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1.1 Introduction

Neurons sensitive to binocular disparity have been found in the visual cortex
of many mammals and in the visual wulst of the owl, and are thought to
play a significant role in stereopsis [Barlow et al., 1967, Nikara et al., 1968,
Hubel and Wiesel, 1970, Clarke et al., 1976, Pettigrew and Konishi, 1976, Poggio and Fischer, 1977,
Fischer and Kruger, 1979, Ferster, 1981, Poggio and Talbot, 1981, Ohzawa and Freeman, 986a,
Ohzawa and Freeman, 986b, LeVay and Voigt, 1988, Ohzawa et al., 1990, DeAngelis et al., 1991,
Wagner and Frost, 1993]. A number of physiologists have suggested that
disparity might be encoded by a shift of receptive-field position [Hubel and Wiesel, 1962,
Pettigrew et al., 1968, Pettigrew, 1972, Maske et al., 1984, Poggio et al., 1985,
Wagner and Frost, 1993]. According to this position-shift model, disparity
selective cells combine the outputs of similarly shaped, monocular receptive
fields from different retinal positions in the left and right eyes. More recently,
Ohzawa et al. (1990) and DeAngelis et al. (1991, 1995) have suggested that
disparity sensitivity might instead be a result of interocular phase shifts. In
this phase-shift model, the centers of the left- and right-eye receptive fields
coincide, but the arrangement of receptive field subregions is different.
This chapter presents a formal description and analysis of a binocular
energy model of disparity selectivity. According to this model, disparity
selectivity results from a combination of position-shifts and/or phase-shifts.
Our theoretical analysis suggests how one might perform an experiment
to estimate the relative contributions of phase and position shifts to the
disparity selectivity of binocular neurons, based on their responses to drifting
sinusoidal grating stimuli of different spatial frequencies and disparities.
We also show that for drifting grating stimuli, the binocular energy re-
sponse (with phase and/or position shifts) is a sinusoidal function of dispar-
ity, consistent with the physiology of neurons in primary visual cortex (area
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17) of the cat [Freeman and Ohzawa, 1990]. However, Freeman and Ohzawa
(1990) also found that the depth of modulation in the sinusoidal disparity
tuning curves was remarkably invariant to interocular contrast differences.
This is inconsistent with the binocular energy model.

As a consequence we propose a modified binocular energy model that
incorporates two stages of divisive normalization. The first normalization
stage is monocular, preceding the combination of signals from the two eyes.
The second normalization stage is binocular. Our simulation results demon-
strate that the normalized binocular energy model provides the required
stability of the depth of response modulation. Simulations also demonstrate
that the model’s monocular and binocular contrast response curves are con-
sistent with those of neurons in primary visual cortex.

1.2 Binocular Interaction and Disparity Selectivity

There are two major classes of neurons in primary visual cortex (V1 of
the monkey or A17 of the cat), namely, simple cells and complex cells
[Hubel and Wiesel, 1962]. Both types are selective for stimulus position and
orientation. They respond vigorously to stimuli of a preferred orientation,
but less well or not at all to stimuli of other orientations. Many neurons are
also disparity selective.

Disparity-sensitive cells are often divided into four types: tuned-excitatory,
tuned-inhibitory, near and far [Poggio and Fischer, 1977]. Disparity selec-
tivity in these different types might arise from different mechanisms [Poggio and Fischer, 1977,
Ferster, 1981] (but see [Nomura et al., 1990] for the opposite point of view).
Tuned-inhibitory, near and far cells usually receive a strong excitatory input
from one eye and an inhibitory input from the other eye (i.e., the monocular
inputs are unbalanced), and most of them do not show binocular facilita-
tion. Tuned-excitatory cells show a sharp response peak due to binocular
facilitation, the responses at disparities flanking the peak are often inhib-
ited, and they have balanced monocular inputs. This chapter is primarily
concerned with tuned-excitatory complex cells, although all of the analysis
and conclusions could be applied to tuned-excitatory simple cells as well.

