
Supplementary Information for

cryoSPARC: Algorithms for rapid unsupervised

cryo-EM structure determination

Supplementary Note 1: Stochastic Gradient De-
scent (SGD)

SGD iteratively optimizes an objective function by computing approximate gra-
dients and taking steps in the parameter space according to those gradients. The
two key parts of SGD are thus computation of the approximate gradient and
determination of an appropriate parameter update step based on the gradient.

Objective function. In the case of cryo-EM structure determination for het-
erogeneous specimens, the optimization objective function is the log posterior
probability distribution over K 3-D densities, V = {Vi}i=1...K , given N particle
images {Xj}j=1...N ; i.e.,

arg max
V1,V2,...,VK

log p(V1, V2, . . . , VK |X1, X2, . . . , XN ) (1)

= arg max
V1,...,VK

log p(X1, . . . , XN |V1, . . . , VK) + log p(V1, . . . , VK) (2)

= arg max
V1,...,VK

N∑
i=1

log p(Xi|V) +

K∑
j=1

log p(Vj) (3)

≡ arg max
V

f(V)

Here p denotes probability density. The objective function f(V) is propor-
tional to the log posterior probability of the heterogeneous structures given
the observed images. This posterior probability is a marginal probability, with
marginalization taken over the unknown variables of 3-D orientation, 2-D shift
and class assignment for each image. Known parameters, including the CTF,
are omitted for notational clarity.

In Equation (2) the second term is a joint prior over the 3-D structures.
This prior can be set, for example, to restrict density to be strictly positive or
to penalize high-frequency noise in structures. In this work, the prior is assumed
to be independent over the structures, meaning that it factors into a separate
prior for each structure in Equation (3).
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The objective function in Equation (3) is expanded below to explicitly indi-
cate marginalization over parameters.

f(V) =

N∑
i=1

log p(Xi|V) +

K∑
j=1

log p(Vj)

where

p(Xi|V) =

K∑
j=1

πjp(Xi|Vj) ≡ Ui (4)

p(Xi|Vj) =

∫
p(Xi|φ, Vj)p(φ)dφ . (5)

Therefore,

f(V) =

N∑
i=1

log

 K∑
j=1

πj

∫
p(Xi|φ, Vj)p(φ)dφ

+

K∑
j=1

log p(Vj) (6)

Equation (4) gives the likelihood of observing a single image, Xi, given all the
3-D structures V, by marginalizing over the class assignment j. Mixing proba-
bilities are given by πj , and in this work they are assumed to be uniform over
classes, i.e., πj = K−1. Equation (5) gives the likelihood of observing a single
image from a single structure Vj , this time marginalizing over the unknown 3-D
orientation and 2-D shift, denoted together by pose φ. A prior over poses p(φ)
can be specified; in this work a uniform distribution is again used. The inte-
grand p(Xi|φ, Vj) is the probability of observing an image Xi from a particular
pose φ of a particular 3-D structure Vj , and is given by the microscope image
formation model (including CTF) and sensor noise characteristics, as in existing
likelihood-based methods [1, 2]. The specific form of p(Xi|φ, Vj) is given later
in Equation (10). Equation (6) is the expanded form of the objective function.

Gradient. SGD optimizes the objective function in Equation (6) by iteratively
updating the parameters V1, . . . , VK . These structures are represented as voxels
of density on 3-D grids.

The gradient of Equation (6) with respect to each structure Vk is computed
in order to take steps. This gradient is

∂f

∂Vk
=

N∑
i=1

1

Ui

∂Ui
∂Vk

+
∂

∂Vk
log p(Vk)

=

N∑
i=1

1

Ui
πk

∫
∂

∂Vk
p(Xi|φ, Vk) p(φ)dφ+

∂

∂Vk
log p(Vk) (7)

