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��� Introduction

Neurons sensitive to binocular disparity have been found in the visual cortex

of many mammals and in the visual wulst of the owl� and are thought to

play a signi�cant role in stereopsis �Barlow et al�� ����� Nikara et al�� �����

Hubel and Wiesel� ���	� Clarke et al�� ����� Pettigrew and Konishi� ����� Poggio and Fischer� �����

Fischer and Kruger� ����� Ferster� ����� Poggio and Talbot� ����� Ohzawa and Freeman� ���a�

Ohzawa and Freeman� ���b� LeVay and Voigt� ����� Ohzawa et al�� ���	� DeAngelis et al�� �����

Wagner and Frost� ���
�� A number of physiologists have suggested that

disparity might be encoded by a shift of receptive��eld position �Hubel and Wiesel� ���
�

Pettigrew et al�� ����� Pettigrew� ���
� Maske et al�� ����� Poggio et al�� �����

Wagner and Frost� ���
�� According to this position�shift model� disparity

selective cells combine the outputs of similarly shaped� monocular receptive

�elds from di�erent retinal positions in the left and right eyes� More recently�

Ohzawa et al� ����	� and DeAngelis et al� ������ ����� have suggested that

disparity sensitivity might instead be a result of interocular phase shifts� In

this phase�shift model� the centers of the left� and right�eye receptive �elds

coincide� but the arrangement of receptive �eld subregions is di�erent�

This chapter presents a formal description and analysis of a binocular

energy model of disparity selectivity� According to this model� disparity

selectivity results from a combination of position�shifts and�or phase�shifts�

Our theoretical analysis suggests how one might perform an experiment

to estimate the relative contributions of phase and position shifts to the

disparity selectivity of binocular neurons� based on their responses to drifting

sinusoidal grating stimuli of di�erent spatial frequencies and disparities�

We also show that for drifting grating stimuli� the binocular energy re�

sponse �with phase and�or position shifts� is a sinusoidal function of dispar�

ity� consistent with the physiology of neurons in primary visual cortex �area

�
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��� of the cat �Freeman and Ohzawa� ���	�� However� Freeman and Ohzawa

����	� also found that the depth of modulation in the sinusoidal disparity

tuning curves was remarkably invariant to interocular contrast di�erences�

This is inconsistent with the binocular energy model�

As a consequence we propose a modi�ed binocular energy model that

incorporates two stages of divisive normalization� The �rst normalization

stage is monocular� preceding the combination of signals from the two eyes�

The second normalization stage is binocular� Our simulation results demon�

strate that the normalized binocular energy model provides the required

stability of the depth of response modulation� Simulations also demonstrate

that the model�s monocular and binocular contrast response curves are con�

sistent with those of neurons in primary visual cortex�

��� Binocular Interaction and Disparity Selectivity

There are two major classes of neurons in primary visual cortex �V� of

the monkey or A�� of the cat�� namely� simple cells and complex cells

�Hubel and Wiesel� ���
�� Both types are selective for stimulus position and

orientation� They respond vigorously to stimuli of a preferred orientation�

but less well or not at all to stimuli of other orientations� Many neurons are

also disparity selective�

Disparity�sensitive cells are often divided into four types� tuned�excitatory�

tuned�inhibitory� near and far �Poggio and Fischer� ������ Disparity selec�

tivity in these di�erent types might arise from di�erent mechanisms �Poggio and Fischer� �����

Ferster� ����� �but see �Nomura et al�� ���	� for the opposite point of view��

Tuned�inhibitory� near and far cells usually receive a strong excitatory input

from one eye and an inhibitory input from the other eye �i�e�� the monocular

inputs are unbalanced�� and most of them do not show binocular facilita�

tion� Tuned�excitatory cells show a sharp response peak due to binocular

facilitation� the responses at disparities �anking the peak are often inhib�

ited� and they have balanced monocular inputs� This chapter is primarily

concerned with tuned�excitatory complex cells� although all of the analysis

and conclusions could be applied to tuned�excitatory simple cells as well�

����� Linear Neurons and Energy Neurons

There is a long tradition of modeling simple cells as linear neurons �Hubel and Wiesel� ���
�

Campbell et al�� ����� Campbell et al�� ����� Movshon et al�� ���a� Ohzawa and Freeman� ���a�

Hamilton et al�� ������ This model is attractive because a linear neuron can

be characterized with a relatively small number of measurements�
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Fig� ���� Receptive �elds of model neurons� �A� A monocular� orientation selective�
linear neuron� Its response depends on a weighted sum of the stimulus intensi�
ties within its receptive �eld� Shaded ellipses depict inhibitory subregions of the
weighting function� and the unshaded ellipse depicts an excitatory subregion� �B�
A binocular linear neuron	s response depends on a weighted sum of the stimulus
intensities presented to both eyes� The reference points �black dots� below the
weighting functions indicate that the two weighting functions are in exact binocu�
lar correspondence� �C� A monocular energy neuron sums the squared responses of
two monocular� linear neurons� The weighting functions of the two linear neurons
are identical except for a 
�� phase shift� �D� A binocular energy neuron sums
the squared responses of two binocular linear neurons� All four linear weighting
functions are centered in exact �monocular and binocular� retinal correspondence�
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Figure ����A� shows a schematic diagram of a monocular linear neuron�

A linear neuron�s response is a weighted sum of stimulus intensities within a

small region of the entire visual �eld� called the neuron�s receptive �eld� In

the illustration� the three ellipses depict subregions of the receptive �eld� one

with positive weights �the unshaded ellipse�� and two with negative weights

�the shaded ellipses�� The neuron is excited when a bright light is �ashed

in the positive subregion� and inhibited when a bright light is �ashed in

a negative subregion� Bright lights �ashed simultaneously in both positive

and negative subregions tend to cancel� The positive and negative weights

are balanced so the neuron does not respond to blank stimuli� Rather� its

response is proportional to stimulus contrast� for patterned stimuli that vary

in intensity over space and time�

Figure ����B� depicts a binocular linear neuron� This neuron�s response

depends on a weighted sum of the stimulus intensities presented to both

eyes� The left� and right�eye receptive �elds are identical for the neuron

depicted in the �gure� but this need not be the case in general� Also� the

left� and right�eye receptive �elds of this particular linear neuron are in exact

binocular correspondence as indicated by the small reference points below

the weighting functions�

One problem with the linear model of simple cells is that linear neurons

can have negative responses because they sum input intensities using both

positive and negative weights� However� extracellular responses ��ring rates�

of real neurons are� by de�nition� positive� Neurons with a high maintained

�ring rate could encode positive and negative values by responding either

more or less than the maintained rate� But simple cells have very little main�

tained discharge� Instead� positive and negative values may be encoded by

two neurons� one responsible for the positive part and one for the negative

part� The two neurons are complements of one another� an excitatory subre�

gion of one neuron�s receptive �eld is aligned with an inhibitory subregion of

the other neuron�s receptive �eld� The response of each neuron is halfwave�

recti�ed so that only one of the two neurons has a non�zero response at any

given time� Simple cells are often characterized as halfwave�recti�ed linear

neurons �e�g�� �Movshon et al�� ���a� Heeger� ��
b���

Complex cells do not have discrete ON and OFF receptive �eld subre�

gions� and have been modeled as energy neurons �Adelson and Bergen� �����

Emerson et al�� ���
� Heeger� ��
b� Pollen and Ronner� ���
�� An energy

neuron sums the squared responses of a quadrature pair of linear neurons

that are �	� out of phase� but with otherwise identical tuning properties

�Fig� ���C�� Equivalently� an energy neuron could sum the squared responses

of four halfwave�recti�ed� linear neurons�
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The monocular energy neuron depicted in Fig� ����C� has one linear sub�

unit that is even�symmetric �even phase� and another that is odd�symmetric

�odd phase�� but this is not necessary� The critical property is that the

two subunits must be in quadrature phase ��	� phase shift�� Although

simple cell weighting functions are not necessarily even� or odd�symmetric

�Field and Tolhurst� ����� Heggelund� ����� Jones and Palmer� ���a�� the re�

ceptive �elds of adjacent simple cells tend to exhibit �	� or ��	� phase

relationships �Foster et al�� ���
� Liu et al�� ���
� Palmer and Davis� �����

Pollen and Ronner� ������ A local pool of simple cells thus provides the

right combination of signals for an ideal energy neuron� Approximately

the same behavior may be obtained by summing the squared responses of

many linear neurons �or halfwave�recti�ed� linear neurons�� regardless of

their phase� but with receptive �elds distributed over a local spatial region�

A binocular energy neuron �Ohzawa et al�� ���	� is depicted in Fig� ����D��

This neuron sums the squared responses of a quadrature pair of binocular

linear neurons� This chapter is primarily concerned with the behavior of

binocular energy neurons�

����� Disparity Selectivity� Position Shifts and Phase Shifts

Figure ��
 depicts two ways that non�zero disparity preferences have been in�

troduced in models of disparity selectivity� The neuron depicted in Fig� ��
�A�

is tuned for zero disparity because the locations of the monocular receptive

�elds are in exact binocular correspondence �indicated relative to the ref�

erence points� and the two pairs of weighting functions are identical� A

non�zero disparity preference is introduced either by shifting the receptive

�eld positions �Fig� ��
B� or the receptive �eld phases �Fig� ��
C�� Both of

the neurons in Fig� ��
�B�C� are constructed to prefer uncrossed disparities�

to evoke a maximal response� a visual feature �line� edge� grating� should be

presented to the right eye in a position that is slightly shifted to the right�

��� Formalizing the Model

In order to examine the behavior of the model in detail� we derive formulas

for the responses of these model neurons� A table of symbols �table ���� is

provided to help the reader keep track of mathematical notation� In this

chapter� we concentrate on the special case of drifting sinusoidal grating

stimuli� The general case is discussed in detail in �Fleet et al�� ������ We

begin with linear neurons and with binocular energy neurons tuned for zero

disparity� Then we introduce position�shifts and phase�shifts�
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Fig� ���� Disparity preferences of binocular energy neurons� �A� Zero disparity
preference� �B� Non�zero disparity preference is introduced by shifting the positions
of both right�eye receptive �elds by the same amount �relative to the reference
points�� �C� Non�zero disparity preference is introduced by shifting the phases of
both right�eye weighting functions� in this case by 
���

����� Monocular Linear Neurons

A visual neuron is linear �obeying the superposition property� if and only if

its response is a weighted sum of the stimulus intensities� Mathematically�

the response of a monocular linear neuron is the inner product in space

and the convolution in time of a stimulus with the neuron�s spatiotempo�

ral weighting function� For a left�eye neuron with a weighting function
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Terms De�nitions

cl � cr left� and right�eye contrasts of a sinusoidal grating stimulus
�� � ��x� �y� �t� spatiotemporal frequency of a sinusoidal grating stimulus
L� � L�� responses of quadrature� monocular �left�eye� linear neurons
R� � R�� responses of monocular �right�eye� linear neurons
A � A���� amplitude of linear neuron	s transfer function
�l � clA response amplitude of a monocular �left�eye� linear neuron
� response phase of a linear neuron
B� � B�� responses of binocular linear neurons
s receptive �eld position�shift
� receptive �eld phase�shift
d stimulus disparity
E�d� binocular energy response at retinal position x
E�d� s� response of binocular energy neuron with RF position�shift s
E�d� �� response of binocular energy neuron with RF phase�shift ��
E�d� s� �� response of binocular hybrid energy neuron with