1.2.1 Linear Neurons and Energy Neurons
There is a long tradition of modeling simple cells as linear neurons [Hubel and Wiesel, 1962,
Campbell et al., 1968, Campbell et al., 1969, Movshon et al., 978a, Ohzawa and Freeman, 986a,
Hamilton et al., 1989]. This model is attractive because a linear neuron can
be characterized with a relatively small number of measurements.
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Fig. 1.1. Receptive fields of model neurons. (A) A monocular, orientation selective,
linear neuron. Its response depends on a weighted sum of the stimulus intensi-
ties within its receptive field. Shaded ellipses depict inhibitory subregions of the
weighting function, and the unshaded ellipse depicts an excitatory subregion. (B)
A binocular linear neuron’s response depends on a weighted sum of the stimulus
intensities presented to both eyes. The reference points (black dots) below the
weighting functions indicate that the two weighting functions are in exact binocu-
lar correspondence. (C) A monocular energy neuron sums the squared responses of
two monocular, linear neurons. The weighting functions of the two linear neurons
are identical except for a 90° phase shift. (D) A binocular energy neuron sums
the squared responses of two binocular linear neurons. All four linear weighting
functions are centered in exact (monocular and binocular) retinal correspondence.



Figure 1.1(A) shows a schematic diagram of a monocular linear neuron.
A linear neuron’s response is a weighted sum of stimulus intensities within a
small region of the entire visual field, called the neuron’s receptive field. In
the illustration, the three ellipses depict subregions of the receptive field, one
with positive weights (the unshaded ellipse), and two with negative weights
(the shaded ellipses). The neuron is excited when a bright light is flashed
in the positive subregion, and inhibited when a bright light is flashed in
a negative subregion. Bright lights flashed simultaneously in both positive
and negative subregions tend to cancel. The positive and negative weights
are balanced so the neuron does not respond to blank stimuli. Rather, its
response is proportional to stimulus contrast, for patterned stimuli that vary
in intensity over space and time.

Figure 1.1(B) depicts a binocular linear neuron. This neuron’s response
depends on a weighted sum of the stimulus intensities presented to both
eyes. The left- and right-eye receptive fields are identical for the neuron
depicted in the figure, but this need not be the case in general. Also, the
left- and right-eye receptive fields of this particular linear neuron are in exact
binocular correspondence as indicated by the small reference points below
the weighting functions.

One problem with the linear model of simple cells is that linear neurons
can have negative responses because they sum input intensities using both
positive and negative weights. However, extracellular responses (firing rates)
of real neurons are, by definition, positive. Neurons with a high maintained
firing rate could encode positive and negative values by responding either
more or less than the maintained rate. But simple cells have very little main-
tained discharge. Instead, positive and negative values may be encoded by
two neurons, one responsible for the positive part and one for the negative
part. The two neurons are complements of one another; an excitatory subre-
gion of one neuron’s receptive field is aligned with an inhibitory subregion of
the other neuron’s receptive field. The response of each neuron is halfwave-
rectified so that only one of the two neurons has a non-zero response at any
given time. Simple cells are often characterized as halfwave-rectified linear
neurons (e.g., [Movshon et al., 978a, Heeger, 992b]).

Complex cells do not have discrete ON and OFF receptive field subre-
gions, and have been modeled as energy neurons [Adelson and Bergen, 1985,
Emerson et al., 1992, Heeger, 992b, Pollen and Ronner, 1983]. An energy
neuron sums the squared responses of a quadrature pair of linear neurons
that are 90° out of phase, but with otherwise identical tuning properties
(Fig. 1.1C). Equivalently, an energy neuron could sum the squared responses
of four halfwave-rectified, linear neurons.
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The monocular energy neuron depicted in Fig. 1.1(C) has one linear sub-
unit that is even-symmetric (even phase) and another that is odd-symmetric
(odd phase), but this is not necessary. The critical property is that the
two subunits must be in quadrature phase (90° phase shift). Although
simple cell weighting functions are not necessarily even- or odd-symmetric
[Field and Tolhurst, 1986, Heggelund, 1986, Jones and Palmer, 987a], the re-
ceptive fields of adjacent simple cells tend to exhibit 90° or 180° phase
relationships [Foster et al., 1983, Liu et al., 1992, Palmer and Davis, 1981,
Pollen and Ronner, 1981]. A local pool of simple cells thus provides the
right combination of signals for an ideal energy neuron. Approximately
the same behavior may be obtained by summing the squared responses of
many linear neurons (or halfwave-rectified, linear neurons), regardless of
their phase, but with receptive fields distributed over a local spatial region.