Here Ui is the likelihood of observing image Xi, defined in Equation (4). The
integrand in Equation (7) is the gradient of the cryo-EM image formation model
with respect to structure Vk [2].
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Approximate gradient. The sum giving the gradient in Equation (7) is over
all N single-particle images in the dataset. In SGD, the sum is approximated
using subsampling. At each iteration, SGD selects a subset of images, called
a minibatch, at random from the entire dataset, and uses only those images
to approximate Equation (7). The size M of a minibatch M can vary over
iterations. In this work the minibatch size is set automatically based on the
current resolution and the number of classes K. The approximate gradients are
given by

∂f

∂Vk
≈ Gk ≡

N

M

∑
i∈M

1

Ui
πk

∫
∂

∂Vk
p(Xi|φ, Vk) p(φ)dφ+

∂

∂Vk
log p(Vk) (8)

SGD update rule with momentum. The approximate gradient in Equa-
tion (8) points in a direction within the space of 3-D structures that will, in
expectation over random selections of minibatches, improve the objective func-
tion in Equation (6). Over many iterations, following these noisy directions
allows SGD to explore the space of 3-D structures. It is well known that in the
general case, optimization of non-convex objective functions like Equation (6)
is difficult and SGD only provides guarantees of local convergence [3]. Never-
theless, in practice we find that SGD performs well and finds the correct 3-D
structures.

SGD maintains a current estimate of each structure Vk, denoted by V
(n)
k at

the n-th iteration. The update applied at the previous iteration, dV
(n−1)
k is also

recorded. SGD computes the update at the current iteration, dV
(n)
k , by scaling

the current gradient G
(n)
k with a step-size ηk and combining this linearly with

the previous update in a ratio given by µ. This linear averaging is known as
momentum [4] and serves to smooth the noisy approximate gradient directions
in SGD.

dV
(n)
k = (µ)dV

(n−1)
k + (1− µ)(ηk)G

(n)
k

V
(n+1)
k = V

(n)
k + dV

(n)
k

Each structure Vk is updated using a different step-size ηk to allow classes with
different numbers of particles and with different geometries to change at different
rates over iterations. The momentum parameter µ is fixed at 0.9.

Step-sizes. In most gradient-descent algorithms, setting the step-size can of-
ten require tuning. Step-sizes that are too small yield slow convergence, while
step-sizes that are too large can cause divergence of the algorithm. SGD gener-
ally has a similar property, but analysis of a particular optimization problem can
yield methods for automatically setting the step-sizes ηk to appropriate values.

In this work the step-sizes are set using an approximation of the second-
order curvature of the objective function f(V). Generally f(V) is non-convex,
multi-modal, but smooth and differentiable. It is possible in principle to com-
pute the direct Hessian (matrix of second derivatives), but this matrix would be
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excessively large and slow to compute. Instead, two approximations are used.
First, the Hessian in Fourier space is assumed to be diagonal. This approxi-
mation is reasonable due to the Fourier-slice theorem, and is used extensively
in maximum-likelihood approaches for cryo-EM refinement [1], although not
explicitly stated. Second, rather than computing the true second derivatives,
a surrogate objective function f̃(V) is constructed that is a convex quadratic
lower bound on the true objective function, and the second derivatives of this
surrogate are computed instead. This construction is identical to the one used
to derive the maximization step of the Expectation-Maximization algorithm [5].
The two approximations allow the rapid computation of an approximate Hes-
sian for f(V) that gives diagonal Fourier space curvature information about
the objective function. The maximum curvature over all dimensions in Fourier
space is used directly as the inverse step-size for each structure. Computation of
the approximate Hessian is carried out over the selected minibatch in each iter-
ation, and re-uses most of the computation required for computing the gradient,
leading to further efficiencies.

Concretely, the inverse step-size for each structure is given by

1

ηk
=

∥∥∥∥∥∑
i∈M

πk

∫
p(φ|Xi, Vk)P>φ

C2
i

σ2
dφ

∥∥∥∥∥
∞

(9)

Here P is the projection operator for pose φ, Ci are the CTF values for image
i, and σ2 are the noise variances. The term inside the infinity norm is a vector
containing the diagonal values of the approximate Hessian, and the infinity norm
is equivalent to selecting the maximum element.

