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Abstract	18	
	19	

Single particle electron cryomicroscopy (cryo-EM) is a powerful method for determining 20	
the structures of biological macromolecules. With automated microscopes, cryo-EM data 21	
can often be obtained in a few days. However, processing cryo-EM image data to reveal 22	
heterogeneity in the protein structure and to refine 3-D maps to high resolution frequently 23	
becomes a severe bottleneck, requiring expert intervention, prior structural knowledge, 24	
and weeks of calculations on expensive computer clusters. Here we show that stochastic 25	
gradient descent (SGD) and branch and bound maximum likelihood optimization 26	
algorithms permit the major steps in cryo-EM structure determination to be performed in 27	
hours or minutes on an inexpensive desktop computer. Furthermore, SGD with Bayesian 28	
marginalization allows ab initio 3-D classification, enabling automated analysis and 29	
discovery of unexpected structures without bias from a reference map. These algorithms 30	
are combined in a user-friendly computer program named cryoSPARC.	  31	
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Introduction	32	
	33	
Scientific approaches can be transformed by innovations that decrease the cost and improve non-34	
expert usability of technology, as seen with DNA sequencing and synthesis, microarray 35	
technology, and even the use of computers themselves. These changes can occur both 36	
quantitatively, by allowing more experiments to be done in a shorter time by experts and non-37	
specialists, and qualitatively by changing the type and scope of experiments that are feasible. 38	
Recent advances in single particle cryo-EM1,2 have enabled near-atomic resolution structure 39	
determination of biomedically important protein complexes3–5, bringing the technique to the 40	
attention of the general biological research community and pharmaceutical companies. The 41	
throughput and automation of cryo-EM becomes increasingly important as the technique is used 42	
for structure-based drug design6 and time-critical structural studies of pathogens7. Automated 43	
electron microscopes can collect datasets for atomic resolution structure determination in as little 44	
as 24 or 48 hours given appropriately prepared specimens, and centralized cryo-EM facilities are 45	
now providing instrument access to non-specialist investigators. Calculation of 3-D maps from 46	
cryo-EM images, however, can require weeks of computational analysis by an expert user. With 47	
routine collection of cryo-EM datasets that contain millions of single particle images 48	
corresponding to different 3-D conformations of the sample8, the cost of image analysis can 49	
exceed 500,000 CPU hours on large, expensive computer clusters9. Further, without significant 50	
user expertise, there are a variety of ways in which incorrect and misleading 3-D maps can be 51	
generated at various stages in the image analysis pipeline10,11. The computational cost and the 52	
requirement for user input are bottlenecks both for automation and widespread use of cryo-EM. 	53	
	54	
To address these issues, we developed two new algorithms. The first of these algorithms, for the 55	
first time, makes it possible to perform unsupervised ab initio 3-D classification, whereby 56	
multiple 3-D states of a protein can be discovered from a single sample without user input of 57	
prior structural knowledge, and without the assumption that all 3-D states resemble each other. In 58	
contrast, existing techniques for 3-D refinement of cryo-EM maps require an initial structure that 59	
is close to the correct target structure12,13. The second algorithmic development radically speeds 60	
up high-resolution refinement of cryo-EM maps by exploiting characteristics of image alignment 61	
to achieve massive computational savings by removing redundant computation. These two 62	
abilities are combined in a standalone Graphics Processing Unit (GPU) accelerated software 63	
package that we have named cryoSPARC (cryo-EM single particle ab initio reconstruction and 64	
classification). CryoSPARC can refine multiple high-resolution 3D structures directly from 65	
single particle images, with no user input or expertise required. These combined steps are done 66	
in a matter of hours on a single consumer-grade desktop computer. GPU hardware has been used 67	
previously to accelerate cryo-EM contrast transfer function estimation14 and identification of 68	
particles within images15. Related work has shown that exploiting GPU hardware in the popular 69	
program RELION can significantly speed up existing algorithms for reference-based 3-D 70	
classification and refinement9. The algorithms presented here provide a further order-of-71	
magnitude reduction in computational cost compared to GPU acceleration, which would require 72	
at least an additional ~7 years if driven by hardware advances alone16. Based on the combination 73	