position�shift s and phase�shift �

Table ���� Symbol Table�

fl�x� y� t�� with stimulus Il�x� y� t�� the response is given by

L�t� �

Z Z Z
�

��

fl�x� y� �� Il�x� y� t� �� dxdy d� � �����

This triple integral is simply a weighted sum of the stimulus intensities over

a small spatial neighbourhood and recently past time� The output response

waveform� L�t�� is the model equivalent of a post�stimulus time histogram

�PSTH�� a measure of a cell�s average response per unit time�

A linear neuron can be characterized by its transfer function �i�e�� the

Fourier transform of its weighting function�� The transfer function has two

components� amplitude A���� and phase ������ for each stimulus frequency�

Here� �� � ��x� �y� �t� denotes the spatiotemporal frequency variables� with

spatial frequency in cycles�degree and temporal frequency in Hz�

Consider a drifting sinusoidal grating stimulus�

Il�x� y� t� � cl sin�
��xx � 
��yy � 
��tt� � ���
�

where cl is the contrast of the grating� A linear neuron�s response to a

sinusoidal grating modulates sinusoidally over time with the same temporal

frequency as the stimulus� This can be written as

L�t� � �l���� sin�
��tt� ������� ���
�

where �l���� is the response amplitude �peak height�� and ����� is the response

phase �relative peak latency��
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Response amplitude depends on the amplitude component of the transfer

function� �l���� � clA����� Response phase depends on the phase component

of the transfer function� ������ and on the receptive �eld position relative

to the starting position of the drifting grating� A pair of monocular linear

neurons with identical weighting functions� but at di�erent receptive �eld

positions� will respond with di�erent phases� For example� let � be the

response phase of a neuron for a sine�grating stimulus with spatial frequency

� �
q
��
x � ��

y� The response phase of a similar neuron that is a distance of

s away �in the direction orthogonal to the stimulus orientation�� would then

be �� 
��s� This phase behaviour is important below where position�shifts

are used to introduce non�zero disparity tuning in binocular neurons�

To simplify notation we use �� A and � in the equations below� dropping

the explicit dependence on ��� It is important to remember that response

amplitude and phase depend on the stimulus spatiotemporal frequency�

����� Monocular Energy Neurons

The monocular energy model depicted in Figure ���C consists of quadrature

pairs of monocular linear neurons� These pairs of linear neurons have identi�

cal response amplitudes� but their response phases di�er by �	 degrees� For

example� the responses of a quadrature pair of monocular �left�eye� linear

neurons can be expressed as�

L� � �l sin�
��tt� ��

L�� � �l cos�
��tt� ���

The response amplitude� �l � clA� is the same for both neurons� but the

response phases di�er by �	 degrees� Note that we have ignored the depen�

dence of the response on time for notational simplicity�

����� Binocular Linear Neurons

A binocular linear neuron computes a weighted sum of the stimulus intensi�

ties presented to both eyes� It has two weighting functions� one for each eye�

as depicted in Figure ���B� For now� we will assume that the two monocular

weighting functions are identical and in exact binocular correspondence� We

can express the responses of a pair of binocular linear neurons as follows�

B� � L� �R�

B�� � L�� �R��

where L�� R�� L��� and R�� are responses of the monocular linear subunits�
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����� Binocular Energy Neurons

A binocular energy neuron �Figure ���D� sums the squared responses of a

quadrature pair of binocular linear neurons�

E � B�

� �B�

��

� �L� � R��
� � �L�� � R���

�

� L�

� � L�

�� � R�

� � R�

�� � 
R�L� � 
R��L�� � �����

For now� let us assume that the drifting sinusoidal grating has a disparity

of zero� so that it drifts over the same retinal positions in both eyes simulta�

neously� Let us further assume that the left and right monocular weighting

functions are identical and in exact binocular correspondence �as depicted

in Figures ���D and ��
A�� Then the left and right monocular responses are

equal to one another� and equation ����� reduces to

E � ��l � ��r � 
�l�r � �����

where ��l � L�
� � L�

�� � c�lA
� is the monocular left�eye energy� and ��r �

R�
� � R�

�� � c�rA
� is the right�eye energy� The binocular energy response

clearly depends on stimulus contrast because �r and �l depend on contrast�

The binocular energy response also depends on stimulus disparity� Imag�

ine that we introduce a small stimulus disparity d by shifting the spatial

position of the sinusoidal grating in the right eye� in a direction perpendicu�

lar to the stimulus orientation� This will change the response phases of the

right�eye monocular responses� R� and R��� by an amount equal to 
��d�

where � �
q
��
x � ��

y is the stimulus spatial frequency� With this additional

phase�o�set� the the right�eye monocular responses become

R� � �r sin�
��tt� � � 
��d�

R�� � �r cos�
��tt� � � 
��d� �

One can then show that the binocular energy neuron response becomes

E�d� � ��l � ��r � 
�l�r cos�
��d� � �����

To derive this equation from equation ������ use the trigonometry identity�

cos��� 	� � cos��� cos�	� � sin��� sin�	� �

with � � 
��tt� � � 
��d and 	 � 
��tt� � �

The binocular energy response in equation ����� is a sum of three terms�

namely� the two monocular energies� ��l and ��r � and a term that is a cosinu�

soidal function of the interocular phase di�erence� The response therefore

has a cosinusoidal dependence on binocular disparity� When d � 	� the
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cosine term is maximal� cos�	� � �� so the response is greatest when the dis�

parity is zero� When d � �
�
��� the cosine term is minimized� cos��� � ���
so the response is smallest when the disparity is one�half the grating period�

For disparities in between these two extremes� the binocular energy response

varies as the cosine of the disparity times the grating frequency� We say that

this model energy neuron has a preferred disparity of zero�

Equation ����� simpli�es further when the drifting sinusoidal gratings pre�

sented to the two eyes have the same contrast�

E�d� � 
 c�A� �� � cos�
��d��� �����

From equations ����� and ����� one can see that the binocular energy re�

sponse depends on the monocular energies and the binocular phase dif�

ference� The energy response does not depend directly on the individual

monocular phases �l and �r� Also note that when the stimulus is turned o�

in one eye �e�g�� if cl � 	� then the binocular energy response reduces to the

monocular energy in the other eye �e�g�� ��r��

The cosinusoidal dependence on disparity is consistent with physiolog�

ical data� Several studies have demonstrated that binocular simple and

complex cell responses exhibit a sinusoidal dependence on stimulus dis�

parity for drifting sinusoidal grating stimuli �Ohzawa and Freeman� ���a�

Ohzawa and Freeman� ���b� Hammond� ����� Wagner and Frost� ������

However� as discussed below in Section ���� the contrast dependence of real

binocular neurons is not consistent with predictions of the binocular energy

model� Therefore we will have to modify the binocular energy model� But

�rst� we introduce position� and phase�shifts to construct binocular energy

neurons tuned for non�zero disparities�

����� Position�Shift Model

A non�zero disparity preference can be introduced by shifting the receptive

�eld position in one eye �Fig� ��
B�� As noted above in Section ��
��� the

response phase of a monocular linear neuron depends on receptive �eld po�

sition� If � is the response phase for a sine�grating stimulus with spatial

frequency � �
q
��
x � ��

y � then after introducing a position shift �s� of the

receptive �eld in the direction orthogonal to the stimulus orientation� the

new response phase will be ��
��s� If the right�eye stimulus is also shifted

by the disparity d� then the right�eye monocular responses become

R� � �r sin�
��tt� � � 
���d� s��

R�� � �r cos�
��tt� � � 
���d � s�� �
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where s is the position shift of the right�eye monocular weighting functions�

Then� following the derivation above� the binocular energy response becomes

E�d� s� � ��l � ��r � 
�l�r cos�
���d� s�� �

For equal contrast in both eyes� this simpli�es to

E�d� s� � 
 c�A� �� � cos�
���d� s��� � �����

Peaks in the energy response occur whenever the cosine term is equal

to one� This happens when the disparity satis�es 
���s � d� � 	� i�e��

when s � d� The cosine term is also one when the disparity is increased or

decreased by multiples of the stimulus wavelength� that is� when

d � s�
n

�
� �����

for integer values of n� Because n can be any integer� response peaks oc�

cur periodically as a function of stimulus disparity� spaced by the stimulus

wavelength�

Now consider what happens when you �x the stimulus disparity� but vary

the stimulus spatial frequency� One of the energy response peaks �n � 	�

always occurs when the disparity equals the position�shift d � s� indepen�

dent of the frequency of the input �Fig� ��
A�� In fact� this is a key prop�

erty of the position�shift model� the location of the primary response peak

does not depend on stimulus spatial frequency �Wagner and Frost� ���
�

Wagner and Frost� ������ The disparities of the other response peaks �n ��
	�� however� depend on stimulus frequency �see Fig� ��
A��

����� Phase�Shift Model

Non�zero disparity preference can also be introduced by shifting the phase of

the monocular sub�elds �Fig� ��
C�� Formally� let � denote a phase shift of

the right�eye weighting functions� The right monocular responses are then

R� � �r sin��tt� � � � � 
��d�

R�� � �l cos��tt� � � � � 
��d� �

Following the derivation used above� the binocular energy response becomes

E�d� �� � ��l � ��r � 
�l�r cos�
��d� �� �

For equal contrast in both eyes� this simpli�es to

E�d� �� � 
 c�A� �� � cos�
��d� ��� � ����	�
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Fig� ���� Simulated disparity tuning curves of binocular energy neurons for drifting
sine�grating stimuli� �A� A position�shift neuron with a preferred disparity of �� and
stimulus wavelengths spanning ��
 octaves� The dashed line shows the alignment
of primary response peaks� �B and C� Energy neurons with di�erent phase�shifts�
and di�erent stimulus frequency ranges� A systematic shift in peak responses is
evident for wide frequency ranges �in B� and for large phase�shifts �in C��

Peaks in the energy response now occur when 
��d�� � n
�� i�e�� when

d �
�


��
�

n

�
� ������

As illustrated in Figure ��
�B�C�� this means that the neuron�s �disparity

preference� depends in a systematic way on the stimulus frequency� Even

the primary response peak �n � 	� depends on the stimulus spatial fre�

quency� since d � �
�
��� in this case� The range of possible �disparity

preferences� depends on the range of spatial frequencies to which the neu�

ron responds �i�e�� the spatial frequency bandwidth�� and on the neuron�s

interocular phase shift� It would be inaccurate to say that a phase�shifted

binocular energy neuron has a unique preferred disparity�

Position�shifts and phase�shifts �s and �� have di�erent e�ects on dispar�

ity tuning� One way to discriminate phase�shift neurons from position�shift

neurons is to measure disparity tuning curves for sine�grating stimuli with

di�erent spatial frequencies� For a position�shift neuron� the primary re�

sponse peak occurs at a single preferred disparity �i�e�� the position shift�

for all frequencies� For a phase�shift neuron� peaks in the tuning curves

will occur at di�erent disparities for di�erent frequencies� Data of this sort

have been obtained for the owl �Wagner � Frost� ���
� ������ and are more

consistent with the position�shift model�
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����	 Hybrid Model