Minibatch sizes. The SGD algorithm is generally quite robust to the setting
of minibatch size, and in fact, the proofs of convergence of the SGD algorithm
[3] are valid for a minibatch size as small as a single data point. In practice, how-
ever, it becomes computationally expensive to use excessively small minibatch
sizes, as the full cost of updating the model with a new step is incurred for every
minibatch, regardless of the minibatch size used. In this work, the minibatch
size is set to 30×K initially, and changed to 100×K once the resolution being
considered exceeds 20 Å.

Noise model. In the SGD algorithm, the objective function involves marginal-
izing over poses and class assignments. This marginalization is sensitive to the
choice of noise model used in the image formation model. In most cryo-EM re-
finement algorithms, the noise model is understood to represent the shot noise
and the readout noise of the microscope camera. In ab initio reconstruction, it
is critical that the noise model also include model error. Model error refers to
the distance between the current estimate of the 3-D structure and the true 3-D
structure. Upon random initialization of SGD, this distance can be large. The
noise model must therefore be initialized with a large variance, to account for
image noise plus model error.
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In this work, the variance of the image noise is gradually estimated from the
data during reconstruction. Specifically, the noise at frequency ` at iteration k
is set to

σ2
`,k =

w`,kσ̄
2
`,k + w̃σ̃2 + ŵkσ̂

2

w`,k + w̃ + ŵk

where w`,k =
∑k
i=1 γ

k−iMiC
2
`,i, Mi is the batch size at iteration i, and σ̄2

`,k =∑k
i=1 γ

k−iMie
2
`,i, with e2`,i the average reconstruction error of frequency ` during

iteration i and C2
`,i the average squared CTF of frequency ` at iteration i.

This corresponds to an augmented approximate maximum a posterior (MAP)
estimate of the variance based on decaying running averages with decay rate
γ = 0.9999 and prior weight w̃ = 50 and σ̃2 is the initial white noise variance
estimated from the corners of the particle images. To ensure that the objective
function is relatively smooth initially an inflated initial noise prior is included
with weight ŵk = 2500γk and variance σ̂2 = 8σ̃2. This inflated noise model
accounts for the initial error in the 3-D model and decays over time until it
effectively has no influence. This process causes the noise model to gradually
decrease in variance from a high initial value to a final value that is roughly
equal to a MAP estimate of the image noise once the 3-D map has converged.

Random initialization. SGD is able to converge to correct structures from
arbitrary randomly generated initializations containing no prior structural knowl-
edge or user expertise. In this work the initializations are generated by selecting
a small random subset of images from the dataset (typically 10 images), assign-
ing them randomly generated pose angles, and using them to reconstruct a 3-D
volume. This process creates a 3-D map with random structure, but approx-
imately correct overall scale and spatial extent. This structure is fed directly
into SGD.

Supplementary Note 2: Branch and Bound Search

SGD is able to compute ab initio structures to medium resolution (approx. 10
Å). Once SGD has converged, the Expectation-Maximization algorithm (also
known as iterative refinement) is used to refine the resulting structures to high
resolution. The computationally expensive part of iterative refinement is the
expectation step, in which each 2-D image is aligned over 3-D orientations and 2-
D translations to the current estimate of each 3-D structure. In cryoSPARC this
search problem is solved efficiently using a branch and bound search technique.
In general, branch and bound search involves repeatedly computing a lower
bound and an upper bound on the search criterion of interest. It then uses
these bounds to exclude regions of search space from further search at each
repetition.

Image alignment problem setup. The problem of image alignment is to
find the optimal pose φ (3-D orientation and 2-D translation) that aligns a given
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image Xi with a structure Vk. The fit between Xi and a projection of Vk from
pose φ is given by the probability of having observed Xi at pose φ, so the task
reduces to maximizing this probability. For mathematical and computational
convenience, the task is equivalently rewritten as the minimization of the neg-
ative log probability. Negative log probability is a measure of image alignment
error, and is a function of the pose of the particle in image Xi.

