of the hand and portions of the scissors. The blade
of the scissors exhibit a large change due specular reflection and this is accounted for
the specularity model, as can be seen in the weigh(x). Additionally, the outlier layer,
wo(X) (Fig. 13d), largely accounts for the regions around the edges of the scissors a
hand which correspond to regions of occlusion or disocclusion for which we do not hav
a generative model. Finally, the expected imdgga{X) (Fig. 13c), provides a reasonable
reconstruction of the imagk(x, t) (Fig. 13a); the difference image (Fig. 130) are well
modeled with the mixture model than with any of the individual models alone.

This example raises a number of interesting issues. For this experiment, we manua
selected the number and type of models to employ. Ideally we would like to determin
the models automatically, but to do so will require us to model the prior probabilities o
observing the different types of appearance change in typical image sequences. Appropr
prior models will be required to choose among competing hypotheses. As the number
models increases, so does the danger of overparameterization and computational instabi
Here a notion of spatial locality of the causes (modeled as a prior probability) may be usef
(cf. [43, 44]).

6. EXPERIMENTS: ICONIC CHANGE

Unlike the generic illumination and reflection events in the previous section, here w
consider image appearance changes that are specific to particular objects or scenes.
lowing previous work on eigen-based representations of image structure and image moti
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FIG. 13. Combination of two motions, a shadow, and a specular reflection; see telxix,(&); (b) | (x, t + 1);
(C) ImearX); (d) flow 1; (€) ww, (X); (f) wi.m, (X); (9) flow 2; (h) diffMl(x); 0] diﬁMle(x); (J) wwm,(¥); (K) ws(X);
() wo(x) (outliers); (m) diffy,, (x); (n) diffs(x); (0) I1 (X, t) — Imear(X)| = diffcai(X).

[7,9, 13, 18, 22, 23, 41], we learn parameterized models of motion and iconic structu
from examples. We then use these in our mixture model framework to explain motion ar
iconic change in human mouths.

6.1. Learned Iconic Model

To capture the iconic change in domain-specific cases, such as the mouths in Fig. .
we construct a low-dimensional model of thadmages in the training set using principal
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FIG. 14. Example frames from training sequences of facial expressions (anger, joy, sadness).
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component analysis (PCA). For eagh n x m training image we construct a 1D column
vector by scanning the pixels in the standard lexicographic order. Each 1D vector becom
a column in ars x p matrix B. We use singular value decomposition to decom®ss

B=AZ,V,. (15)

Here,Ais an orthogonal matrix of sizex p, the columns of which represent the principal
directions in the training sek;, is a diagonal matrix with singular values, Ao, ..., Ap
sorted in decreasing order along the diagonal.

Because there is a significant amount of redundancy in the training sequence, the effect
rank of B will be much smaller thamp. Accordingly, the first few columns oA provide a
basis that spans the majority of the structur®irHere we express thé¢h column of A as
a 2D basis imageA; (x), so that we can approximate images like those in the training set a

q
lp(x, t;a) = ) & Ai(X), (16)
i=1
wherea=[ay, ..., 8] is the vector of scalar values to be estimated qrdp.

Figure 14 shows samples of mouth images taken from a training set of approximate
500 images. The training set included image sequences of different subjects performing:
facial expressions “joy,” “anger,” and “sadness.” The faces of each subject were stabilize
with respect to the first frame in the sequence using a planar motion model [12]. The mou
regions were extracted from the stabilized sequences and PCA was performed. The first
basis images account for 85% of the variance in the training data and the first eight of the
are shown in Fig. 15.

6.2. Learned Deformations

We learn a domain-specific model for the deformation component of the appearan
change in much the same way, using PCA [13]. We first compute image motion for eac
training sequence using the brightness constancy assumption and a robust optical fl
algorithm [8]. The training set consists of a setmbptical flow fields. For images with
s=n x mpixels, each flow field contains2juantities (i.e., the horizontal and vertical flow
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FIG. 15. First eight basis appearance imaglgx), ..., Ag(x), for the facial expression experiment.

components at each pixel). For each flow field we place sheRies into a column vector
by scanningu(x) and therv(x) in lexicographic order. The resultingvectors become the
columns of a 8 x p matrix F.

As above we use PCA to decompdseas F = M, V,l. Flow fields like those in the
training set can then be approximated as

k
u(Gm) = m;M;(x),
=1

wherek < p, andM; (x) denotes thgth column ofM interpreted as a 2D vector field. Note
that this model is conceptually equivalent to the affine models used above, except that i
tailored to a domain-specific class of motions.