A binocular energy neuron [Ohzawa et al., 1990] is depicted in Fig. 1.1(D).
This neuron sums the squared responses of a quadrature pair of binocular
linear neurons. This chapter is primarily concerned with the behavior of
binocular energy neurons.

1.2.2 Disparity Selectivity: Position Shifts and Phase Shifts

Figure 1.2 depicts two ways that non-zero disparity preferences have been in-
troduced in models of disparity selectivity. The neuron depicted in Fig. 1.2(A)
is tuned for zero disparity because the locations of the monocular receptive
fields are in exact binocular correspondence (indicated relative to the ref-
erence points) and the two pairs of weighting functions are identical. A
non-zero disparity preference is introduced either by shifting the receptive
field positions (Fig. 1.2B) or the receptive field phases (Fig. 1.2C). Both of
the neurons in Fig. 1.2(B,C) are constructed to prefer uncrossed disparities;
to evoke a maximal response, a visual feature (line, edge, grating) should be
presented to the right eye in a position that is slightly shifted to the right.

1.3 Formalizing the Model

In order to examine the behavior of the model in detail, we derive formulas
for the responses of these model neurons. A table of symbols (table 1.1) is
provided to help the reader keep track of mathematical notation. In this
chapter, we concentrate on the special case of drifting sinusoidal grating
stimuli. The general case is discussed in detail in [Fleet et al., 1996]. We
begin with linear neurons and with binocular energy neurons tuned for zero
disparity. Then we introduce position-shifts and phase-shifts.
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Fig. 1.2. Disparity preferences of binocular energy neurons. (A) Zero disparity
preference. (B) Non-zero disparity preference is introduced by shifting the positions
of both right-eye receptive fields by the same amount (relative to the reference
points). (C) Non-zero disparity preference is introduced by shifting the phases of
both right-eye weighting functions, in this case by 90°.

1.3.1 Monocular Linear Neurons

A visual neuron is linear (obeying the superposition property) if and only if
its response is a weighted sum of the stimulus intensities. Mathematically,
the response of a monocular linear neuron is the inner product in space
and the convolution in time of a stimulus with the neuron’s spatiotempo-
ral weighting function. For a left-eye neuron with a weighting function
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Terms Definitions

cl,Cr left- and right-eye contrasts of a sinusoidal grating stimulus
& = (wg,wy,wy) spatiotemporal frequency of a sinusoidal grating stimulus
Ly, Lgg responses of quadrature, monocular (left-eye) linear neurons
Ry, Ry responses of monocular (right-eye) linear neurons

A= A(D) amplitude of linear neuron’s transfer function

pL=cA response amplitude of a monocular (left-eye) linear neuron

0 response phase of a linear neuron

By, Byo responses of binocular linear neurons

S receptive field position-shift

P receptive field phase-shift

d stimulus disparity

E(d) binocular energy response at retinal position z

E(d; s) response of binocular energy neuron with RF position-shift s
E(d; ¢) response of binocular energy neuron with RF phase-shift A
E(d; s, v) response of binocular hybrid energy neuron with

position-shift s and phase-shift )

Table 1.1. Symbol Table.

fi(z,y,t), with stimulus I;(z, y, t), the response is given by

/// fule, y, 1) Li(w, y, ¢ = 7) dwdydr . (1.1)

This triple integral is simply a weighted sum of the stimulus intensities over
a small spatial neighbourhood and recently past time. The output response
waveform, L(t), is the model equivalent of a post-stimulus time histogram
(PSTH), a measure of a cell’s average response per unit time.