of algorithms, inexpensive hardware, and an easy-to-use graphical user interface, cryoSPARC 74	
can allow new non-specialist cryo-EM users to process data rapidly without needing to purchase 75	
or set up their own computer clusters and with minimal user input and expertise.	76	
 77	
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Results	78	
	79	
Formally, structure determination by cryo-EM is an optimization problem and may be described 80	
in a Bayesian likelihood framework12,17: 81	
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 82	
The aim of the optimization is to find the 3-D structures (V1 to VK) that best explain the observed 83	
images (X1 to XN), by marginalizing over class assignment (j) and the unknown pose variable 84	
(B@), which describes a 3-D rotation and a 2-D translation for each particle image. 	85	

Numerical optimization problems have been studied extensively in computer science18. 86	
Traditionally, optimization is formulated as the maximization of a single, monolithic objective 87	
function. With this approach, the variables of a function are iteratively altered until the ‘best’ 88	
values, which give an optimum value to the function, are identified. Sophisticated algorithms for 89	
iterative optimization have been developed19 and are central to a myriad of problems in data 90	
modeling and engineering. In the case of cryo-EM map calculation, the objective function 91	
(Equation 1) quantifies how well cryo-EM maps explain the collected experimental images, and 92	
the variables in the function include the 3-D maps represented as density voxels on a 3-D grid. 	93	

We use a stochastic gradient descent (SGD) optimization scheme to quickly identify one or 94	
several low-resolution 3-D structures that are consistent with a set of observed images. This 95	
algorithm allows for ab initio heterogeneous structure determination with no prior model of the 96	
molecule’s structure. Once approximate structures are determined, a branch and bound algorithm 97	
for image alignment helps rapidly refine structures to high resolution. The speed and robustness 98	
of these approaches allow structure determination in a matter of minutes or hours on a single 99	
inexpensive desktop workstation.	100	
	101	
Stochastic Gradient Descent: Discovery of protein structure from random initialization 	102	
	103	
Cryo-EM map calculation is a non-convex optimization problem. These problems are among the 104	
most computationally challenging optimization problems known and are characterized by the 105	
presence of multiple locally-optimal settings of variables, each of which forms an attractor where 106	
typical iterative optimization algorithms can become stuck if poorly initialized19 (Figure 1A). 107	
Sensitivity to local optima is seen in most optimization algorithms, including those used in cryo-108	
EM12,13 and as a result, refinement programs require a reasonably accurate initial model for the 109	
structure that initializes the search near the global optimum. However, recent methods have been 110	
discovered that perform well on non-convex problems. One such method is stochastic gradient 111	
descent (SGD)20 (Figure 1). SGD was popularized as a key tool in Deep Learning for the 112	
optimization of non-convex functions, resulting in near-human level performance in tasks like 113	
image and speech recognition21,22. 	114	
	115	
In Equation 1, each term of the outer sum represents the contribution of a single particle image to 116	
the overall likelihood of the 3-D map. SGD repeatedly approximates this objective function by 117	
selecting a different random subset of terms (i.e., single particle images) at each iteration, and 118	
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computes the sum of those terms (Figure 1B). In a single iteration, the optimization variables 119	
(i.e., the 3-D map) are updated based on the gradient of this approximate objective 120	
(Supplementary Note 1). Each iteration requires analyzing only a small subset of single particle 121	
images. As a consequence, a single iteration is inexpensive and hundreds or thousands of 122	
iterative changes can be made during each pass through the full dataset. It is commonly believed 123	
that it is because of these many noisy changes that SGD is insensitive to local optima and often 124	
finds effective solutions to non-convex problems (Figure 1C).  125	
 126	
We implemented an SGD method for ab initio structure determination and 3-D classification. 127	
Applied to several different datasets, the use of SGD enables convergence to correct low-128	
resolution structures from arbitrary random initialization, allowing both ab initio structure 129	
determination and ab initio 3-D classification (Figure 2). With 35,645 TRPV1 particle images3 130	
SGD optimization resulted in a low-resolution 3-D map in 75 minutes from random initialization 131	
(Figure 2A) using a single inexpensive desktop workstation with an Intel i7-5820K Processor 132	
and a single NVIDIA Tesla K40 GPU. When applied to a dataset of conformationally 133	
