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David J. Fleet

Abstract This chapter provides an introduction to models of human pose and mo-
tion for use in 3D human pose tracking. We concentrate on probabilistic latent vari-
able models of kinematics, most of which are learned from motion capture data,
and on recent physics-based models. We briefly discuss important open problems
and future research challenges.

1 Introduction

Prior information about human pose and motion has been essential for resolving
ambiguities in video-based pose estimation and tracking. Motion estimation may
be relatively straightforward if one is given several cameras and a constrained set-
ting with minimal occlusion (e.g., [8, 18, 30]), but the general monocular problem
remains difficult without prior information. A prior model biases pose estimation
toward plausible poses when pose might otherwise be under-constrained, or when
measurements might be noisy, or missing due to occlusion. A good prior model
should be sufficiently general to admit all (or most) plausible motions of the human
body, but also strong enough to resolve ambiguities and alleviate the inherent chal-
lenges imposed by the high-dimensional estimation task. Finding the right balance
between these competing goals is difficult. Most successful recent techniques for
monocular pose tracking have focused on the use of strong, activity-specific prior
models learned from human motion capture data.

This chapter provides a tutorial introduction to models of human pose and motion
for video-based people tracking. We adopt a probabilistic framework, as it is perhaps
the most straightforward and well-understood calculus for coping with uncertainty
and fusing noisy sources of information. We first outline the basic probabilistic for-
mulation, and then introduce the principal types of motion models.
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1.1 Human Pose Tracking

From a single camera it is hard to escape depth-scale ambiguities, missing obser-
vations of body parts due to occlusion, and reflection ambiguities where different
3D poses produce similar images. Because of these sources of uncertainty, it has
become common to formulate human pose tracking as a Bayesian filtering problem.
As such, the goal is to approximate the posterior probability distribution over human
poses or motions, given the image measurements (or observations).

Formally, let xt denote the state of the body at time t. It represents the unknown
parameters of the model we wish to estimate. In our case, the state typically com-
prises the joint angles of the body along with the position and orientation of the body
in world coordinates. Different parametrizations of the joint angles are discussed in
Chapter ??, Section ??. Tracking is formulated in terms of the posterior probability
distribution over state sequences, x1:t ≡ (x1, . . . ,xt), given the observation history,
z1:t ≡ (z1, . . . ,zt); i.e.,

p(x1:t |z1:t) =
p(z1:t |x1:t)p(x1:t)

p(z1:t)
. (1)

Here, the two key factors are p(x1:t), the prior motion model, and p(z1:t |x1:t), the
likelihood model. The likelihood is the probability of observing the image measure-
ments given a state sequence. In effect the likelihood provides a measure of the
consistency between a hypothetical motion and the given image observations. The
observations might simply be the image at time t, or they might be a collection of
image measurements at time t (e.g., image edge locations or optical flow). The de-
nominator in (1), p(z1:t), does not depend on the state sequence, and can therefore
be treated as an unknown constant for the purposes of this chapter.

Inference is the process of computing (or approximating) the posterior distribu-
tion (1), or estimating the most probable motion (i.e., the maximum a posteriori
(MAP) estimate). This is intractable for most pose tracking problems of interest.
Even approximating p(x1:t |z1:t) is difficult because of the high dimensionality of
the motion x1:t , and the observation sequence z1:t . For these reasons it is common
to simplify the model, and therefore the computations required for inference.

One way to simplify inference is to assume that the observations are independent
given the states. In other words, one assumes that the joint likelihood can be written
as a product of simpler likelihoods, one for each time step:

p(z1:t |x1:t) =
t

∏
i=1

p(zi |xi) . (2)

For good generative models, which account for observations up to additive white
noise, this is a reasonable assumption. But in many cases it is more a matter of
convenience because it allows for more efficient inference, and the specification of
the likelihood is typically more straightforward. Common measurement models and
likelihood functions are discussed in Chapter ??.
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Given the conditional independence of the observations, we can express the pos-
terior distribution at time t in terms of the likelihood at time t, the motion model,
and the posterior at time t−1:

p(x1:t |z1:t) ∝ p(zt |xt) p(xt |x1:t−1) p(x1:t−1 |z1:t−1) . (3)

One can further simplify (3) by modeling motion as a first-order Markov process:

p(xt |x1:t−1) = p(xt |xt−1) . (4)

While this is not strictly necessary, it greatly simplifies the formulation of motion
models and inference process. In particular, it means that the posterior can be ex-
pressed recursively, where all past history of any significance is represented entirely
within the posterior distribution at the previous time step.

Nevertheless, the number of unknowns in x1:t grows linearly with the number of
time steps, so for long sequences the posterior in (3) is difficult to compute. The size
of the covariance matrix, for example, is quadratic in the dimension of x1:t . Another
way to simplify inference is to focus solely on the state at the current time. This
marginal posterior distribution, called the filtering distribution, is given by:

p(xt |z1:t) =
∫

x1:t−1

p(x1:t |z1:t)

∝ p(zt |xt)
∫

xt−1

p(xt |xt−1) p(xt−1 |z1:t−1) . (5)

Two main factors comprise the filtering distribution, namely, the likelihood, p(zt |xt),
and the prediction distribution, p(xt |z1:t−1), given by the integral in (5). The recur-
sive form of the filtering distribution leads to well-known, online inference meth-
ods. The simplest such method, suitable for linear-Gaussian observation and mo-
tion models, is the well-known Kalman filter(e.g., [43, 74, 80]). Unfortunately the
Kalman Filter is not suitable for human pose tracking where the dynamics are usu-
ally nonlinear and likelihood functions are usually non-Gaussian and multi-modal.

A natural alternative for inference with non-Gaussian, multi-modal posterior dis-
tributions is the particle filter (a.k.a. sequential Monte Carlo methods [13, 19, 31]).
Such methods approximate the filtering distribution with a weighted set of state sam-
ples, and then uses sample statistics to approximate expectation under the posterior
or filtering distribution. They were first applied to visual tracking with the CON-
DENSATION algorithm [29]. They have since been used extensively for monocular
tracking of 3D human pose with various likelihood functions and prior motion mod-
els (e.g., [6, 11, 26, 27, 38, 40, 50, 57, 60, 61, 64]). For a more detailed discussion
of sequential Monte Carlo methods, see the review article by Doucet et al.[13].

Finally, tracking typically requires a good initial guess for the pose in the first
frame to initialize inference. Initial guesses are also useful to facilitate recovery
from tracking failures. Methods for detecting people (see Chapter ??), and discrim-
inative methods for single-frame 3D pose estimation (see Chapter ??) provide nat-
ural mechanisms to address these problems.
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2 Kinematic Joint Limits and Smooth Motion

The kinematic structure of the human body permits a limited range of motion in each
joint. Knees and elbows, for example, should not be hyper-extended under normal
circumstances, and the torso cannot tilt or twist arbitrarily. One central role of a
prior model is to ensure that the poses estimated from an image or image sequence
will satisfy such biomechanical limits. While joint limits are often enforced using
thresholds, imposed independently on each rotational DOF, the true nature of joint
limits in the human body is more complex. In particular, joint limits are dynamic
and dependent on the state of other joints [22]. Fortunately, depending on the joint
parameterization, many joint constraints can be specified as linear inequalities. This
is sometimes useful since, when combined with linear or quadratic objective criteria,
one obtains a linear or quadratic programming problem (e.g., see [10]).

While further research on joints limits is needed to understand general limits and
individual variability, it appears clear that joint limits by themselves do not encode
sufficient prior knowledge to facilitate tractable and robust inference of pose from
monocular video (e.g., [57]). Rather, we require some form of density model that
captures the plausibility of feasible poses and motions under typical circumstances.