A linear neuron can be characterized by its transfer function (i.e., the
Fourier transform of its weighting function). The transfer function has two
components, amplitude A(J) and phase 0(&), for each stimulus frequency.
Here, & = (wy,wy,w;) denotes the spatiotemporal frequency variables, with
spatial frequency in cycles/degree and temporal frequency in Hz.

Consider a drifting sinusoidal grating stimulus,

Ii(z, y, t) = ¢ sinQ2rw,z + 21wyy + 27wit) , (1.2)

where ¢; is the contrast of the grating. A linear neuron’s response to a
sinusoidal grating modulates sinusoidally over time with the same temporal
frequency as the stimulus. This can be written as

L(t) = pi(&) sin[2rwt + 6(J)], (1.3)

where p; (&) is the response amplitude (peak height), and 6(J) is the response
phase (relative peak latency).



Response amplitude depends on the amplitude component of the transfer
function, p;(&) = ¢;A(J). Response phase depends on the phase component
of the transfer function, 6(<J), and on the receptive field position relative
to the starting position of the drifting grating. A pair of monocular linear
neurons with identical weighting functions, but at different receptive field
positions, will respond with different phases. For example, let 8 be the
response phase of a neuron for a sine-grating stimulus with spatial frequency
w= ./ w2+ wg. The response phase of a similar neuron that is a distance of
s away (in the direction orthogonal to the stimulus orientation), would then
be 8 — 2wws. This phase behaviour is important below where position-shifts
are used to introduce non-zero disparity tuning in binocular neurons.

To simplify notation we use p, A and 6 in the equations below, dropping
the explicit dependence on &. It is important to remember that response
amplitude and phase depend on the stimulus spatiotemporal frequency.

1.3.2 Monocular Energy Neurons

The monocular energy model depicted in Figure 1.1C consists of quadrature
pairs of monocular linear neurons. These pairs of linear neurons have identi-
cal response amplitudes, but their response phases differ by 90 degrees. For
example, the responses of a quadrature pair of monocular (left-eye) linear
neurons can be expressed as:

Ly = p;sin(2nwit + 0)
Loy = p; cos(2mwit + 0).
The response amplitude, p; = ¢ A, is the same for both neurons, but the

response phases differ by 90 degrees. Note that we have ignored the depen-
dence of the response on time for notational simplicity.

1.3.3 Binocular Linear Neurons

A binocular linear neuron computes a weighted sum of the stimulus intensi-
ties presented to both eyes. It has two weighting functions, one for each eye,
as depicted in Figure 1.1B. For now, we will assume that the two monocular
weighting functions are identical and in exact binocular correspondence. We
can express the responses of a pair of binocular linear neurons as follows:

By = Lo+ Ry
Bgy = Lgo + Ry

where Ly, Ry, Lgg, and Rgg are responses of the monocular linear subunits.
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1.3.4 Binocular Energy Neurons

A binocular energy neuron (Figure 1.1D) sums the squared responses of a
quadrature pair of binocular linear neurons:

B = B}+ 5
= (Lo + Ro)* + (Loo + Roo)®
= Lj+ L% + R3 + R%, + 2RoLy + 2Ro Ly - (1.4)

For now, let us assume that the drifting sinusoidal grating has a disparity
of zero, so that it drifts over the same retinal positions in both eyes simulta-
neously. Let us further assume that the left and right monocular weighting
functions are identical and in exact binocular correspondence (as depicted
in Figures 1.1D and 1.2A). Then the left and right monocular responses are
equal to one another, and equation (1.4) reduces to

E = pj + p; + 201 (1.5)

where p? = L% + L3, = ¢?A? is the monocular left-eye energy, and p? =
R% + R2, = c2A? is the right-eye energy. The binocular energy response
clearly depends on stimulus contrast because p, and p; depend on contrast.