heterogeneous Thermus thermophilus V/A-ATPase particle images23, the algorithm was able to 134	
discern three different conformational states for the enzyme, again from random initializations 135	
(Figure 2B). These three states correspond to the three different rotational positions of the central 136	
rotor of the enzyme24. This finding is particularly notable as previous analysis with reference-137	
based classification12 and the same dataset of images was only able to detect two of the three 138	
states23. The newly identified third rotational state is the conformation of the enzyme that differs 139	
the most from the other two. This observation illustrates the importance of reference-free ab 140	
initio classification for unbiased identification of states that differ from the expected structures 141	
present in the dataset.	142	
	143	
Branch and bound: rapid refinement of maps to high resolution	144	
	145	
The primary computational burden in map refinement is the search for orientation parameters 146	
that best align each 2-D single particle image to a 3-D density map. The branch and bound 147	
algorithm design paradigm25 can accelerate this search by quickly and inexpensively ruling out 148	
large regions of the search space that cannot contain the optimum of the objective function 149	
(Figure 3A).	150	
	151	
In cryo-EM map refinement, the optimal pose for a particle image minimizes the error between 152	
the observed image and a projection of the 3-D map. To find this optimal pose using the branch 153	
and bound approach (Figure 3B), an inexpensive lower bound on the error is first computed 154	
across the entire space of poses. At the pose that minimizes this lower bound, the 155	
computationally expensive true error function is evaluated. All regions of the search space where 156	
the lower bound exceeds this computed value of the true error function cannot contain the 157	
optimal pose and can be excluded from further search. A new lower bound is then calculated that 158	
fits more tightly to the true error function but is more expensive to calculate. The process of 159	
evaluating the error function at the optimum of the lower bound, discarding regions of search 160	
space where the true error is above the lower bound, and recalculating a tighter-fitting lower 161	
bound, is repeated until only the optimal pose remains.	162	
	163	
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Although conceptually straightforward, application of the branch and bound strategy requires an 164	
informative and inexpensive lower bound for the objective function. Suitable lower bounds are 165	
well known for other problems26,27 but use of the method for determining the orientations of 166	
single particle cryo-EM images required derivation of an appropriate bound (Supplementary 167	
Note 2). The derivation we describe was based on the signal-to-noise ratio of single particle 168	
images over a range of resolutions. It is worth emphasizing that the branch and bound approach 169	
is a global pose search that requires no prior estimate of an optimal pose. In contrast, strategies to 170	
accelerate orientation determination based solely on local search risk selection of a pose that is 171	
not the global optimum12,13. In practice, an approximation to this branch and bound search is 172	
used (Supplementary Note 2) that was found to be equally effective but even more efficient. 173	
	174	
We implemented the branch and bound approach and applied it to high-resolution structure 175	
determination from several published datasets: the 20S proteasome from Thermoplasma 176	
acidophilum28, the 80S ribosome from Plasmodium falciparum29, amphipol-solubilized rat 177	
TRPV13, as well as the T. thermophilus V/A-ATPase23. Computations were carried out with the 178	
same desktop workstation and single NVIDIA Tesla K40 GPU used for ab initio SGD 179	
calculations. Applied to 35,645 TRPV1 particle images, branch and bound orientation 180	
determination produced a 3.3 Å resolution map in 66 minutes with C4 symmetry enforced using 181	
a gold-standard refinement procedure30, the FSC=0.143 resolution criterion31, and correction for 182	
effects of masking on the FSC by high-resolution noise substitution32 (Figure 2C). This 183	
resolution slightly exceeds the previously published resolution of 3.4 Å from the same dataset3. 184	
With T. thermophilus V/A-ATPase particle images sorted into three classes by SGD, the branch 185	
and bound search produced maps of all three states in a total of 2.4 hours (Figure 2D). The 186	
resolutions estimated for the states were 6.4 Å, 7.6 Å, and 7.9 Å, compared to 6.4 Å and 9.5 Å 187	
for the two states identified in the previously published analysis23.	188	
	189	
Following SGD ab initio structure determination, the application of the branch and bound 190	
method allowed high-resolution refinement of the 80S ribosome to 3.2 Å resolution, equivalent 191	
to the published resolution29, in 2.2 hours (Figure 4A), demonstrating the capability of the 192	