Perhaps the simplest prior model of human motion is a smooth, low-order
Markov process (e.g., [21, 48, 57, 74]). A common first-order model specifies that
the pose y at time t+1 is equal to the pose at time t, up to additive Gaussian noise:

yt+1 = yt +η . (6)

The process noise η is usually assumed to be mean-zero, with covariance Λ , i.e.,
η ∼N (0,Λ). It follows that the conditional density of yt+1 is yt+1|yt ∼N (yt ,Λ).
Equivalently, it follows that p(yt+1|yt) =G(yt+1; yt ,Σ) where G(y; µ,Λ) is a Gaus-
sian function, parameterized by its mean µ and covariance Λ , evaluated at y.
Second-order models exploit velocity for future predictions. That is, one can ex-
press yt+1 in terms of yt and yt−1, often with a damping constant 0 < κ < 1; e.g.,

yt+1 = yt +κ(yt −yt−1)+η . (7)

Damping helps control divergence when predictions occur over multiple time steps.
Equations (6) and (7) are linear models, the general form of which, i.e.,

yt+1 =
L

∑
τ=1

Aτ yt−τ+1 +η , (8)

is an Lth-order linear-Gaussian dynamical system (LDS). In most cases, the param-
eters of the transition model are set manually. For instance, one can set the matrices
Aτ to be diagonal, as in (6) and (7), and then assume a diagonal covariance matrix,
Λ , that is fixed or increases in proportion to ||yt−yt−1||2 [11].

One can also learn dynamical models from motion capture data (e.g., [44]). In
this way one can capture the coupling between different joints. But LDS learning
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often suffers from over-fitting with high-dimensional state spaces. This is because
the number of parameters in the transition matrices An is quadratic in the state di-
mension. Large data sets are usually necessary.

The main attraction with smooth LDS priors is their generality. They can be ap-
plied to a wide diversity of motions, which is useful when the activity is not known
a priori. Nevertheless, LDS models are sometimes problematic since they are of-
ten too weak to adequately constrain people tracking. This is especially problematic
with monocular videos where the image evidence is often weak. In constrained set-
tings, where observations from three or more cameras are available, and occlusions
are limited, such models have been shown to achieve satisfactory performance [11].

3 Linear Kinematic Models

When one knows or has inferred the type of motion being tracked (e.g., see Chapter
?? on activity recognition), or the identity of the person performing the motion,
one can apply prior models that are specific to the activity and/or the subject. The
common approach is to learn models off-line (prior to tracking) from motion capture
data. Typically one wants a low-dimensional latent parameterization of the pose, and
a dynamical model that captures typical pose sequences (i.e., motions).

To introduce the idea, consider a dataset D = {y(i)}i=1...N comprising N poses
y(i) ∈ RD, e.g., from a motion capture acquisition system. Each training pose com-
prises the angles of each joint degree of freedom, and relevant aspects of global
orientation and position with respect to the world coordinate frame.1 Many activ-
ities of interest, like walking, exhibit strong regularities when repeated by the one
or several people. As a result, one can posit that the data lie on or near some low-
dimensional manifold in the (high-dimensional) pose space.

Principle Component Analysis (PCA) can be used to approximate poses in a
low-dimensional subspace, using the sum of a mean pose, µD = 1

N ∑
N
i=1 y(i), and a

linear combination of basis vectors. For a data matrix A, the i th column of which
is y(i)−µD , the singular value decomposition (SVD) factorizes A into orthogonal
matrices U and V, with U≡ [u1, ...,uD], and a diagonal matrix S containing singular
values arranged in non-increasing order, such that A = USVT . Choosing the first B
singular vectors {u j} j=1...B (a.k.a., the eigen-poses), a pose is approximated by

y ≈ µD +
B

∑
j=1

x j u j (9)

where x j are scalar coefficients and B� D controls the fraction of the variance
in A accounted for by the subspace approximation. As such, the estimation of the
pose can be replaced by the estimation of the coefficients x≡ [x1, ...,xB]. Since B is

1 Global position and orientation with respect to the world coordinate frame are somewhat arbi-
trary, and often excluded. Global orientation with respect to gravity, height above the ground, and
the change in position with respect to the body-centric coordinate frame should be included.
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typically much smaller than the dimensionality of the pose space D, pose estimation
is greatly simplified.

In addition to the subspace pose model we need a dynamical model to capture the
temporal evolution of pose. Perhaps the simplest such model is a LDS, like those in
Section 2, but applied to the subspace parameters c rather than directly to the pose.
The combination of a linear subspace projection (PCA) and a subspace LDS has
been widely studied (e.g., see [71]); in computer vision it is often referred to as a
Dynamic Texture [12]. Most such models assume a first-order LDS, but higher-order
models are sometimes useful [28]. The key advantage of the subspace dynamical
model over the LDS model in (8) is the fact that the number of parameters in the
transition matrices is quadratic in the dimension of the subspace rather than the
dimension of the pose observations. Unfortunately, subspace LDS models do not
capture nonlinearities that are common in many motions.

3.1 Motion PCA: Evolving Pose Subspace

Although modeling pose trajectories within a latent pose space can be difficult, mod-
eling the motion directly is sometimes effective. That is, one can learn a linear,
activity-specific kinematic model of the entire pose trajectory directly, rather than
as a sequence of poses within a pose space. Originally formulated by Sidenbladh et
al. [57], this approach has been used successfully in several ways [59, 66, 69].

As above, assume that each pose vector, y ∈ RD, comprises joint angles and
global DOFs. Writing the pose at time t as yt , we can express a motion as a vector
comprising all joint angles throughout the entire sequence of M poses; i.e.,

m = (yT
1 , · · · , yT

M )T . (10)

A training corpus typically involves multiple people performing the same activ-
ity multiple times. Because training motions occur at different speeds, or might be
sampled at different rates, the first step of learning a model is to align and resample
the training motions. For periodic sequences (e.g., walking) one can use the funda-
mental frequency to determine the period (the duration of one cycle), and the phase
needed for alignment. For non-periodic motions one can also manually segment and
align the motions, or use some form of dynamic time warping (e.g., see [46, 69]).2

The canonical motion is then represented as a sequence of M (interpolated) poses,
indexed by phase, φn ∈ (0,1], where φn =

n
M and 0 ≤ n < M. Each training motion

is a real-valued vector of length D×M.
Given a collection of training motions, D = {m(i)}N

i=1, one can use PCA to form
a subspace model. In this way a motion is expressed as a linear combination of a
mean motion µ and a set of eigen-motions{b j}B

j=1 :

2 Because the data are joint angles, interpolation is normally accomplished using quaternion spher-
ical interpolation [56]. Naturally, the temporal sampling rate must be sufficiently high that one can
interpolate the pose signal with reasonable accuracy.
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Fig. 1 Projections of training data onto the first two principal directions for a walk model (left),
a run model (middle), and a model learned from walking and running data (right). Walking data
comprised 4 mocap samples for each of 4 subjects (color coded) walking at 9 speeds varying from
3 to 7km/h. Running data were from the same subjects at 7 speeds ranging from 6 to 12km/h. Solid
curves separating clusters are drawn for purposes of visualization. (Adapted from [69])

m ≈ µ +
B

∑
j=1

x j b j . (11)

The scalar coefficients, x = (x1, ...xB)
T , characterize a particular motion. One typi-

cally chooses B so that a significant fraction (e.g., 90%) of the empirical data vari-
ance is captured by the subspace projection. A pose is then defined to be a function
of x, the subspace coefficients, and the phase, φ ; i.e.,

y(c,φ) ≈ µ(φ) +
B

∑
j=1

x j b j(φ) . (12)

Here, b j denotes an eigen-motion, and b j(φ) is an eigen-pose at phase φ . Similarly,
µ(φ) is the mean pose at phase φ . In effect, the motion subspace yields a pose
subspace that evolves as a function of φ . Nonlinearities in the evolution of the pose
subspace are encoded implicitly in the eigen-motions.