In this section, the pose variable φ is broken into two parts, with r denoting
the 3-D orientation of the particle, and t denoting the 2-D translation of the
particle within the particle image. The following describes image alignment for
a single image X and a single structure V , so subscripts i and k are omitted for
notational clarity.

As is common in the literature, the probability of observing an image from
a particular pose is given in the Fourier domain as follows:

p(X|φ, V ) = p(X|r, t, V ) =
1

Z
exp

(∑
`

−1

2σ2
`

|C`Y`(r)− S`(t)X`|2
)

(10)

where
Y`(r) = Θ`(r)V .

Here, with the image X (2-D) and model V (3-D) represented in Fourier
space, the log likelihood involves a sum over Fourier coefficients `. Accordingly,
Y`(r) denotes the projection of model V according to pose r, at frequency `.
Poses can be parameterized in any suitable fashion, but in this work the axis-
angle formulation is used. The subscript ` denotes a two-component index of
a particular Fourier coefficient, also known as a wavevector. The sum over ` is
shorthand for summing over all wavevectors in 2-D (i.e., the Fourier domain of
the image). C denotes the contrast transfer function (CTF) of the microscope,
and Θ`(r) is a linear projection operator, corresponding to the slice operator
in Fourier space, with pose r, for wavevector `. S denotes the 2-D phase shift
corresponding to a 2-D translation of t pixels. The normalizing constant Z can
be ignored because it does not depend on the unknown pose r, t. The noise
parameter σ` represents the level of Gaussian noise expected at each frequency,
with a possibly different variance for each Fourier coefficient (allowing for white
or colored noise models). For notational clarity in what follows we assume a
white noise model with σ` = σ = 1 but the general case with colored noise is a
simple extension. In practice and in the results presented, a colored noise model
is used, with σ` estimated from the data.

Taking the negative log of Equation (10) gives the image alignment error (the
negative log likelihood), which is the squared error in the Fourier coefficients:

E(r, t) =
∑
`

1

2
|C`Y`(r)− S`(t)X`|2 (11)

The aim of image alignment is to find r and t that minimize this function for
the given image X and model V .
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Intuition behind a lower bound. The core challenge in employing a
branch and bound method for cryo-EM is to derive a lower bound that is inex-
pensive to evaluate but informative about the image alignment error function
E(r, t). Constructing a useful lower bound requires insight into the characteris-
tics of E(r, t).

The following derivation starts from a simple, well-known intuition: if an
image aligns poorly to a structure at low resolution, it will not align well at
high resolution. This property means that if we evaluate the likelihood of an
image across poses using only low-resolution Fourier coefficients, the resulting
values should give us some knowledge about which regions of pose space are
worth pursuing at high resolution.

To make this intuition concrete and move towards a bound on E, note that
the negative log-likelihood in Equation (11) is a sum of squared error terms.
As a consequence, each Fourier coefficient contributes independently with equal
weight (assuming white noise) to the total squared error E. Critically, the
contribution of each coefficient is related to how much power there is in that
Fourier coefficient. If a Fourier coefficient in the model V with wavevector `
has no power, that coefficient will only contribute a term equal to 1

2 |X`|2 to E,
and that term does not depend on the pose (r, t) and thus does not need to be
considered during search. The bound developed in this work exploits the fact
that a Fourier coefficient in the model that has non-zero but small power also
gives a small and limited possible pose-dependent contribution to E.

The intuition above indicates that if Fourier coefficients of the model at
higher resolutions have limited power, there is a limit to how much they can
impact the squared error E. If the low-frequency coefficients already have a
given error at a particular pose, the high-frequency coefficients cannot make
this error much better or worse. In this work, inexpensive evaluations of the
squared error at low resolutions are used to bound true values of E, allowing
branch and bound to eliminate search regions without computing the sum in
Equation (11) entirely.