method to deal with large and asymmetric protein complexes. Notably, on the same computer 193	
hardware (desktop computer with one GPU), this dataset of particle images would take 194	
approximately 20 hours for refinement using the GPU accelerated program RELION9. Similarly, 195	
the 20S proteasome structure was refined to 2.8 Å with D7 symmetry enforced, matching the 196	
published sub-3 Å resolution from the dataset28 (Figure 4B) but in only 70 minutes. These 197	
refined maps show clear high-resolution detail and side-chain density, illustrating the 198	
performance of the method at near-atomic resolution.	199	
	200	
  201	
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Discussion	202	
	203	
Ab initio reconstruction of 3-D maps from cryo-EM images has long been known as a significant 204	
problem. While random initialization can be successful for highly-symmetric particles33, this has 205	
not been the case for asymmetric or low-degree of symmetry structures where incorrect 206	
structures have been published34. Previous approaches for determining low-resolution initial 207	
maps often involve collecting image tilt pairs35,36. In that method, the need to switch to a 208	
different experimental procedure to generate an initial map is unwieldy and presents a barrier to 209	
automated structure determination. Other investigators have proposed algorithms to generate 210	
initial maps from images obtained under standard conditions. The approaches have included 211	
evolutionary algorithms37, a statistical weighted least squares approach38, complex annealing 212	
procedures39, matching of common lines40 and statistical weighting41. However, all of these 213	
algorithms rely on analyzing all images in batch, making them intrinsically slower than our 214	
approach, particularly as the number of particle images in datasets grow. In contrast, SGD 215	
processes random subsets of data at each iteration, making it efficient, even in the face of large 216	
datasets. We previously showed that SGD could produce a reasonable low-resolution map ab 217	
initio for a homogenous dataset42. Here we have demonstrated that SGD, unlike other 218	
approaches, is sufficiently robust to enable reconstruction of multiple 3-D classes from 219	
independent arbitrary initializations. To our knowledge, all existing techniques for 3-D 220	
classification use a single initial reference from which analysis of heterogeneity proceeds. 221	
Removal of the assumption that all 3-D classes are similar to the single input reference is 222	
particularly advantageous for discovering 3-D states that are unexpected and different from the 223	
consensus structure. It is important to note that, like other algorithms, SGD will fail when the 224	
particle images do not contain a sufficient series of views to define the 3-D structure of the 225	
molecule. It can also fail if there are sufficient views, but strongly preferred orientations for 226	
particles. Other pathological situations may include analysis of datasets with little contrast at 227	
low-resolution. This situation can occur when insufficient defocus is used with a cryo-EM 228	
microscope that does not posses a phase plate or when imaging low molecular weight 229	
complexes. 230	
	231	
Combination of the SGD approach and branch and bound refinement provides a complete 232	
framework for rapid ab initio calculation of multiple high-resolution maps from a heterogeneous 233	
dataset on inexpensive computer hardware. The bound derived and used in this work is based on, 234	
and provides a mathematical basis for, the common intuition that high-resolution features in an 235	
image contribute less to alignment than low-resolution features. This intuition has previously 236	
been used in heuristic methods that perform alignment and reconstruction at iteratively 237	
increasing resolution levels12 or decompose the space of particle images into basis vectors that 238	
contain low-resolution features43. A number of heuristic methods have also been employed to 239	
accelerate the alignment of particle images to a structure at a fixed resolution. Most commonly, 240	
locally restricted high-resolution searches are used in later iterations of refinement, after 241	
exhaustive search at early iterations provides a guess for the optimal pose of each image12,13. 242	
These approaches can still be computationally expensive, require extra tunable parameters for 243	
when to start and how much to restrict local search, and run the risk of missing the optimal 244	
alignment. Branch and bound optimization provides a risk-free, parameter-free approach to 245	
accelerating computationally expensive search problems, is significantly faster than heuristic 246	
methods, and will likely find other applications in cryo-EM image analysis. 247	



7	

	248	
With the recent push to re-implement existing algorithms on new hardware (e.g., GPUs), 249	
attempts have also been made to simplify the task of accessing and using computer clusters 250	