With this model Sidenbladh et al. [57] formulated tracking as the estimation of
global position, the speed of motion, the phase φ , and the subspace coefficients x
at each frame. A particle filter was used for inference, to cope with transient pose
ambiguities. Urtasun et al. [69] showed that motion-based PCA provides a con-
vex model for many motions of interest such as walking and jogging (see Figure
1). That is, random draws from the underlying Gaussian model over the subspace
coefficients produces plausible poses and motions. They also found that walks of
different speeds for the same subject were tightly clustered in the subspace. This
enabled motion-based recognition [69]. Troje [66] showed that this representation
of walking facilitates the inference of other meaningful attributes, including gender
and aspects of mental state. Sigal et al. [59] has since extended this to the infer-
ence of human attributes from video-based 3D pose data. But it is not clear how this
representation can be extended to deal with different activities. Indeed, Urtasun et
al. [69] showed that random samples drawn from a simple model learned from run-
ning and walking motions are not always plausible motions; i.e., a Gaussian density
function is not an adequate prior over multiple activities within a single subspace.
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4 Nonlinear Kinematic Models

A periodic motion like walking follows a 1D cyclic trajectory in the high-dimensional
pose space. Thus, while (linear) subspace models often require many dimensions
to adequately span the empirical pose data, the underlying dimensionality of the
motions may actually be significantly lower. One could, for example, parameterize
position along a periodic pose trajectory with a 1D model. Allowing for variability,
from cycle to cycle, or from person to person, one might posit that the poses lie
on or near a low-dimensional, nonlinear manifold. The goal of a low-dimensional
latent model is to parameterize the structure of the manifold. With nonlinear models
one might be able to find more effective low-dimensional parameterizations than
one might find with linear models.

The earliest nonlinear models used embedding methods for nonlinear dimension-
ality reduction (e.g., [54]). Such methods provide low-dimensional latent positions
for each training pose, but they do not provide a closed-form function that maps
new poses to latent positions (often called out-of-sample extensions). Accordingly,
methods based on nonlinear dimensionality reduction augment the embedding with
learned mappings between the latent space and the observation (pose) space, along
with a density model over the latent positions of the training poses (e.g., [14, 60]).
More recent methods, like the GPLVM, formulate and optimize a coherent model
that incorporates the mappings, the embedding, and the density model.

4.1 Gaussian Process Latent Variable Model

The Gaussian Process Latent Variable Model (GPLVM)3 is a nonlinear generaliza-
tion of probabilistic PCA [33]. It is a generative latent variable model that comprises
a low-dimensional latent space, and a stochastic, nonlinear mapping from the la-
tent space to the original observation space. Conceptually, one hopes that the latent
model captures the underlying causes for the high-dimensional training data. The
GPLVM is useful for visualizing high-dimensional data [33], and it has been shown
to generalize well even with small or moderate amounts of training data [68].

To explain the basic GPLVM it is easiest to first examine Gaussian Process (GP)
regression[51]. To that end, consider a mapping from a vector-valued input, x, to a
scalar output, y. Let the mapping be expressed in parametric form as

y = g(x)+η , (13)

where η is mean-zero Gaussian, with variance β , and g has a generalized linear
form. That is, let g be a weighted sum of nonlinear basis functions φ j(x):

3 http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/gpsoftware.
html is a comprehensive GPLVM code base. GPLVM code is also in the Matlab toolbox for
dimensionality reduction available at http://homepage.tudelft.nl/19j49/

http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/gpsoftware.html
http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/gpsoftware.html
http://homepage.tudelft.nl/19j49/
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g(x) =
J

∑
j=1

w j φ j(x) = wT
Φ(x), (14)

where w ≡ (w1, ...,wJ)
T , and the vector Φ(x) ≡ (φ1(x), ...,φJ(x))T comprises the

basis functions evaluated at x. To complete the model, we assume a mean-zero
Gaussian prior for w with unit covariance, w ∼ N (0;I), and we let the noise η

be independent of w.
Because y in Eq. 13 is a linear function of Gaussian random variables, it is also

Gaussian, and therefore characterized by its mean and covariance. Because w and
η are both mean-zero, it follows that y is mean-zero:

µ(x) ≡ E[y] = E[wT
Φ(x)+η ] = 0 . (15)

One can also show that, given two inputs, x and x′, the covariance of their outputs,
y and y′, satisfies

k(x,x′) ≡ E[yy′] = E[(wT
Φ(x)+η)(wT

Φ(x′)+η
′)]

= Φ(x)T
Φ(x′) + β δ (x,x′) , (16)

where δ is 1 when x and x′ are the same inputs, and 0 otherwise. One can derive Eq.
16 using the model assumptions, E[w] = 0, E[wwT ] = I, E[w jη ] = 0, and E[η2] = β .
The functions µ(x) and k(x,x′) are referred to as the mean function and the kernel
(or covariance) function, respectively.

The mapping from x to y in (13) is a Gaussian Process (GP). It is a continuous
stochastic process that is fully specified by its mean and covariance functions. For
instance, with the appropriate choice of Gaussian basis functions [51], we obtain the
well-known RBF kernel, combined with the variance of the additive noise:

k(x,x′) = α exp
(
−γ

2
||x−x′||2

)
+ β δ (x,x′) , (17)

where the α , β and γ are the hyperparameters of the kernel; i.e., α determines
the magnitude of the covariance, γ determines the effective correlation length in
the latent space, and β determines the variance of the additive noise. Alternative
assumptions about the form of {φ j(x)} in (14) lead to different kernel functions.

The GP model has several appealing properties. One stems from the formulation
of p(y |x) as the marginalization of p(y,w |x). By marginalizing over w, e.g., instead
of estimating w using maximum likelihood, the GP mitigates over-fitting problems
that commonly occur when one has only small or moderate amounts of training
data. The GP also provides a measure of uncertainty in y (i.e., the variance) which
is useful in many applications. Finally, with the GP one does not have to specify
the basis functions (i.e., the features) directly. Rather, one only needs to specify the
form of the kernel function [41, 51].

Suppose one is given IID training pairs, D = {(x(i),y(i))}i=1...N , with mean-zero
outputs y(i). To learn a GP model one does not have to estimate w, but one does
have to estimate the kernel hyperparameters. This is usually done by maximizing
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the empirical data likelihood, i.e. the density over z≡ (y(1), ...,y(N))T conditioned on
{x(i)}. It follows from the GP model that the data likelihood is mean-zero Gaussian
with a covariance (kernel) matrix K having elements Ki j = k(x(i),x( j)):

p(z |{x(i)},θ) =
1√

(2π)N |K|
exp
(
−1

2
zT K−1z

)
. (18)

where θ is the vector of hyperparameters upon which k(·, ·) depends. Differentiating
the log likelihood with respect to θ can be done in closed form, and hence can be
used for optimization (e.g., with scaled conjugate gradient).