Derivation of a lower bound. To derive a lower bound, which is always
less than E, we first split E into two parts, denoted A and B, as follows:

E(r, t) =
∑
‖`‖≤L

1

2
|C`Y`(r)− S`(t)X`|2︸ ︷︷ ︸
≡A(r,t)

+
∑
‖`‖>L

1

2
|C`Y`(r)− S`(t)X`|2︸ ︷︷ ︸
≡B(r,t)

(12)

Here, A is the squared error of Fourier coefficients at or below a certain radius
L in Fourier space, and B is the squared error of coefficients above that radius.
The derivation that follows is general and valid for any radius L. In the branch
and bound algorithm, L is initialized as a small value, and then increased with
each iteration until reaching the Nyquist frequency. The schedule for increasing
L is discussed in a subsequent section.

In order to bound E, we compute A directly, which is inexpensive when L
is small. We then bound B from below. To derive that bound, it is convenient
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to further split B into three parts:

B(r, t) =
∑
‖`‖>L

1

2
|C`Y`(r)− S`(t)X`|2

=
∑
‖`‖>L

1

2
|X`|2︸ ︷︷ ︸

≡B1

+
∑
‖`‖>L

1

2
C2
` |Y`(r)|2︸ ︷︷ ︸

≡B2

−
∑
‖`‖>L

C`<(Y`(r)
∗S`(t)X`)︸ ︷︷ ︸

≡B3

, (13)

where <(z) denotes the real part of a complex-valued z. Here, the fact that
|S`(t)| = 1 and the fact that the CTF is real-valued are used, and ∗ denotes
complex conjugation. The first term, B1, is the total power of the image at high
frequencies, and does not depend on r, t. The second term B2 is the total power
at high frequencies of a slice of the model from pose r. B2 does not depend on
t. The third term B3 is the correlation between the shifted image X and the
slice of the 3-D model in the Fourier domain.

First consider B3; an upper bound on B3 contributes to a lower bound on B.
The cryo-EM image formation model states that the observed image X is the
true signal X̃ modulated by the CTF, plus independent identically-distributed
noise in Fourier space:

X` = C`X̃` + ε` (14)

where ε` ∼ CN
(

0,
1

2

)
Here, each ε` is a complex normal random variable. The variance is 1

2 in the
white noise case due to the real-valued white noise signal. In the case of colored
noise it would be σ2

`/2.
Inserting Equation (14) into B3 yields

B3 =
∑
‖`‖>L

C2
`<(Y`(r)

∗S`(t)X̃`) +
∑
‖`‖>L

C`<(Y`(r)
∗S`(t)ε`)︸ ︷︷ ︸

≡H

=
∑
‖`‖>L

C2
`<(Y`(r)

∗S`(t)X̃`) +H

≤
∑
‖`‖>L

C2
` |Y`(r)| |X̃`|+H (15)

Here the triangle inequality has been used, and H is a random variable corre-
sponding to the correlation between the model slice Y (r) and the random noise
ε. H captures the expectation of the effect of noise on E. H can be simplified
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as follows:

H =
∑
‖`‖>L

C`<(Y`(r)
∗S`(t)ε`)

=
∑
‖`‖>L

C`<(Y`(r)
∗ε`)

=
∑
‖`‖>L

C`<
(
Y`(r)

∗CN
(

0,
1

2

))

=
∑
‖`‖>L

C`<
(
CN

(
0,

1

2
|Y`(r)|2

))

=
∑
‖`‖>L

N
(

0,
1

2
C2
` |Y`(r)|2

)

= N

0,
∑
‖`‖>L

1

2
C2
` |Y`(r)|2


The first line above uses the fact that the noise variables ε` are uniform over
phase, and so their distribution is invariant to the phase shift of S`(t). The final
line shows that H, the contribution to B3 from noise in the image, is normally
distributed with variance

σ2
H =

∑
‖`‖>L

1

2
C2
` |Y`(r)|2 (16)

Returning to B2 and B3 and incorporating Equation (15):