The binocular energy response also depends on stimulus disparity. Imag-
ine that we introduce a small stimulus disparity d by shifting the spatial
position of the sinusoidal grating in the right eye, in a direction perpendicu-
lar to the stimulus orientation. This will change the response phases of the
right-eye monocular responses, Ry and Rgg, by an amount equal to 2nwwd,
where w = /w2 + wg is the stimulus spatial frequency. With this additional
phase-offset, the the right-eye monocular responses become

Ry = p,sin(2rwt + 0 + 27wd)
Rooy = pp cos(2mwt + 0 + 27wd) .
One can then show that the binocular energy neuron response becomes
E(d) = p} + p? + 2ppr cos(2mwd) . (1.6)
To derive this equation from equation (1.4), use the trigonometry identity,
cos(a — ) = cos(a) cos(f) + sin(a) sin(f) ,

with o = 27wt + 0 4+ 2nwd and B = 27wt + 6.

The binocular energy response in equation (1.6) is a sum of three terms,
namely, the two monocular energies, 912 and p?, and a term that is a cosinu-
soidal function of the interocular phase difference. The response therefore
has a cosinusoidal dependence on binocular disparity. When d = 0, the
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cosine term is maximal, cos(0) = 1, so the response is greatest when the dis-
parity is zero. When d = 1/(2w), the cosine term is minimized, cos(m) = —1,
so the response is smallest when the disparity is one-half the grating period.
For disparities in between these two extremes, the binocular energy response
varies as the cosine of the disparity times the grating frequency. We say that
this model energy neuron has a preferred disparity of zero.

Equation (1.6) simplifies further when the drifting sinusoidal gratings pre-
sented to the two eyes have the same contrast:

E(d) = 2c2A% [1 4+ cos(2nwd)]. (1.7)

From equations (1.6) and (1.7) one can see that the binocular energy re-
sponse depends on the monocular energies and the binocular phase dif-
ference. The energy response does not depend directly on the individual
monocular phases 6; and 6,. Also note that when the stimulus is turned off
in one eye (e.g., if ¢ = 0) then the binocular energy response reduces to the
monocular energy in the other eye (e.g., p?).

The cosinusoidal dependence on disparity is consistent with physiolog-
ical data. Several studies have demonstrated that binocular simple and
complex cell responses exhibit a sinusoidal dependence on stimulus dis-
parity for drifting sinusoidal grating stimuli [Ohzawa and Freeman, 986a,
Ohzawa and Freeman, 986b, Hammond, 1991, Wagner and Frost, 1994].

However, as discussed below in Section 1.5, the contrast dependence of real
binocular neurons is not consistent with predictions of the binocular energy
model. Therefore we will have to modify the binocular energy model. But
first, we introduce position- and phase-shifts to construct binocular energy
neurons tuned for non-zero disparities.

1.3.5 Position-Shift Model

A non-zero disparity preference can be introduced by shifting the receptive
field position in one eye (Fig. 1.2B). As noted above in Section 1.3.1, the
response phase of a monocular linear neuron depends on receptive field po-
sition. If @ is the response phase for a sine-grating stimulus with spatial
frequency w = /w2 + wg, then after introducing a position shift (s) of the
receptive field in the direction orthogonal to the stimulus orientation, the
new response phase will be 0 — 2rws. If the right-eye stimulus is also shifted

by the disparity d, then the right-eye monocular responses become

Ry = p,sin(2rwit + 0 + 27w(d — s))
Ryoy = py cos(2rwyt + 0 + 27w(d — s))
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where s is the position shift of the right-eye monocular weighting functions.
Then, following the derivation above, the binocular energy response becomes

E(d; s) = pi + pi + 2p1py cos(2mw(d — s)) -
For equal contrast in both eyes, this simplifies to
E(d; s) = 2¢2A? [1 + cos(2nw(d — 5))] (1.8)

Peaks in the energy response occur whenever the cosine term is equal
to one. This happens when the disparity satisfies 2rw(s — d) = 0, i.e.,
when s = d. The cosine term is also one when the disparity is increased or
decreased by multiples of the stimulus wavelength, that is, when

n
d = s+ — 1.9
S w’ ( )

for integer values of n. Because n can be any integer, response peaks oc-
cur periodically as a function of stimulus disparity, spaced by the stimulus
wavelength.