through cloud computing service providers, notably Amazon EC244. However, even with 251	
computer clusters available for rent, existing software methods do not scale well, providing 252	
diminishing returns with larger clusters. As the pace of cryo-EM data collection grows, and 253	
studies aim to distinguish increasingly subtle structural differences between 3-D classes8,45, 254	
improved computational efficiency through algorithm development will be a critical enabler for 255	
both academic and industrial researchers using cryo-EM. 	256	
	257	
The new cryoSPARC software is available as a standalone program that can run on either 258	
commodity desktop workstations or rackmount servers. CryoSPARC is also available as a web-259	
service, for new users to try prior to installing locally. Once particle images are selected and 260	
corrected for anisotropic beam-induced movement46 and the effects of radiation damage46,47 they 261	
may be processed through the program’s web-browser graphical user interface (GUI). At 262	
minimum, a single consumer or professional grade NVIDIA GPU is required. The easy-to-use 263	
GUI (Supplementary Video 1) provides the same interface through both the web-service and in 264	
local installations. This GUI allows for multiple users within a laboratory to have separate 265	
accounts, access the program remotely, upload and share datasets, manage experimental results, 266	
launch computational tasks, and view results streaming in real-time as they are computed. A 267	
protocol detailing use of the software package has been prepared49 (Supplementary Protocol).	268	
 269	
Software availability 270	
The software package, including source code, is available for non-commercial use as a download 271	
and as a web service at www.cryosparc.com. Results reported in this work were computed using 272	
cryoSPARC version 0.2.36.   273	
 274	
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Data Availability Statement 276	
The cryo-EM images used to experimentally demonstrate the effectiveness of algorithms were 277	
taken from previously published studies. Several datasets were downloaded directly from 278	
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TRVP1 channel (EMPIAR-10005). Images of the T. thermophilus V/A-ATPase are available 280	
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Figure Legends for main text 422	
	423	
Figure 1. Stochastic gradient descent for cryo-EM map calculation. A, Iterative refinement 424	
methods are sensitive to initialization. An arbitrary initialization far from the correct 3-D map 425	
will be refined into an incorrect structure that attains a locally optimal probability within the 426	
space of all 3-D maps. An accurate initialization will be refined to the correct structure. Iterative 427	
refinement uses all single particle images in a dataset to compute each step. B, Random selection 428	
of particle images in the SGD algorithm. At each iteration, a different small random selection of 429	
images is used to approximate the true optimization objective. Each iteration may use a different 430	
number of images. C, Stochastic Gradient Descent (SGD) algorithm enables ab initio structure 431	
determination through insensitivity to initialization. An arbitrary computer generated random 432	
initialization is incrementally improved by many noisy steps. Each step is based on the gradient 433	
of the approximated objective function obtained by random selection in (B). These approximate 434	
gradients do not exactly match the overall optimization objective. The success of SGD is 435	
commonly explained by the noisy sampling approximation allowing the algorithm to widely 436	
explore the space of all 3-D maps to arrive finally near the correct structure. 437	
	438	
Figure 2. Evolution of 3-D cryo-EM maps as computation progresses. A. Low-resolution 439	
map of the TRPV1 channel calculated in 75 minutes from random initialization. B. Multiple 440	
conformations of the Thermus thermophilus V/A-ATPase calculated simultaneously from 441	
separate random initializations. C. Refinement of TRPV1 to 3.3 Å resolution on a single GPU 442	
desktop workstation in 66 minutes with C4 symmetry enforced. Density is apparent that 443	
corresponds to amino acid side chains. D. Refinement of each of three V/A-ATPase rotational 444	
states. The rotational state of the central rotor (indicated by red circles) is seen in cross sections 445	
through the 3-D maps. All computations were performed on a single desktop computer with a 446	
single NVIDIA Tesla K40 GPU. Scale bars, 25 Å. 447	
 448	
Figure 3. The branch and bound approach to high-resolution cryo-EM map refinement. A, 449	
Two iterations of a simplified 1-D representation of the branch and bound approach. Candidate 450	
poses are iteratively eliminated by evaluation of an inexpensive lower bound over all poses, and 451	
the true error function at the minimum of the lower bound. B, For cryo-EM images, the true error 452	