For pose data, the GP outputs must be vector-valued, i.e., y(i) ∈RD. The training
pairs are then given by D = {(x(i),y(i))}i=1...N . If one uses the same kernel function
for all output dimensions, then the joint likelihood function is the product of the
likelihood for each output dimension. More specifically, let Y = [y(1), ...,y(N)]T ,
and let yd be the d th column of Y; i.e., yd comprises the d th element of each of the
N training outputs. Then, one can write the joint GP likelihood as the product of
likelihoods for each dimension yd :

p(Y |{x(i)},θ) =
D

∏
d=1

1√
(2π)N |K|

exp
(
−1

2
yT

d K−1yd

)
, (19)

where θ is the vector of kernel hyperparameters. By using the same kernel matrix
for each observation dimension we greatly reduce the number of hyperparameters.
Further, a common kernel naturally captures correlations among the different out-
put dimensions that depend directly on the corresponding latent positions. That is,
although the conditional distribution is the product of 1D densities, the different
observation dimensions are not independent. Rather, they depend on the common
kernel matrix. That said, when modeling pose data, different dimensions (e.g., joint
angles) have significantly different variances. In this case, it is useful to discard the
common scale parameter (α in (17)), and instead use a separate scale parameter for
each observation dimension (e.g., see [20, 68]).

GP regression is a supervised model, where training data include both x and y.
The GPLVM is an unsupervised model, where Y is the only available training data
[33]. Learning a GPLVM therefore entails the estimation of a latent representative
(position) for each training sample, in addition to the hyperparameters θ . Lawrence
[33] showed that for linear features, i.e., Φ(x) = x, the GPLVM is equivalent to
probabilistic PCA. In this sense the GPLVM is a generalization of probabilistic PCA
to nonlinear mappings.

GPLVM learning entails numerical optimization to maximize the joint posterior
p(Y |{x(i)},θ) p({x(i)}) p(θ) with respect to {x(i)} and θ . The prior over the latent
representatives is typically a broad Gaussian density. The prior over the hyperpa-
rameters is typically uninformative, unless domain-specific knowledge is available.
An initial guess for the optimization is often critical; one can use PCA or some
other form of nonlinear dimensionality reduction method like LLE [54]. Usually
the dimension of the latent space is chosen manually.
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Fig. 2 GPLVM latent spaces learned from mocap data: (left) one walk cycle and (right) a golf
swing. Red crosses are optimized latent points x(i) ∈ R2. Grayscale depicts −D lnσ2(x)− xT x;
lighter points imply a lower variance (22) and hence more likely poses. (Adapted from [68])

A key property of the GPLVM is its predictive distribution. Given a new latent
position, x, the distribution over the observation space is Gaussian, with a simple
closed-form expression for its mean and covariance:

y |x,Y,{x(i)} ∼ N (m(x);σ
2(x)) , (20)

where m(x) = YT K−1k(x) , (21)
σ

2(x) = k(x,x)−k(x)T K−1k(x), (22)

k(x) = (k(x,x(1)), ..., k(x,x(N)))T . (23)

The predictive distribution is central to inferring a new pose. Effectively, these equa-
tions show that, given a latent position x, the mean prediction for y in Eq. 21 is just
a weighted sum of training poses; the weights are a function of the kernel distances
between x and the latent training representatives, along with the pre-computed, in-
verse kernel matrix K−1. One can also use this predictive distribution to find the
latent position x that is maximally consistent with a given pose y.4

Another useful expression is the likelihood of a new pair (x,y), since during
tracking we often require the estimation of both quantities. In particular, up to an
additive constant, the negative log probability of a pair (x,y), given Y and {x(i)}, is

L(x,y) =
‖(y−m(x))‖2

2σ2(x)
+

D
2

lnσ
2(x) +

1
2
‖x‖2 . (24)

Minimizing L(x,y) therefore aims to minimize reconstruction errors (i.e., to keep
y close to the mean m(x)), while keeping latent positions close to the training data
(i.e., to keep σ2(x) small). The third term in (24) is the prior over latent positions
that usually has relatively little influence on the optimized latent positions. Figure 2
depicts this log likelihood for GPLVMs learned from a walk and a golf swing.

For visual tracking one can combine a suitable log likelihood term for the image
data, with the log prior over new points, L(x,y), in order to formulate an objective

4 The GPLVM has a closed-form mapping from x to y, but there is no closed-form inverse mapping.
As a consequence, optimization is required to find the optimal x for a given y.
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function. Because L(x,y) is easily differentiated one can use continuous optimiza-
tion to find MAP estimates [68], or one can use a sequential Monte Carlomethod for
inference [50]. During tracking one usually estimates both x and y at each frame.
In some cases one may wish to search only over x, using the deterministic mapping
from x to y given by the mean, m(x) [67]. This has the advantage that one searches
a much smaller state space, but it comes with the disadvantage that one is explic-
itly limited to a linear combination of the training poses with no additional stylistic
variability.

4.2 Gaussian Process Dynamical Model

The GPLVM is formulated for IID training data, drawn fairly from the true pose den-
sity over the observation space. By ignoring the obvious temporal coherence that is
significant in human motion, the GPLVM often produces models in which consecu-
tive poses do not always correspond to nearby points in the latent space. Conversely,
one might expect a good model to map smooth pose trajectories to smooth latent tra-
jectories, thereby facilitating temporal prediction and effective tracking. The Gaus-
sian Process Dynamical Model (GPDM)5, as the name suggests, is an extension of
the GPLVM to incorporate temporal structure for times-series data, thereby promot-
ing smoothness in the latent representation of motion.

The GPDM replaces the IID prior over inputs {x(i)} with a Gaussian Process
prior over latent trajectories. For example, let latent positions at time t be predicted
by a first-order model, defined by a matrix A, a feature vector Ψ(x), and Gaussian
noise, η ∼N (0,ξ I):

xt = AΨ(xt−1)+η . (25)

For linear features, Ψ(xt) = xt , this model (25) reduces to an auto-regressive
model(c.f., Eq. 8). But like the GPLVM, one can incorporate nonlinear features
and analytically marginalize out the weights A (assuming a Gaussian prior over the
columns of A). This provides a GP prior over the latent sequences that correspond
to training motions. (See [67, 77] for the mathematical details.)

The GPDM combines a nonlinear mapping from latent points to observations,
with nonlinear dynamical predictions. Marginalizing over the weight matrices of
both mappings helps reduce potential over-fitting problems. Learning entails the
estimation of a latent position for each training pose, with the hyperparameters for
the latent mapping and the dynamical model. Figure 3 depicts a GPDM learned from
three gait cycles of walking. Color in Figure 3 (middle) is analogous to the greylevel
in Figure 2. Warmer colors (red) indicate small variances, hence more likely poses.
Cooler colors (blue) indicate larger variances and hence unlikely poses. Like the
GPLVM, GPDM predictions are analytical and straightforwardly combined with an
image likelihood for pose tracking [67]. Figure 4 depicts the monocular estimation
of walking, despite significant occlusion by the bushes on the left side of the image.

5 GPDM Code: http://www.dgp.toronto.edu/˜jmwang/gpdm/

http://www.dgp.toronto.edu/~jmwang/gpdm/
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Fig. 3 A 3D GPDM is learned from 3 walk cycles. (Left) The latent positions of training poses are
shown as blue circles. (Middle) The pose variance as a function of latent position is color coded,
with red (blue) points having small (large) variance. (Right) Each green trajectory is a random
sample from the latent dynamical model; the mean motion of which is the red trajectory in the left
plot. (Adapted from [77])

Fig. 4 Monocular tracking results with a GPDM learned from walking data. The 3D person is
tracked despite the almost total occlusion by the bush on the left side of the image, where only the
head is visible by the end of the sequence. (Adapted from [67]).