Now consider what happens when you fix the stimulus disparity, but vary
the stimulus spatial frequency. One of the energy response peaks (n = 0)
always occurs when the disparity equals the position-shift d = s, indepen-
dent of the frequency of the input (Fig. 1.3A). In fact, this is a key prop-
erty of the position-shift model; the location of the primary response peak
does not depend on stimulus spatial frequency [Wagner and Frost, 1993,
Wagner and Frost, 1994]. The disparities of the other response peaks (n #
0), however, depend on stimulus frequency (see Fig. 1.3A).

1.3.6 Phase-Shift Model

Non-zero disparity preference can also be introduced by shifting the phase of
the monocular subfields (Fig. 1.2C). Formally, let 1) denote a phase shift of
the right-eye weighting functions. The right monocular responses are then

Ry = p, sin(wit + 0 — 1) + 2wwd)
Roy = pi cos(wit + 6 —p + 2mwd) .

Following the derivation used above, the binocular energy response becomes
E(d; ¢) = pi + p} + 2p1p, cos(2mwd — ¢) .
For equal contrast in both eyes, this simplifies to

E(d; ) = 2c¢*A? [1 + cos(2nwd — )] . (1.10)
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Fig. 1.3. Simulated disparity tuning curves of binocular energy neurons for drifting
sine-grating stimuli. (A) A position-shift neuron with a preferred disparity of 6, and
stimulus wavelengths spanning 1.5 octaves. The dashed line shows the alignment
of primary response peaks. (B and C) Energy neurons with different phase-shifts,
and different stimulus frequency ranges. A systematic shift in peak responses is
evident for wide frequency ranges (in B) and for large phase-shifts (in C).

Peaks in the energy response now occur when 2nwd — ¢ = n2x, i.e., when

P n
d = — +—. 1.11
27rw+w ( )

As illustrated in Figure 1.3(B,C), this means that the neuron’s “disparity
preference” depends in a systematic way on the stimulus frequency. Even
the primary response peak (n = 0) depends on the stimulus spatial fre-
quency, since d = 1/(27w) in this case. The range of possible “disparity
preferences” depends on the range of spatial frequencies to which the neu-
ron responds (i.e., the spatial frequency bandwidth), and on the neuron’s
interocular phase shift. It would be inaccurate to say that a phase-shifted
binocular energy neuron has a unique preferred disparity.

Position-shifts and phase-shifts (s and 1) have different effects on dispar-
ity tuning. One way to discriminate phase-shift neurons from position-shift
neurons is to measure disparity tuning curves for sine-grating stimuli with
different spatial frequencies. For a position-shift neuron, the primary re-
sponse peak occurs at a single preferred disparity (i.e., the position shift)
for all frequencies. For a phase-shift neuron, peaks in the tuning curves
will occur at different disparities for different frequencies. Data of this sort
have been obtained for the owl (Wagner & Frost, 1993, 1994), and are more
consistent with the position-shift model.
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1.3.7 Hybrid Model

As discussed below, the disparity selectivity of binocular neurons in cat and
monkey primary visual cortices is probably due to a combination of position
shifts and phase shifts. It is therefore natural to consider a hybrid model that
incorporates both. Using the same analysis as above, with equal contrasts
in the two eyes, one can show that the response of a hybrid binocular energy
model, with a position shift s and a phase shift ¢, is given by

E(d;s,1) = 2c¢*A% [1+ cos(2mw(d — s) — )] (1.12)

The response, E(d; s,1)), now depends cosinusoidally on both the position
shift s and the phase shift .