B2 −B3 =
∑
‖`‖>L

1

2
C2
` |Y`(r)|2 −

∑
‖`‖>L

C`<(Y`(r)
∗S`(t)X`)

≥
∑
‖`‖>L

1

2
C2
` |Y`(r)|2 −

∑
‖`‖>L

C2
` |Y`(r)||X̃`| −H

=
∑
‖`‖>L

1

2

(
C2
` |Y`(r)|2 − 2C2

` |Y`(r)||X̃`|
)

︸ ︷︷ ︸
≡Q

−H (17)

Each term of Q is a positive-definite quadratic function of Y`(r). Therefore
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Q can be bounded from below:

Q ≥ min
Y`(r)

Q

= min
Y`(r)

∑
‖`‖>L

1

2

(
C2
` |Y`(r)|2 − 2C2

` |Y`(r)||X̃`|
)

attained at Y`(r) = X̃`

=
∑
‖`‖>L

−1

2
C2
` |X̃`|2 . (18)

Here, the minimum of Q is found by taking derivatives of Q with respect to
Y`(r) and setting them equal to zero. Unfortunately, Equation (18) cannot be
computed directly because the true signal X̃ is unknown. The image formation
model in Equation (14) is now employed again, along with an assumption that
in the image, the signal X̃ is actually a projection (i.e., a slice in Fourier space)
of the model V from the unknown true pose r∗:

X̃` = Y`(r
∗)

and therefore

Q ≥
∑
‖`‖>L

−1

2
C2
` |Y`(r∗)|2 .

The true pose r∗ is still unknown, but r∗ must be one of the poses in the
entire space of poses. Therefore, Q can again be bounded from below:

Q ≥
∑
‖`‖>L

−1

2
C2
` |Y`(r∗)|2

≥min
r

∑
‖`‖>L

−1

2
C2
` |Y`(r)|2

=−max
r

∑
‖`‖>L

1

2
C2
` |Y`(r)|2 , (19)

which is attained at
r = r̂, with Ŷ` ≡ Y`(r̂) . (20)

As a consequence, it follows that

Q ≥ −
∑
‖`‖>L

1

2
C2
` |Ŷ`|2 ≡ Q̂ (21)

Here, Ŷ is the slice of model V that has the maximum CTF-modulated total
power, as given by Equation (19). Finding this slice is simple, because it does
not depend on the image X or shift t. Once Ŷ (and the corresponding pose r̂)
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is identified, the bound Q̂ on Q is fixed. Inserting Equation (21) into Equation
(17) and inserting the result into Equation (13) finally yields a lower bound on
B(r, t):

B(r, t) ≥
∑
‖`‖>L

1

2
|X`|2 −

∑
‖`‖>L

1

2
C2
` |Ŷ`|2 −H

Inserting the above bound on B(r, t) into Equation (12) yields a lower bound
on E(r, t):

E(r, t) ≥
∑
‖`‖≤L

1

2
|C`Y`(r)− S`(t)X`|2 +

∑
‖`‖>L

1

2
|X`|2 −

∑
‖`‖>L

1

2
C2
` |Ŷ`|2 −H

Due to the presence of H, the above expression is a probabilistic bound on
E, giving the probability of E being greater than the value of the expression. In
practice, a probability of 0.999936, corresponding to four standard deviations
of H, provides a threshold that serves as an upper bound on H, and hence a
deterministic lower bound for E above. That is,

H ≤ 4σH (with probability 0.999936)

= 4

√√√√ ∑
‖`‖>L

1

2
C2
` |Y`(r)|2

≤ 4 max
r

√√√√ ∑
‖`‖>L

1

2
C2
` |Y`(r)|2

= 4

√√√√max
r

∑
‖`‖>L

1

2
C2
` |Y`(r)|2

from which it follows that

H ≤ 4

√√√√ ∑
‖`‖>L

1

2
C2
` |Ŷ`|2 .

Here, the maximum power slice Ŷ from Equation (19) is used. Incorporating
the above expression finally yields a complete lower bound on E(r, t):