As discussed below� the disparity selectivity of binocular neurons in cat and

monkey primary visual cortices is probably due to a combination of position

shifts and phase shifts� It is therefore natural to consider a hybrid model that

incorporates both� Using the same analysis as above� with equal contrasts

in the two eyes� one can show that the response of a hybrid binocular energy

model� with a position shift s and a phase shift �� is given by

E�d� s� �� � 
 c�A� �� � cos�
���d� s�� ���� ����
�

The response� E�d� s� ��� now depends cosinusoidally on both the position

shift s and the phase shift ��

��� Experimental Support for Position�Shifts and Phase�Shifts

The position�shift model involves binocular combinations of monocular re�

ceptive �elds of similar shape at di�erent retinal positions� while the phase�

shift model combines monocular receptive �elds with di�erent shapes from

the corresponding retinal locations� Only when both are tuned to a disparity

of zero are they strictly equivalent� The next sections review neurophysi�

ological evidence for position shifts and phase shifts� Then we propose an

experiment for estimating both the position�shifts and phase�shifts of both

simple and complex cells� based on their responses to drifting sinusoidal

grating stimuli of di�erent spatial frequencies and disparities�

����� Distribution of Preferred Disparities

One restriction on phase�shifted energy neurons stems from the fact that

phase shifts are unique only between �� and �� When combined with a

restricted spatial frequency bandwidth� this means that for any one spatial

frequency band� there is a limited range of disparities that one could hope

to detect� The upper limits are reached as the phase�shift approaches ��
�i�e�� half a wavelength� and the stimulus frequency approaches the lowest

spatial frequencies to which the neurons are responsive� This limitation of

the phase�shift model is particularly restrictive for neurons tuned to high

spatial frequencies� Thus if a broad distribution of preferred disparities is

found in a sample of neurons� relative to their preferred spatial frequencies�

then one can infer that position shifts occur�

In attempting to measure the range of preferred disparities caution must

be taken because eyes tend to drift and rotate under anaesthesia� To control

for this� Hubel � Wiesel ����	� introduced the reference�cell method� in
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which a binocular cell is recorded for an extended period to �nd the disparity

that elicits a maximal response� A second electrode is used to record from

other neurons� By adjusting disparity settings to maintain the maximal

response from the reference cell� one can track eye movements� Interestingly�

it is not necessary to track eye drift in the owl� as their eye movements are

negligible �Steinbach and Money� ���
��

In the cat� early reports gave a range of �
� for the distribution of pre�

ferred disparities �Barlow et al�� ������ Later studies using a reference�cell

method found that the range of preferred disparities of tuned�excitatory

cells in area �� is less than �� for eccentricities up to �� �Ferster� �����

LeVay and Voigt� ������ In the owl� the range of preferred disparities was

found to be�
��� �Pettigrew� ������ In anesthetized monkeys� cells with pre�

ferred disparities up to 
	� were documented in V
 �Hubel and Wiesel� ���	��

Studies on awake� behaving monkeys seldomly found preferred disparities

greater than �
� �crossed or uncrossed� for eccentricities within 
 degrees

of the fovea �Poggio and Fischer� ������ One would expect that cells in the

parafoveal region might have larger preferred disparities� but we are aware of

no quantitative data regarding this issue� In the monkey� near and far cells

often respond maximally at the largest disparities that have been tested �up

to ��� �Poggio and Fischer� ������ Near and far cells of cats cover a range

of at least ��� of disparity �Ferster� ����� LeVay and Voigt� ������

Unfortunately� spatial frequency tuning has usually not been measured

along with disparity tuning� However� data from Ohzawa and Freeman

�����a�b� suggest that the range of preferred spatial frequencies in disparity�

sensitive cells is similar to the overall range of preferred frequencies in

cat area ��� Assuming the same in the monkey� with foveal simple and

complex cells having preferred spatial frequencies between � and �	 cpd

�DeValois et al�� ��
b�� one can indirectly conclude that in monkeys� cats�

and owls the preferred disparities cover a range that is larger than one period

of the typical spatial frequency preference� This suggests that position�shifts

occur� but it does not rule out the existence of additional phase�shifts�

����� Monocular Receptive�Field Shape

To determine whether there are phase�shifts� a more elaborate method is

required� One method is to directly examine the shapes of the monocular

receptive �elds using white noise stimuli and reverse�correlation procedures�

Ohzawa et al� ������ and DeAngelis et al� ������ ����� applied this method

to simple cells in cat area ��� They then �tted Gabor functions to the

monocular receptive �elds and used the phase of the �tted Gabor func�
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tions as a measure of receptive �eld shape� They found that the monocular

receptive �eld shapes of binocular cells are often di�erent� Moreover� the

di�erences depend on orientation� cells tuned to horizontal orientations have

similar receptive �eld shapes� while cells tuned to near vertical orientations

exhibit a wide range of phase shifts �from 	� to ��	��� While these data show

that phase shifts exist� the existence of additional positional�shifts cannot

be excluded because eye movements were not strictly controlled�

This reverse�correlation procedure works well for simple cells as their

monocular responses depend strongly on the stimulus position within the re�

ceptive �eld� More sophisticated procedures� analyzing higher�order kernels

of the white noise responses� would be needed to determine the monocular

receptive �eld properties underlying disparity selectivity of complex cells�

����� Position� and Phase�Shifts of Simple Cells

Anzai et al� ������ used white noise stimuli to estimate the best �tting

Gabor functions to the monocular sub�elds of cat simple cells � From the

phases of the Gabor functions they estimate receptive �eld phase shifts�

From the locations of the centers of the �tted Gabor functions� with respect

to a reference cell� they estimate the receptive �eld position shift�

Their results suggest that both position� and phase�shifts contribute to

the disparity selectivity of binocular simple cells� Phase�shifts appear more

signi�cant at lower spatial frequencies� while position shifts contribute more

to the disparity selectivity in cells tuned to higher spatial frequencies�

����� Proposed Experiment for Estimating Position� and

Phase�Shifts of Simple and Complex Cells

The method used by Anzai et al� ������ applies only to simple cells� In ad�

dition� their analysis depends on the validity of the Gabor function receptive

�eld model� Here� we propose an experiment for estimating the phase�shift

and the position�shift of all binocular �both simple and complex� neurons�

Our method relies only on the cosinusoidal nature of the disparity tuning

curves �see Figure �����

The procedure is as follows� �� Measure disparity tuning curves with

drifting sinusoidal gratings of various spatial frequencies �j� As expressed

in equation ����
� the response of a binocular energy neuron depends cosi�

nusoidally on stimulus disparity� where the frequency of the cosinusoid is �j�

�� Fit a cosinusoidal function with frequency �j to each tuning curve� from

which a phase� denoted by ���j�� is obtained �see Figure ���A�� �� Plot these
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Fig� ���� �A� Cosinusoidal disparity tuning curve of a hybrid energy neuron� With
the peak closest to the origin �zero disparity� at � and an input spatial frequency of
� � ���� the phase of the cosinusoidal tuning curve is � � �	��� �B� This phase �
is a linear function of stimulus spatial frequency� the slope and intercept of which
give the position�shift and the phase�shift of the monocular receptive �elds�

�tted phase values ���j� as a function of spatial frequency� From equation

����
�� these �tted phase values should depend linearly on stimulus spatial

frequency� ���j� � 
��js��� as depicted in Figure ����B�� �� The slope of

the line gives the receptive �eld position shift s� and the y�intercept of the

line gives the receptive �eld phase�shift �� In particular� the slope equals


�s and the y�intercept equals ��n
�� Because � is unique only within ��
and �� one can �nd the phase�shift from the intercept by adding whatever

multiple of 
� is required to bring the result into the range ���� ���
Similar methods have been used to explore the encoding of interaural

time di�erences in the auditory system of cats �Yin � Kuwada� ���
�� In the

visual system this method can be used to measure position� and phase�shifts

in simple and complex cells� without requiring that the monocular receptive

�elds shapes be accurately localized or described� It is necessary however

to stabilize the eyes for the duration of the matrix of spatial frequency and

disparity conditions� If stabilization can not be guaranteed� then one could

de�ne disparity with respect to a reference cell�

��� Response Normalization

Many aspects of simple and complex cell responses are consistent with the

linear and energy models� However� the linear�energy model falls short of a

complete explanation of cell responses in primary visual cortex� One major

fault with the model is the fact that cell responses saturate �level o�� at

high contrasts� A second fault with the linear model is revealed by testing

superposition� A typical simple cell responds vigorously to its preferred

orientation but not at all to the perpendicular orientation� According to the
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linear model� the response to the superimposed pair of stimuli �preferred plus

perpendicular� should equal the response to the preferred stimulus alone� In

fact� the response to the superimposed pair is about half that predicted �e�g��

�Bonds� ������� a phenomenon known as cross�orientation suppression�

To explain response saturation� cross�orientation suppression� and other

violations of the linear�energy models� we and others have recently pro�

posed a new model of V� cell responses called the normalization model

�Robson et al�� ����� Albrecht and Geisler� ����� Heeger� ����� Heeger� ��
a�

Heeger� ���
� Carandini and Heeger� ����� Fleet et al�� ������ The normal�

ization model is based on an underlying linear stage� The linear stage is

followed by a normalization stage� where each neuron�s linear response to

the stimulus is divided by a quantity proportional to the pooled activity of a

large number of other neurons� Thus� the activity of a large pool of neurons

partially suppresses the response of each individual neuron� Normalization

is a nonlinear operation� one input �a neuron�s underlying linear response� is

divided by another input �the pooled activity of a large number of neurons��

The e�ect of this divisive suppression is that the response of each neuron is

normalized �rescaled� with respect to stimulus contrast�

The normalization model explains a large body of otherwise unexplained

physiological phenomena �Heeger� ��
a�� According to the model� a cell�s

selectivity is attributed to summation �the linear stage� and its nonlinear

behavior is attributed to division �the normalization stage�� The model ex�

plains response saturation because the divisive suppression increases with

stimulus contrast� The model explains cross�orientation suppression because

a given cell is suppressed by many other cells including those with perpen�

dicular orientation tunings�

Response normalization and gain control appear to be signi�cant in binoc�

ular neurons as well� With respect to the site of the normalization� there is

evidence for response normalization both before and after the combination

of signals from the two eyes�

In support of binocular normalization� Anzai et al� ������ found that

binocular neurons exhibit sub�linear binocular interactions� Binocular con�

trast response saturates at a higher �ring rate than the monocular curves�

but only by a factor of about
p

� In other words� the response to a binoc�

ular stimulus is less than the sum of the two responses to the component

monocular stimuli� In addition� Sclar et al� ������ reported that there is a

signi�cant interocular transfer of contrast adaptation�

In support of monocular normalization� the preponderance of evidence

implies that cross�orientation suppression is monocular� There is little or

no suppression when the preferred and perpendicular gratings are presented
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dichoptically �one in one eye and one in the other� �DeAngelis et al�� ���
�

Ohzawa and Freeman� ������ However� Bonds ������ found no evidence for

cross�orientation suppression in the LGN� suggesting that it occurs in the

cortex�

A second source of evidence for monocular normalization stems from a

surprising result reported by Freeman and Ohzawa ����	� and by Ohzawa

and Freeman ����
�� As mentioned above� simple and complex cells re�

spond with periodic disparity�tuning curves when stimulated with drifting

sinusoidal gratings� Freeman and Ohzawa measured the depth of modula�

tion of the periodic disparity�tuning curves while varying grating contrast

in one eye� As shown in Figure ��� they found that the depth of modulation

depends surprisingly little on interocular contrast di�erences�

The energy model predicts a strong dependence on interocular contrast

di�erences� As shown in Figure ���� when the left and right contrasts are

equal� then the depth of modulation is expected to be one� But when there

is a �	�fold di�erence in the left and right contrasts� the depth of modulation

predicted by the un�normalized energy model is below 	�
� This does not

agree with the data shown in Figure ���� The predictions in Figure ��� were

computed from equation ������ a cosinusoid modulating about a mean value

given by the sum of the monocular energies� and with an amplitude given

by twice the product of the monocular energies�

����� Binocular Normalization Model

There are two simple ways that the depth of modulation can be kept nearly

constant as the contrast of one eye�s input is changed� Both involve monoc�

ular normalization preceding the binocular summation in the energy model�

The �rst way� which we call the monocular gain model� involves independent

monocular normalization of the left� and right�eye responses� This is shown

schematically in Figure ���� The second way is an interocular model� where

the amplitude of the right eye�s response �plus an additive constant� acts

as a multiplicative gain for the left signal� and vice versa� In what follows

we will concentrate on the monocular gain model as this is more consistent

with the lack of interocular cross�orientation suppression�

After binocular summation of the �normalized� monocular signals� we pro�

pose that there is a second stage of binocular normalization� as depicted in

Figure ���� The binocular normalization stage is a straightforward extension

of the monocular normalization model proposed by Heeger ����
b��
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Monocular Normalization