Figure 16 shows the first eight basis flow fields recovered for this training set. The fir:
11 basis flow fields account for 85% of the variance in the training set.

6.3. Mixture of Motion and Iconic Change

We model appearance change of a mouth as a mixture of the learned motion and ico
models. We performed a number of experiments with image sequences of subjects who w
not present in the training set. In our experiments we used 11 basis vectors for both moti
and iconic models. We estimated the parameters for deformagjoitonic changap, the
ownership weightswy (X) andwp(x), and the outlier weights between each consecutive
pair of frames using a four-level pyramid and the EM-algorithm as described earlier.

Figure 17 shows two consecutive frames from a smiling sequence; notice the appe
ance of teeth between frames. The motion motbg(x, t; ay), captures the deformation
around the mouth but cannot account for the appearance of teeth. The recovered flow fi
is shown in Fig. 17c and one can see the expansion of the mouth. The iconic fipgdel,
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FIG. 16. First eight basis flow fieldd(x), . .., Mg(x), for the facial expression mouth motion.
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FIG. 17. Facial Expression Experiment. Appearance changed modeled as a mixture of motion and icon
change (see text). (a)(x,t); (b) I(x,t+1); (c) flow, u(x;am); (d) Ip(x); (€) Iw(x); (F) 11(x, 1) = Im(X)l;
(9) Imear(¥); () [1(X, ) = ImeardX)1; () wm (X); () we(X); (K) wo(x) (outliers).

on the other hand, does a reasonable job of recovering an approximate representatiot
the image at time (Fig. 17d). The iconic model, however, does not capture the brightnes:
structure of the lips in detail. This behavior is typical; the iconic model is an approxima
tion to the brightness structure, so if the appearance change can be described as a sm
deformation, then the motion model will likely do a better job of explaining this struc-
ture.

The behavior of the mixture model can be seen in the weights (Figs. 17i and 17j). Tt
weights for the motion modelyy (X), are near zero in the region of the teeth, near one
around the high contrast border of the lips, and near 0.5 in the untextured skin region, whi
is also well modeled by the iconic approximatibn

Figure 179 is the expected image given the generative model. Note how this imag
resembles the original image in Figure 17a. Also notice that the iconic model fills in aroun
the edges of the stabilized image where no information was available for warping the imag

Not all the changes in the image could be accounted for by the two models. There is
change on the lower lip that is due to specular reflection. This specularity was apparen
not captured in the learned iconic model and since no specularity model was included he
those pixels are best explained as outliers (Fig. 17Kk).

7. FUTURE DIRECTIONS

Aresearch issue that warrants further work is the use of priors on the collection of mode
that would enable one to prefer some explanations over others. Without the use of prio
a mixture model with several sources of appearance change may produce several equ
likely explanations. The probabilistic formulation here should facilitate such an approact

As in Section 5.4, we may expect more than one instance of each type of appearar
change within an image region. In this case we will need to estimate the number of instanc
of each appearance model that are required. There has been recent work on this topic in
area of multiple motion estimation [2, 28, 44].

A related issue is the use of spatial smoothness in the modeling of appearance change
place of the parameterized models we might substitute regularized models of appearal
change with priors on their spatial smoothness. In a mixture model framework for motio
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estimation, Weiss [43, 44] has shown how to incorporate regularized models and smoothn
priors on the ownership weights.

8. CONCLUSIONS

Appearance changes in image sequences result from a complex combination of eve
and processes, including motion, illumination variations, specularities, changes in ma
rial properties, occlusions, and disocclusions. In this paper we propose a robust statisti
framework that models these variations as a probabilistic mixture of causes. To illustra
these ideas, we have proposed some simple generative models.

Unlike previous work, the approach allows us to pull apart, or factor, image appearan
changes into different causes and to locate where in the image these changes occur. M
over, multiple, competing, appearance changes can occur in a single image region. We h
implemented and tested the method on a limited suite of image sequences with differe
types of appearance change.

One way to view this work is as a generalization of current work in the field of motion
estimation to richer models of appearance change that allow one to relax the brightne
constancy assumption. We expect that more complex models of illumination variation at
iconic change can be accommodated by the framework and we feel that it presents a pron
ing direction for research in image sequence analysis.
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