E(r, t) ≥
∑
‖`‖≤L

1

2
|C`Y`(r)− S`(t)X`|2 +

∑
‖`‖>L

1

2
|X`|2

−
∑
‖`‖>L

1

2
C2
` |Ŷ`|2 − 4

√√√√ ∑
‖`‖>L

1

2
C2
` |Ŷ`|2

≡βL(r, t) (22)
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Equation (22), with very high probability, bounds E(r, t) from below. The
bound is inexpensive to compute for a particular r, t (since only A(r, t) depends
on these). The remainder only needs to be computed once for all r, t, and also
only once for all images that share the same CTF (i.e., that come from the same
micrograph). To compute the bound, the slice of the model that has the most
power (Ŷ ) is first found. Then the expression for βL(r, t) is used to compute
values of the lower bound.

The bound above is actually a family of bounds, one for each radius L. As L
is increased and a greater number of Fourier coefficients are included in A(r, t)
rather than B(r, t), the bound becomes more expensive but tighter. Finally,
when L reaches the Nyquist rate then the bound becomes exact, but is as
expensive as directly computing E(r, t).

Subdivision scheme. The branch and bound algorithm relies on a method
for representing regions in the space of 3-D poses and 2-D shifts so that when the
bound above is computed, it can be used to discard regions and the remaining
candidate poses are recorded in an organized fashion.

To accomplish this goal, this work uses a cartesian grid in the axis-angle
representation of 3-D pose, and a second cartesian grid in the 2-D space of pixel
shifts. These grids can be subdivided by a factor of two in each dimension,
meaning that each subdivision increases the number of gridpoints in the pose
space by a factor of eight, and a factor of four in the space of shifts.

In the first iteration of branch and bound image alignment, the pose and
shift grids are initialized at a spacing of approximately 24 degrees and 5 pixels
respectively. Seven iterations of branch and bound are used, each one subdi-
viding the grids, yielding a final precision of 0.18 degrees and 0.04 pixels. The
first iteration uses a radius of L = 12 Fourier coefficients. Each subsequent
iteration uses double the radius in Fourier space, up to a maximum radius that
is determined from the current resolution of the 3-D map.

Approximations. The lower bound derived above provides large speed im-
provements for the alignment of most images in a dataset. Some images, how-
ever, are pathological. Consider the case of an image that is an outlier, con-
taining a non-particle or only noise. In this case the assumptions of the lower
bound are violated as the image does not come from the standard cryo-EM
image formation model. In this case the lower bound and branch-and-bound
search process will still be valid, but will have nearly equally poor image align-
ment at many poses. Thus the bound will not be able to reject large portions
of the pose space, as even the best pose will have high error.

In these cases, the branch and bound approach can be almost as slow as
exhaustive search over all poses. To guard against this case, in this work an
upper limit is set on the number of candidate poses (on the current discrete grid)
that can remain after each iteration of branch and bound search. This limit is
set to 12.5% of 3-D orientations, and 25% of 2-D image shifts. Empirically we
find these limits do not have any negative effect on 3-D refinement resolution,
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as they only significantly affect non-particle images, which do not contribute
useful signal.

The bound βL(r, t) depends on the CTF of the image that is being aligned.
Therefore the components of the bound must be recomputed for each micro-
graph. Instead, in cryoSPARC we approximate the magnitude of the oscillating
CTF at high resolutions (i.e., above L) using the root mean squared value of
the CTF, which is a constant 1√

2
. This approximation does not generally make

the bound tighter, but it removes the dependence on the CTF so that the last
three terms of the bound only needs to be computed once for all images, given
the structure V .

Finally, it is assumed that the lower bound is sufficiently smooth that it does
not need to be sampled at full resolution, which would require a prohibitively
large number of poses to be evaluated even with small values of L. Consequently,
the subdivision scheme uses an empirically set initial sampling of poses. For-
malizing the spacing of these poses based on the continuity of βL(r, t) remains
a direction for future work.
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