4.3 Constrained Latent Spaces and Other Variants

The GPLVM does not work well with large datasets because learning and inference
are, respectively, cubic and quadratic in the number of training poses. Approxima-
tions to the covariance matrix can be used to improve efficiency (e.g., [49]), but their
use requires care, since local minima often fail to produce useful models. Similar
approximations to the GPDM have not been formulated.

A second issue concerns the sensitivity of the GPLVM and GPDM optimizations
to the initial guess, and the fact that many local minima do not represent useful
models [77] (e.g., see Figure 5 (left)). Such local minima are especially problematic
when there is significant stylistic variability in the training data. Given the number
of unknowns in the learning problem, and the lack of structure imposed on the latent
representation, this problem is not particularly surprising.

To address these issues, several interesting GPLVM variants have appeared in
recent years. They demonstrate some of the ways in which one can impose more
structure on the latent representation in order to produce more useful models.
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Fig. 5 (Left) A GPDM is learned from mocap data of people walking and running. The latent
trajectories are not smooth, and trajectories drawn from the dynamical model are not realistic
motions. (Middle) This GPDM is constrained to lie on a cylindrical topology, with an LLE prior
that encourages nearby poses to remain close in the latent space. (Right) Random trajectories
simulated by the model (in red and green) produce plausible motions. (Adapted from [70])

4.3.1 Back-Constraints and Topological Constraints

The GPLVM ensures that nearby latent positions map to similar poses. The con-
verse is not true; similar poses do not necessarily get mapped to nearby latent
positions. Despite the use of a dynamical prior, even the GPDM does not always
produce smooth models with useful temporal predictions. To ensure smooth latent
models, Lawrence and Quiñonero-Candela [35] introduced back-constraints. They
suggested that one might parameterize latent position in terms of a smooth function
of the observation space. For example, one might write the j th coordinate of the
i th latent position as xi j = h j(y(i);a j), where {a j} j=1...d denotes the parameters of
the mapping, and d is the dimension of the latent space. For instance, h might be
expressed as a form of kernel-based regression, so nearby poses in the observation
space map to similar latent positions. Rather than directly estimating the latent po-
sitions, learning a back-constrained GPLVM entails the estimation of the mapping
parameters {a j}, by maximizing the empirical data likelihood.

Back-constraints can be used to model temporal dependence, thereby ensuring
that time-series data will be mapped to smooth latent trajectories. They can also be
used to specify latent topological structure. For instance, Urtasun et al. [70] used
back-constraints to parameterize a cylindrical latent topology when modeling cyclic
gaits, like walking and running. They also incorporated local, soft back-constraints
to encourage nearby poses to map to nearby latent positions. This is done in much
the same way that LLE optimizes low-dimensional positions to maintain distances
to nearby points in the observation space.

The combination of the cylindrical topology and the preservation of local neigh-
borhoods produces the latent representation depicted in Figure 5 (middle). This
model captures running and walking performed by multiple subjects. Random sam-
ples from the model appear natural, including transitions between walking and run-
ning (e.g., Figure 5 (right)). By comparison, the GPDM has difficulty coping with
such stylistic diversity; GPDMs like that in Figure 5 (left) are typical for these train-
ing data, and do not produce plausible gaits.
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4.3.2 Multi-Factor GPLVM

One way to capture significant stylistic diversity is to blend models that capture in-
dividual styles. For example, motivated by linear style interpolation and multilinear
models (e.g., [53, 65, 72]), one might consider a weighted sum of GPs, {gi(x)}:

y = ∑
i

si gi(x)+η = ∑
i

si wT
i Φ(x)+η = ∑

i
∑

j
si wT

i jφ j(x) + η . (26)

This is a generative model for y with latent variables z = (x,s). The latent space is
composed of two subspaces, one for the blending weights s = (...,si, ...), represent-
ing style, and one for x which captures the phase dependence of the pose.

If we assume Gaussian weight vectors, wi∼N (0,I), and Gaussian process noise,
η∼N (0,β ), then it follows that y is a mean-zero GP with covariance function

k(z,z′) = sT s′Φ(x)T
Φ(x′) + βδ (z,z′) . (27)

where δ is 1 when z and z′ correspond to the same measurements, and 0 otherwise.
The covariance function in Eq. 27 has two key factors, namely, the linear kernel
on s, and the nonlinear kernel on x. This two-factor, scalar GP model is readily
generalized to three or more factors, and to vector-valued outputs [76]. Each factor
is associated with an individual latent subspace, and the covariance function (27)
involves the product of one kernel for each factor.

Such multi-factor GPLVMs are particularly useful for mocap data where side
information is often available. That is, for each mocap sample one typically knows
the type of gait (e.g. run, walk, jog), as well as the subject’s identity, age, weight,
etc., all of which contribute to the motion style. In a multi-factor GPLVM, each
type of side information would be represented as a separate latent factor. As an
example, Wang et al. [76] learned a three-factor model, using the subject’s identity,
the gait type (walk, stride or jog), and the phase of the gait cycle. All motions of
one individual, independent of gait and phase, are constrained to share the same
latent position in the identity subspace. All walking motions, independent of the
subject and phase, share the same position in the gait subspace. And so on. With
side information used in this way, the multi-factor GPLVM imposes structure on the
latent space; structure that the GPDM would be unlikely to discover. As a result,
multi-factor models tends to converge more readily to useful kinematic models, for
different datasets and initial conditions.

Interestingly, one can view the multi-factor GPLVM as a Bayesian generaliza-
tion of multilinear models (e.g., [65, 72]). The two models are very similar when
one uses linear features (e.g., Φ(x) = x in (26)). The keys differences are that the
GPLVM marginalizes over the weights (i.e., the multilinear core tensor), which re-
duces the number of the unknowns that must be estimated and mitigates potential
over-fitting problems. The second difference is that the multi-factor GPLVM gen-
eralizes naturally to nonlinear features (c.f., [15]). When designed properly it is
also possible to express the kernel matrix as product of much smaller kernels [75],
greatly reducing the complexity of learning and inference.
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Fig. 6 In a hierarchical GPLVM, a latent position at one node provides Gaussian densities over
its descendants. Here it is used to coordinate different body parts, for two activities, waving while
standing still, and walking no arm swing. Red and green points, respectively, depict the latent
positions at each node that correspond to poses from these two activities. (Adapted from [9])

4.3.3 Hierarchical GPLVM

Lawrence and Moore [34] proposed a hierarchy of GPLVMs in which latent po-
sitions at one level are specified by the output of a GP at the next level. This is
another way to impose structure on a latent representation. One use of the Hier-
archical GPLVM (hGPLVM) is to capture temporal coherence [34]. An initial GP
maps time, or the gait phase, to a Gaussian density over positions in a latent pose
space. A second GP then maps position in the latent pose space to a Gaussian den-
sity over pose in the original observation space. A temporal model like this has been
used successfully for tracking in [1].

The hGPLVM could be used to model coordination between interacting people.
The pose (or motion) of each person might be modeled by two separate GPLVMs.
To coordinate their motions, a third GP simultaneously specifies Gaussian densities
over the latent positions in the two person-specific GPLVM latent spaces.