The monocular normalization signal is the sum of a pool of recti�ed linear

responses plus a small constant �m� as shown in Figure ���� Since we use

half�squaring for the recti�er� the monocular gain can be computed either as

an average of the monocular half�squared �model simple cell� responses or as

an average of the monocular energy �complex cell� responses �Heeger� ��
b��

In either case the normalizing signal is proportional to the local Fourier

energy of the stimulus plus a small constant�

Formally� let bL���t�c� denote the half�squared response of a monocular�

left�eye� linear neuron� where bL��c� � L�� jL��j � Let El�t� be the local

monocular energy� i�e�� a local average of half�squared neurons with di�erent

orientation and spatial frequency preferences� and di�erent receptive �eld

phases� Then� the normalized� monocular� left�eye� response is�

�L���t� �
bL���t�c�
El�t� � �m

� ����
�

Since the energy in the denominator includes the half�squared response in

the numerator� the normalized response will saturate at high contrasts� The

�m parameter is called the monocular semi�saturation constant because it

determines the contrast that evokes half the maximum attainable response�

The right�eye responses are also normalized�

�R���t� �
bR���t�c�
Er�t� � �m

� ������

The inputs L���t� and R���t� to the energy model described by equation

����� are then replaced by �L���t� and �R���t�� as depicted in Figure ����

Note that there are now two stages of squaring in this model� half�squaring

before the monocular normalization� and then full�squaring in the binocular

energy computation� Even with this �extra� squaring step� the disparity

tuning of the binocular energy responses are still �very nearly� sinusoidal�

For the simulations results reported here� we used even and odd�symmetric

Gabor functions with a bandwidth of ��� octaves for the underlying linear

weighting functions� The monocular normalization signal was pooled over a

small� Gaussian weighted� spatial neighbourhood� the spatial extent of the

Gaussian window was equal to that of the Gabor weighting functions�

Binocular Normalization

The binocular normalization signal is the sum of a pool of binocular en�

ergy responses� The binocular pool includes the complete range of pre�

ferred binocular disparities �arising from position� and�or phase�shifts�� from
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within a small local spatial neighbourhood� But unlike the monocular nor�

malization� only neurons with the same spatial frequency and orientation

preference are included� Formally� we write the normalized binocular en�

ergy as follows

�E�t� �
E�t� s� ��

S�t� � �b
� ������

where

S�t� �
X
x� s� �

E�t� s� �� � ������

whereE�t� s� �� is the binocular energy response computed from the position�

and phase�shifted� monocularly normalized responses�

For the simulations reported here� we used position�shift energy neurons

with preferred disparities that span three wavelengths� The binocular nor�

malization signal was pooled over a Gaussian weighted spatial neighbour�

hood with standard deviation equal to that of the monocular spatial pooling�

����� Contrast Response of Normalized Energy Neurons

The full model includes some monocular neurons and some binocular neu�

rons� The monocular neurons in the model are identical to those in Heeger�s

����
a� normalization model� The contrast response function of these monoc�

ular model neurons is given by

R�c� � K
c�

c� � ��m
�

that is� a hyperbolic ratio function with an exponent of 
�

The contrast response curves of the model�s binocular neurons are simi�

lar� Figure ����A� shows monocular contrast response curves from a model

binocular energy neuron� The curves look like hyperbolic ratio functions

with an exponent slightly greater than 
� Although the binocular energy

neurons have gone through two squaring nonlinearities� the cumulative ef�

fect is an exponent between 
 and 
 �see Appendix��

The contrast�response curves also depend on the semi�saturation con�

stants� �m and �b� In particular� changing �m shifts the contrast response

curve laterally �Figure ���A�� As �b is increased� its e�ect eventually di�

minishes and the contrast response curve depends primarily on �m� If �b
is very small� however� then the contrast response curve shifts to the left

and becomes somewhat steeper �Figure ���B�� The slope on the log�contrast
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Fig� ��
� Monocular contrast response curves for a model binocular energy neuron�
�A� The three curves correspond to three di�erent values of 
m� with 
b held
constant� �B� The three curves correspond to three di�erent values of 
b� with 
m
held constant�

axis corresponds to roughly to the exponent of the hyperbolic ratio func�

tion� Therefore� Figure ����B� shows that the e�ective exponent depends

implicitly on �b �see Appendix��

Figure ���	�A� shows the monocular and the binocular contrast response

curves recorded extracellularly from a simple cell and a complex cell in the

cat A�� �Anzai et al�� ����a�� The binocular contrast response curves have a

lower threshold and rise somewhat more steeply than the monocular curves�

Moreover they saturate at a high �ring rate� Figure ���	�B� shows that a

normalized� energy neuron behaves similarly�

����� Stability of Depth of Modulation and Mean

As discussed above� a remarkable property of binocular neurons in A�� of

the cat is that the depth of modulation in their sinusoidal disparity tuning

curves is invariant to interocular contrast di�erences� In many cells� the

depth of modulation was largely una�ected even with �	�fold di�erences in

contrast between the right�eye and left�eye �Figure ����� The unnormalized

energy model predicts a ��fold decrease in the depth of modulation for a

�	�fold contrast di�erence �Figure ����� When normalization is included in

the model� however� the depth of modulation is signi�cantly less sensitive to

interocular contrast di�erences� as shown in Figure ����� The simulations

of the binocular energy neuron in Figures �����A�B� can be compared with

Freeman and Ohzawa�s data which is replotted here in Figures ����A�B��

Finally� Figure ���
 shows both the depth of modulation as a function of

left eye contrast� and the contrast�response curve for monocular �left eye�
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Fig� ����� �A� Monocular �left and right� circles� and binocular �squares� contrast
response curves for a simple cell and a complex cell in A�� of the cat �redrawn from
Anzai et al�� �


�� �B� Monocular and binocular contrast responses curves for a
normalized� binocular� energy neuron�

stimulation� These simulation results can be compared with Freeman and

Ohzawa�s data� replotted here in Figure ����E��

As explained in the appendix� the depth of modulation is controlled mainly

by the monocular semi�saturation constant �m� In these simulations we have

therefore set �m in order to keep the depth of modulation above 	����

��� Discussion

To understand the neural basis for stereoscopic vision one must address sev�

eral issues including the form of binocular interaction in simple and complex

cells� the basis for their disparity selectivity� and the way in which they en�

code disparity� This article examines an energy model of binocular interac�

tion with monocular and binocular response normalization� Disparity selec�

tivity of the model neurons arises from a combination of position�shifts and

phase�shifts between the monocular sub�elds of binocular receptive �elds�

Position� and phase�shifts have di�erent quantitative properties� and it is

argued that both likely contribute to the disparity selectivity of cells in V��
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Fig� ����� Disparity tuning curves� using drifting sinusoidal grating stimuli� of a
normalized� energy neuron� The contrast of the right�eye stimulus was �xed at

��� �A� When left�eye contrast is 
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Fig� ����� Depth of modulation �solid curve� as a function of left�eye contrast �with
right�eye contrast �xed at 
���� and monocular �left�eye� contrast�response curve
�dashed curve�� for a normalized� binocular energy neuron� The monocular �left
eye� contrast�response curve increases monotonically with contrast� but the depth
of modulation of the binocular response is largely una�ected by left�eye contrast�

The relative contribution of position� and phase�shift can be inferred by

measuring disparity�tuning curves using drifting sinusoidal grating stimuli

with several di�erent spatial frequencies�

The model also involves two stages of response normalization� There is a

monocular form of normalization that occurs before binocular interaction�

followed by normalization of binocular responses� These stages of normaliza�

tion help to account for observed properties of the monocular and binocular
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contrast response curves� Normalization also accounts for the invariance of

disparity tuning with response to interocular contrast di�erences�
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Appendix� Mathematical Notes on Binocular Normalization

According to equation ��� in Section ��
��� the response of an unnormalized

binocular energy neuron has the form

E�d� � ��l � ��r � 
�l�r cos�
��d� �

The response mean is ��l � ��r � and the amplitude of modulation is 
�l�r�

The depth of modulation� shown in Figure ���� is equal to the amplitude

divided by the mean� In the normalized model� ��l and ��r are replaced by

the normalized monocular energies

���l � �L�

� � �L�

��

���r � �R�

� � �R�

��

where �L� and the other normalized responses are de�ned by equation ���
�

The normalized binocular response is then approximately equal to�

�E�d� � ���l � ���r � 
��l ��r cos�
��d�

���l � ���r � �b

Both the mean response and the modulation amplitude of the response have

the same denominator� Thus the ratio of the modulation amplitude and the

mean response is given by


��l ��r
���l � ���r

�

Note that the depth of modulation does not depend on the binocular gain

parameter �b� Rather� it depends only on the monocular energies� which

depend on the input contrasts and the monocular gain parameter �m� Given

the contrasts of the left and right stimuli� and a desired depth of modulation�

one can solve for �m in closed form� In the simulations reported here� unless

otherwise stated� we set �m to 	�			��

The normalized binocular energy model has two squaring nonlinearities�
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The �rst� in equation ����
�� is monocular� The second occurs after binoc�

ular interaction� in equation ������ The monocular contrast response curves

shown in Figure ��� are well approximated by equation �����
� with an ex�

ponent between 
 and 
� rather than an exponent of � as one might expect�

To explain this� consider the binocular energy response when the right

stimulus contrast is zero� that is

�E �
�L�
�
� �L�

��

�L�
�
� �L�

��
� �b

������

One can derive this from equation ���� by setting �R� � �R�� � 	� If we

substitute the normalized monocular responses de�ned by equation ����
�

into equation ������� then we obtain

�E � L�
� � L�

��

L�
�
� L�

��
� �b�El � �m��

Here� El is the average broad�band monocular energy in the left stimulus�

For sine�grating stimuli this is constant and equal to c�l �

To simplify this expression further one can approximate L�
��L�

�� by �
�

l �

c�l A
�� If we ignore the attenuation of the response due to the sensitivity of

the neuron�s transfer function to the stimulus frequency �which introduces a

multiplicative constant�� then one can approximate L�
� � L��

� by c�l � This

allows us to write the energy response as

�E �
c�l

c�l � �b�c
�

l � �m��

�
c�l

c�l � �b�c
�

l � ��m � 
c�l �m�

�
c�l

c�l �� � �b� � 
c�l �b�m � �b��m
������

The third term in the denominator will usually be extremely small� because

�m is small in order to keep the depth of modulation stable� Thus� when cl is

relatively large� this third term can be ignored and the monocular contrast

response then simpli�es to

�E �
c�l

c�l �� � �b� � 
�b�m
� ������

Thus for larger contrasts� the contrast response resembles a hyperbolic ratio

function with an exponent of about 
� For smaller values of cl the third term

in the denominator of equation ������ remains signi�cant and the exponent



��

of the e�ective hyperbolic ratio function is between 
 and �� When �b is

small this e�ect is more evident�
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