function over all poses (top left) for an individual particle (top right) is never evaluated. Instead, 453	
the entire lower bound is computed (middle left), the true error is calculated at the minimum of 454	
the bound, and all poses where the lower bound exceeds this calculated error are eliminated 455	
(middle right). A tighter lower bound is evaluated and the process repeated until the optimum 456	
pose is identified (bottom left and right).	457	
	458	
Figure 4. High-resolution structures from branch and bound refinement. A, 80S ribosome 459	
structure refined to 3.2 Å resolution in 2.2 h with 105,247 particle images. Amino acids side 460	
chain and RNA base densities are clearly visible in  a -helices, b-strands, and rRNA (inset). B, A 461	
20S proteasome map refined to 2.8 Å in 70 min with 49,954 particle images and D7 symmetry 462	
enforced. Well-resolved densities are apparent for small and large residues (inset). Branch and 463	
bound refinement of both structures was initialized with ab initio maps from SGD. Scale bars, 25 464	
Å. 	465	
 466	
Tables: None. 467	
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Online Methods	468	
 469	
Statistics 470	
 471	
In all 3-D map refinement experiments, the Fourier shell correlation (FSC) between two 472	
independently refined half-maps (the “gold standard”) was used to assess resolution30, along with 473	
the FSC=0.143 resolution criterion31 and correction of the FSC for effects of masking by high-474	
resolution noise substitution32.	475	
	476	
Computational Hardware	477	
	478	
All experiments were carried out on a single desktop workstation, equipped with an Intel i7-479	
5820K 6-core CPU, NVIDIA Tesla K40 GPU, 64GB of CPU RAM, and a 512GB SSD for file 480	
storage. Tests were also run and equivalent running times were achieved using the consumer-481	
grade NVIDIA Titan Z GPU. It should be noted that at the time of writing, the Tesla K40 GPU is 482	
over two years old, and more recent GPU cards will perform significantly faster. 	483	
	484	
Implementation	485	
	486	
CryoSPARC is a software package written in a mixture of Python, CUDA C, and Javascript. 487	
Algorithms are implemented in Python and the GPU computation routines are written in CUDA 488	
C. Computations are parallelized over images, pixels, and search parameters. Two CPU threads 489	
are used for the GPU to improve utilization, and images are loaded from SSD and prepared by 490	
the CPU simultaneously with GPU processing of a different batch of images.	491	
	492	
Stochastic Gradient Descent	493	
	494	
SGD is initialized from a computer generated random initialization for each 3D class 495	
(Supplementary Note 1). The number of images used in each iteration of SGD is automatically 496	
determined based on the current resolution. A model of the noise level in single particle images 497	
is initialized with an over-estimate relative to measured noise levels. Approximate gradients of 498	
Equation 1 are computed along with second-order curvature information to enable estimation of 499	
an optimal step size for descent at each iteration. Step directions are averaged over iterations 500	
using a classical momentum method50. Resulting iterative steps are applied to the 3-D maps and 501	
a projection operation is used to enforce non-negativity of 3-D map density. The noise model is 502	
refined based on errors between the images and projections of the 3-D map at each iteration, 503	
converging to the optimal noise model over several iterations. The descent step size is decreased 504	
monotonically over iterations to improve convergence once an approximately correct structure is 505	
found.  Further details can be found in Supplementary Note 1. 	506	
 507	
Branch and Bound Image Alignment	508	
	509	
The branch and bound method is applied to each image individually at each iteration of high-510	
resolution map refinement. A space partitioning tree-structure is used to segment the space of 511	
orientation parameters, which are represented using axis-angle coordinates. A coarse initial 512	
sampling of the orientation space forms the first level of the tree, and each stage of branch and 513	
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bound subdivides and prunes branches in the tree until only the optimal pose remains to within a 514	
specified angular precision of 0.18°. A similar tree structure is used to segment and subdivide the 515	
2-D space of in-plane shifts for each image, resulting in a specified translational precision of 516	
0.04 pixels. Further details including the derived lower bound and approximations can be found 517	
in Supplementary Note 2.	518	
	519	
Program Settings	520	
	521	
Default cryoSPARC settings were used in all refinement experiments, and the number of classes 522	
was set in each ab initio reconstruction experiment. Symmetry was enforced in refinement 523	
experiments where noted, but not in ab initio reconstruction.  524	
 525	
 526	
  527	
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