One could also use the hGPLVM to model the coordination of different parts of
the body, like that depicted in Figure 6 [34]. This model has six GPLVMs at the
lowest level of the hierarchy (leaves of the tree). Each is responsible for one part
of the body, mapping a latent position to a Gaussian density over pose (of its corre-
sponding part). At the next level there are latent models that specify the coordination
of the legs and of the upper body. The lower body model outputs Gaussian densi-
ties over latent positions within the left and right leg models to control leg swing.
The hierarchy also includes multiple activities. In Figure 6 (right) the two activities
are waving while the legs are standing still, and walking with no appreciable arm
swing. Notice that the intermediate nodes of the hierarchy capture the latent struc-
ture of body parts for both activities. This hierarchical model of human motion was
used successfully in [9] for tracking a person walking while waving an arm, thereby
composing a new motion from elements of the two training motions.
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4.4 Switching Linear Dynamical Systems (SLDS)

One way to model data in the vicinity of a smooth, low-dimensional manifold, is
to use local linear models, much as one might approximate a smooth curve with a
piecewise linear function. One such model for time-series data, like human motion,
is the switching linear dynamical system (e.g. [16, 44, 45, 47]). A Switching Linear
Dynamical Systems (SLDS) comprises a set of LDS models and a discrete switch-
ing variable that specifies which LDS is active at each time. Each LDS captures the
evolution of pose within a local region of the pose space, and can be viewed as an
atomic moveme. During tracking one maintains a probability distribution over the
switching variable, and a Gaussian density over pose for each LDS. If one marginal-
izes out the switching variable, one obtains a Gaussian mixture model over pose.

SLDS models are attractive for their intuitive simplicity, but they require large
datasets and can be hard to learn. For each LDS (see Eq. 8) one requires a transition
matrix and a covariance matrix for the process noise. For a D-dimensional pose vec-
tor there are O(D2) parameters for each transition matrix and for each covariance
matrix. An SLDS with N components also requires O(N2) parameters to specify
the temporal transition matrix for the switching variable. Hence, the number of un-
knowns to be optimized is large. One also faces a difficult model selection problem
as one needs to decide how many LDS components to use in the model. Over-fitting
and local minima are significant problems when learning SLDS models.

Li et al. advocate a model that addresses some of these shortcomings [36, 37, 38].
First, they express each linear component as a (latent) subspace LDS. Each compo-
nents has a low-dimensional subspace that is learned with factor analysis (or PCA),
and a LDS that models the evolution of the subspace coordinates. Second, the dif-
ferent local subspace models are configured to form a consistent global model using
the Coordinated Mixture of Factor Analyzers6 [55, 73]. Learning is formulated us-
ing variational Bayes, which also enables the automatic determination of the number
of linear components and their dimensions. Li et al. demonstrated the effectiveness
of this model for monocular tracking in [37, 38].

One interesting property of this class of models is its potential to model diverse
styles and activities. For example, Figure 7 depicts a model learned from a 2405
frame training sequence of 56D human mocap data. The sequences comprising 5
activities, namely jumping jacks, twisting, bending, squats and jogging. Figure 7
(bottom) depicts the activity labels throughout the sequence. The learning algorithm
automatically selected 11 subspace-LDS components, each with 7 dimensions. Fig-
ure 7 (top) depicts the most likely assignment of pose to each of the 11 components.
Notice how the 11 components decompose the data into coherent atomic motions,
each of which appears to be specific to a single activity. The last segment was cap-
tured by a single component since the jogging was done in place with minimal limb
movement [36]. Such multi-activity models have not yet been used for video-based
tracking with complex motion sequences.

6 Code for the coordinated mixture of factor analyzers is included in the Matlab toolbox for di-
mensionality reduction available at http://homepage.tudelft.nl/19j49/

http://homepage.tudelft.nl/19j49/
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distinct activities. (Top) The most probable state of the switching variable for an 11-component
SLDS model learned using Li’s variational Bayes formulation. (From Li [36])

4.5 Conditional Restricted Bolzmann Machines

A third promising class of latent variable models has recently emerged based on the
Restricted Bolzmann Machine (RBM) (e.g., [23, 25]). An RBM is a probabilistic
graphical model. It comprises a bipartite graph over the observation (visible) vari-
ables and the latent variables. As a result, conditioned on the state of the latent vari-
ables, the observation variables are independent of one another, and vice versa. In
the usual RBM all variables are binary-valued, but it can be extended to real-valued
observations, and is therefore applicable to modeling human pose. With its bipartite
structure, RBM learning and inference are efficient. Learning is linear in the number
of training exemplars with an algorithm known as contrastive divergence [23].

The Conditional Restricted Bolzmann Machines (CRBM) is an extension of the
RBM to model time-series data7 [63]. This is accomplished by conditioning the la-
tent and observation variables at time t on the observations at the previous N time
steps (for an N th-order model). The implicit mixture of CRBMs (imCRBM) [62, 64]
is an extension of the CRBM to include latent style variables. These style variables,
much like those in the multi-factor GPLVM, modulate the weights (interaction po-
tentials) of the CRBM in order to achieve distinct motion styles. If one marginalizes
over these style variables one obtains a mixture of CRBMs (i.e., an imCRBM).

Like the coordinated mixture of factor analyzers above, imCRBM learning can
be supervised or unsupervised. When supervised, the style or activity labels are
provided. In the unsupervised case the model discovers atomic motion primitives
from the training data. An impressive diversity of styles can be learned and used for
synthesis [62]. A variation of the model was used for monocular tracking in [64].

7 Code: http://www.cs.nyu.edu/˜gwtaylor/code/

http://www.cs.nyu.edu/~gwtaylor/code/
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Figure 8 depicts the behavior of a CRBM and an imCRBM in combination with a
basic particle filter for monocular pose tracking. The input video (HUMANEVA S3,
combo [58]) begins with walking and then transitions to jogging around frame 400.
All models were trained on walking and jogging data from the same subject (S3), but
with no transitions. Figure 8 (top-left) depicts RMSE for 3D joint position as at each
frame for four trackers: 1) an annealed particle filter for baseline comparison; 2) a
plain CRMB; 3) a supervised imCRBM (i.e., imCRBM-2L) trained with walk and
jog activity labels; and 4) an unsupervised imCRBM with 10 latent activity labels
(i.e., imCRBM-10U). CRBM-based models perform better than baseline. The two
imCRBM with activity-specific components are more reliable than the basic CRBM
in tracking the motion through the transition from walking to running.

Figure 8 (top-right) depicts the approximate posterior distribution over activ-
ity labels for the supervised model (imCRBM-2U) and the unsupervised model
(imCRBM-10U). Uncertainty is evident in the vicinity of the walk-jog transition.
Also notice that the unsupervised model appears to have discovered activity labels
that correspond to coherent atomic movements. Interestingly they appear to be spe-
cific to the activity and the phase of the gait cycle. The bottom rows of Figure 8
depict MAP estimates of a particle filter with the imCRBM-2U motion prior.

While learning is challenging with sophisticated models like the CRBM and the
imCRBM [24], this is an interesting class of models. Like the SLDS, RBM models
are parametric, and thus do not suffer from having to store all the training data
(as does the non-parametric GPLVM for instance). Furthermore, inference is very
fast, and learning is linear in the number of training samples. As a consequence the
CRBM and imCRBM can be trained on very large mocap corpora.

4.6 Heterogeneity, Compositionality, and Exogenous Factors

Most state-of-the-art approaches to tracking human motion rely on learned kine-
matic models. This is true of generative models and of discriminative model tech-
niques (see Chapter ??). With the development of new models and learning algo-
rithms, recent methods for people tracking have produced very encouraging results.
Nevertheless, important issues remain. Existing models only work well with a hand-
ful of activities, and modest stylistic diversity. They remain unable to model human
motion over extended sequences in which people seamlessly transition from activity
to activity. Generalization to a wide range of motion styles is similarly lacking.

The lack of compositionality in current models is one of the key barriers to im-
proved generalization. For example, because limbs move with some degree of in-
dependence, there are myriad ways one might compose leg and arm movements.
People usually walk with a counter-phase oscillation of the arms and legs. Some-
times they walk with relatively little arm swing, e.g., if carrying a heavy object. And
sometimes they walk with a hand raised, waving to a friend. A compositional model
would model the elementary parts of the body, along with the ways they might be
composed to form the whole. This would avoid the combinatorial explosion in the



20 David J. Fleet

w

j

C
o

m
p

o
n

e
n

t

100 200 300 400 500 600 700

1

3

5

7

9

0 100 200 300 400 500 600 700
0

100

200

300

E
rr

o
r 

(m
m

)
walking joggingwalking jogging

Baseline
CRBM
imCRBM−2L
imCRBM−10U

Fig. 8 (top-left) RMSE for monocular pose tracking based on CRBM and imCRBM for a Hu-
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put of the particle filter with the supervised imCRBM prior motion model. (Adapted from [64])

size of training datasets that one would otherwise have to collect to model human
motion holistically. Other than the hierarchical GPLVM model, all of the models
described above are holistic, not compositional (c.f., [9]).

Another issue concerns generalization with respect to exogenous factors. Not
surprisingly, human motion is often more variable in natural environments than in
the laboratory. People do not walk the same way on a slippery ice rink as they would
on the underlying concrete pad once the ice is removed. They lean while carrying
heavy objects or walking up a steep hill. The motion of one person may also depend
greatly on other nearby people, or on external objects like the ball that one attempts
to drive with the swing of a baseball bat. Current kinematic motion models do not
generalize naturally when such factors are in play. They do not maintain balance,
adapt to ground slope or surface roughness for example. As a consequence, the
3D motions estimated with kinematic models are sometimes overtly implausible.
Visible artifacts in tracking walking people include jerky motions, pose estimates
for which the feet float above or penetrate the ground plane, foot-skate (where feet
slide along the ground), and out-of-plane rotations that violate balance.

One way to build richer kinematic models is to gather much more mocap data,
e.g., with varying ground slope, compliance, friction, roughness, loads or scene con-
straints, etc. But it remains unclear whether one would be able to collect such a vo-
luminous amount of training data. And if one could do so, it is unclear how learning
algorithms would be able to cope with the shear size of the resulting training corpus.
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5 Newtonian (Physics-Based) Models

One way to mitigate some of the shortcomings of kinematic models is to incorporate
constraints on motion and multi-body interactions based on Newtonian principles.
For an articulated body with pose y, the equations of motion from classical mechan-
ics comprise a system of ordinary differential equations that relate accelerations,
denoted ÿ, to forces:

Mÿ = f joints + fgravity + fcontact + a . (28)

The mass matrix M depends on the mass, inertial properties and pose of the body.
The right side of Eq. 28 includes internal joint forces (or torques), due mainly mus-
cle activations. The external forces acting on the body include forces due to gravity
fgravity and external contact. Contact forces in turn depend on surface geometry and
the dynamics of the contact interface between two bodies, like stiffness and friction
for example. Finally, a denotes generalized coriolis and centrifugal forces that oc-
cur with rotation and angular momentum. The equations of motion are somewhat
tedious to derive properly, but articulated bodies typically permit textbook formu-
lations. Importantly, many of these forces can be derived from first principles, and
they provide important constraints on motion and interactions.

When combined with a suitable control mechanism, physics-based models offer
several advantages over kinematic models. First, physics-based models should en-
sure that estimated motions are physically plausible, mitigating problems associated
with foot placement and balance for example. Second, physics-based models should
generalize in ways that are difficult for purely kinematic models. For example the
change in body orientation that occurs as one carries a heavy object or walks down
a steep hill should occur naturally to maintain balance. Third, the use of Newtonian
and biomechanical principles of human locomotion may greatly reduce the current
reliance on large corpora of human motion capture data. Indeed, many important
characteristics of human locomotion can be attributed to optimality principles that
produce stable, efficient gaits (e.g., [7, 32]). Last, but not least, interactions and en-
vironmental factors are central to physics-based models, so one should be able to
exploit such models to simultaneously infer both the motion and the properties of
the world with which the subject interacts.

Despite their potential, there is relatively little work on physics-based models
for people tracking.8 One barrier stems from the complexity of full-body dynamics
and contact (e.g., [5]). Sensitivity to initial conditions, integration noise, and motion
discontinuities at collisions mean that full-body simulation and control entail sig-
nificant computational challenges. This remains true of modern humanoid robotics,
biomechanics (e.g., [52]), and character animation (e.g., [39]).

8 Several papers have used elastic solid models with depth inputs and a Kalman filter (e.g., [43,
80]); but these domains involve relatively simple dynamics with smooth, contact-free motions.
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5.1 Planar Models of Locomotion

Fortunately, there are reasons to believe that there exist low-dimensional abstrac-
tions of human locomotion which might be suitable for people tracking. Research
in biomechanics and robotics has shown that the dynamics of bipedal walking is
well described by relatively simple, planar, passive-dynamic walking models. Early
models, such as those introduced by McGeer [42], were entirely passive and could
walk downhill solely under the force of gravity; stable, bipedal walking is the nat-
ural limit cycle of their dynamics. Powered extensions of such models have since
been been built and studied to explore the biomechanical principles of human lo-
comotion [7, 17, 32, 42]. They walk stably on level-ground, exhibiting human-like
gaits and energy-efficiency, and they can be used to model the preferred relationship
between speed and step-length in human walking [32].

Inspired by these abstractions, Brubaker et al. [2, 3] developed two models of
human walking, the Anthropomorphic Walker and the Kneed Walker (see Figure
9). These models exhibit essential physical properties, namely balance and ground
contact, while walking and running with human-like gaits and efficiency. The Kneed
Walker comprises a torso, two legs with knees, and a rounded foot that rolls along
the ground to simulate the effects of ankle articulation. The model’s kinematic, mass
and inertial parameters are drawn from the biomechanics literature [42, 52]. Model
forces are parameterized as linear torsional springs (i.e., joint-based PD controllers).

One fascinating property of such models is that a good prior model can be found
through controller optimization, rather than fitting mocap data. Brubaker et al. [2]
were able to optimize many controllers for different operating points (e.g., ground
slopes, locomotion speeds and step-lengths), thereby defining an effective mani-
fold of control settings. Their probabilistic model was defined in the vicinity of
this manifold by adding Gaussian noise to the optimal control parameters. A ran-
dom gait could then be produced by randomly drawing the control parameters and
simulating the model using the equations of motion. This dynamics model is low-
dimensional and exhibits stable human-like gaits with realistic ground contact, all
in the 2D sagittal plane. The 3D kinematic model is then constrained to be consis-
tent with the planar dynamics, and to move smoothly in its remaining degrees of
freedom (DOF).

Tracking was performed using physical simulation within a particle filter (see
Figure 9). The tracker handled occlusion, varying gait styles, and turning, producing
realistic 3D reconstructions. With lower-body occlusions, it still produced realistic
reconstructions and estimate the time and location of ground contact. When applied
to the benchmark HUMANEVA dataset, monocular tracking errors in joint position
are in the 65mm-100mm range [3]. Importantly, the prior model for this tracker
does not rely on mocap training data from the same subjects performing the same
motions like most other techniques that have been tested on HUMANEVA.
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Fig. 9 (Top row) Composite of image sequence showing a walking subject and an occluding
cyclist. The green stick figure in the right composite depicts on the MAP estimate of the pose on
selected frames. (Bottom two rows) Cropped frames around occlusion. The green skeleton and
blue 3D rendering depict the recovered MAP trajectory. (Adapted from [2])

5.2 Discussion: 3D Full-Body Models

Recent research has begun to consider physics-based models for full-body 3D con-
trol, motivated in part by the success of optimal planar models [2, 3] and the state-
space SIMBICON controller [81]. In particular, Wang et al. [78, 79] have shown that
human-like bipedal motion can be obtained by optimizing joint-space controllers
with a collection of objective criteria motivated by empirical findings in biome-
chanics. The resulting motions appear reasonably natural, and adapt readily to dif-
ferent body morphologies (e.g., tall or short), different environmental constraints
(e.g., walking on ice, or a narrow beam), and to various forms of uncertainty in
either environmental conditions (e.g., wind or surface roughness) or internal noise
(e.g., neural motor noise). While fascinating, such controllers are difficult to learn
with over a hundred degrees of freedom, and they have not yet exhibited the degree
of stylistic variation that one might need to track arbitrary people.

Another largely untapped research direction concerns the inference of human in-
teractions with the environment. Brubaker et al. [4] have recently proposed a generic
framework for estimating external forces due to gravity and surface contact from hu-
man motion. They define a generic measure of physical realism for human motion,
and optimize various exogenous factors (e.g., gravity, ground plane position and ori-
entation) that are necessary to maximize realism. Initial results on motion capture
data are very good, and results on video-based motion information are encouraging.
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With general 3D formulations like this we might hope to build models of human mo-
tion that readily cope with ambiguity and noise without resorting to activity-specific
latent variable models that are commonly used today.

6 Discussion

Progress in modeling human motion has been significant over the last decade, but
many research directions remain unexplored. As discussed above, kinematic models
have to move beyond activity-specific motions to much more complex sequences of
multiple activities and natural transitions between them. Compositionality is largely
unexplored, as is the related issue concerning a suitable computational definition of
atomic motion primitives, in terms of which complex motions can be decomposed.

The use of dynamics is in its infancy. Open questions include the use of full-
body 3D control mechanisms, and the ability to use physical principles to help de-
tect and infer human interactions. Finding good control mechanisms appears essen-
tial for modeling human motion with effective, low-dimensional parameterizations.
Physics-based models should also apply biological motion in general, since the basic
principles of locomotion appear common to bipeds and quadrapeds. Finally, there
are many potential ways in which physics might be augmented with kinematic prop-
erties learned from motion capture data.
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Glossary

CRBM A Conditional Restricted Boltzmann Machine is an extension of an RBM
designed to model time series data. 18, 19

discriminative model Discriminative models typically model a conditional distri-
bution of target outputs given a set of inputs. Discriminative models differ
from generative models in that they do not allow one to generate samples
from the joint distribution over inputs and outputs (and/or hidden variables).
Discriminative models are particularly well suited for input-output tasks such
as classification or regression.. 19, 29

filtering distribution The filtering distribution is a distribution of the form p(Xk|Y0,Y0, ...,Yk).
3, 30

generative model Generative models are models capable of generating (synthesiz-
ing) observable data. Generative models are able to model joint probability
distributions over the input, output and hidden variables in the model. During
inference generative models are often used as an intermediate step in forming
conditional distribution of interest. Generative models, in contrast to discrimi-
native models, provide a full probabilistic model over all variables, whereas a
discriminative model provides a model over the target output variable(s) con-
ditioned on the input variables.. 19, 29

GP A Gaussian Process is a continuous stochastic process defined on a real-valued
domain (e.g., time). It defines a Gaussian distribution over functions, and is
fully characterized by a mean function and a covariance function. In addition
any realization at a finite set of points in the domain (e.g., time instants) form
a multivariate Gaussian density. 8–10, 15, 16

GPDM A Gaussian Process Dynamical Model is an extension of the GPLVM to
handle high-dimensional time series data. In addition to the probabilistic gen-
erative mapping from latent positions to the observation in the GPLVM, it
includes a dynamical model that models the temporal evolution of the data in
terms of a latent dynamical model. 12–15

29
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GPLVM A Gaussian Process Latent Variable Model is a probabilistic generative
model that is learned from high-dimensional data. It can be used as a proba-
bilistic dimensionality reduction, where the latent variables capture the struc-
ture (latent causes) of the high-dimensional training data. It is a generalization
of probabilistic PCA to nonlinear mappings. 8, 10–15, 19, 29

image edge Image edges are defined as pixels in the image where there exists a
discontinuities in the pixel brightness. Image edges are common features used
in vision as they are easy to compute and are largely invariant to lighting. 2

Kalman filter Kalman filter is an algorithm for efficiently doing exact inference in
a linear dynamical system (LDS), where all latent and observed variables have
a Gaussian (or multivariate Gaussian) distribution. 3, 21

LDS A Linear Dynamical System is used to refer to a linear-Gaussian Markov pro-
cess. In such a process the state evolution is modeled as a linear transforma-
tion plus Gaussian process noise. A first-order LDS on state x, for matrix A,
is given by xt = Axt−1 +η where η is a Gaussian random variable that is
independent of x and IID through time. 4, 6, 17, 30, 31

MAP Acronym for maximum a posteriori estimate. 2, 12, 19
Markov process A Markov process (or Markov chain) is a time-varying stochas-

tic process that satisfies the Markov property. An nth-order Markov process,
(x1,x2,x3, · · ·), satisfies p(xt |x1, · · · ,xt−1) = p(xt |xt−1, · · · ,xt−n). That is,
conditioned on the previous n states, the current state is independent of all
other previous states. 3, 4

maximum a posteriori In Bayesian statistics, a maximum a posteriori probability
(MAP) estimate is defined as a mode of the posterior distribution.. 30

optical flow Optical flow or optic flow is the pattern of apparent motion of objects,
surfaces, and edges in a visual scene caused by the relative motion between
an observer (an eye or a camera) and the scene. 2

particle filter The particle filters, also known as sequential Monte Carlo methods
(SMC), approximate the posterior filtering distribution with a set of typically
weighted samples. 7, 19, 22

PCA Principal Component Analysis is a method for dimensionality reduction,
wherein high-dimensional data are projected onto a linear subspace with an
orthogonal matrix. It can be formulated as the orthogonal linear mapping that
maximizes the variance of projection in the subspace. Probabilistic PCA is a
closely related latent variable model that specifies a linear-Gaussian genera-
tive process. 5–8, 10, 17, 30

posterior Posterior probability of a random event is the conditional probability once
all the relavent evidence is taken into account. According to Bayesian sta-
tistical theory posterior can be exprezssed as a product of the the prior and
likelihood, i.e., p(x|I) ∝ p(I|x)p(x). 2
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RBM A Restricted Boltzmann Machine is a bipartite, undirected, probabilistic
graphical model. The graph comprises ”visible” (observed) nodes (e.g., im-
age pixels) and ”hidden” (or latent) nodes. The basic RBM has binary random
variables, but it has been extended to the real-valued case. The model is re-
stricted in that no edges connect visible or hidden nodes to one another. Rather,
all edges connect visible nodes to hidden nodes. Thus, conditioned on the hid-
den state, the visible variables are independent, and vice versa. This enables
efficient learning and inference. 18, 19, 29

SLDS A Switching Linear Dynamical System is a collection of N LDS models
along with a discrete switching variable, s ∈ {1, · · · ,N}. The switching variable
identifies which LDS should be active at each time step. As a probabilistic genera-
tive model, each LDS is a linear-Gaussian model, and on maintains a multinomial
distribution for s. SLDS models are used to approximate nonlinear dynamical pro-
cesses in terms of piecewise linear state evolution. 17, 19
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