1.4 Experimental Support for Position-Shifts and Phase-Shifts

The position-shift model involves binocular combinations of monocular re-
ceptive fields of similar shape at different retinal positions, while the phase-
shift model combines monocular receptive fields with different shapes from
the corresponding retinal locations. Only when both are tuned to a disparity
of zero are they strictly equivalent. The next sections review neurophysi-
ological evidence for position shifts and phase shifts. Then we propose an
experiment for estimating both the position-shifts and phase-shifts of both
simple and complex cells, based on their responses to drifting sinusoidal
grating stimuli of different spatial frequencies and disparities.

1.4.1 Distribution of Preferred Disparities

One restriction on phase-shifted energy neurons stems from the fact that
phase shifts are unique only between —7 and 7. When combined with a
restricted spatial frequency bandwidth, this means that for any one spatial
frequency band, there is a limited range of disparities that one could hope
to detect. The upper limits are reached as the phase-shift approaches +x
(i.e., half a wavelength) and the stimulus frequency approaches the lowest
spatial frequencies to which the neurons are responsive. This limitation of
the phase-shift model is particularly restrictive for neurons tuned to high
spatial frequencies. Thus if a broad distribution of preferred disparities is
found in a sample of neurons, relative to their preferred spatial frequencies,
then one can infer that position shifts occur.

In attempting to measure the range of preferred disparities caution must
be taken because eyes tend to drift and rotate under anaesthesia. To control
for this, Hubel & Wiesel (1970) introduced the reference-cell method, in
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which a binocular cell is recorded for an extended period to find the disparity
that elicits a maximal response. A second electrode is used to record from
other neurons. By adjusting disparity settings to maintain the maximal
response from the reference cell, one can track eye movements. Interestingly,
it is not necessary to track eye drift in the owl, as their eye movements are
negligible [Steinbach and Money, 1973].

In the cat, early reports gave a range of £3° for the distribution of pre-
ferred disparities [Barlow et al., 1967]. Later studies using a reference-cell
method found that the range of preferred disparities of tuned-excitatory
cells in area 17 is less than 1° for eccentricities up to 8° [Ferster, 1981,
LeVay and Voigt, 1988]. In the owl, the range of preferred disparities was
found to be £2.5° [Pettigrew, 1979]. In anesthetized monkeys, cells with pre-
ferred disparities up to 30" were documented in V2 [Hubel and Wiesel, 1970].
Studies on awake, behaving monkeys seldomly found preferred disparities
greater than 12’ (crossed or uncrossed) for eccentricities within 2 degrees
of the fovea [Poggio and Fischer, 1977]. One would expect that cells in the
parafoveal region might have larger preferred disparities, but we are aware of
no quantitative data regarding this issue. In the monkey, near and far cells
often respond maximally at the largest disparities that have been tested (up
to 1°) [Poggio and Fischer, 1977]. Near and far cells of cats cover a range
of at least +5° of disparity [Ferster, 1981, LeVay and Voigt, 1988].

Unfortunately, spatial frequency tuning has usually not been measured
along with disparity tuning. However, data from Ohzawa and Freeman
(1986a,b) suggest that the range of preferred spatial frequencies in disparity-
sensitive cells is similar to the overall range of preferred frequencies in
cat area 17. Assuming the same in the monkey, with foveal simple and
complex cells having preferred spatial frequencies between 1 and 10 cpd
[DeValois et al., 982b], one can indirectly conclude that in monkeys, cats,
and owls the preferred disparities cover a range that is larger than one period
of the typical spatial frequency preference. This suggests that position-shifts
occur, but it does not rule out the existence of additional phase-shifts.

1.4.2 Monocular Receptive-Field Shape

To determine whether there are phase-shifts, a more elaborate method is
required. One method is to directly examine the shapes of the monocular
receptive fields using white noise stimuli and reverse-correlation procedures.
Ohzawa et al. (1991) and DeAngelis et al. (1991, 1995) applied this method
to simple cells in cat area 17. They then fitted Gabor functions to the
monocular receptive fields and used the phase of the fitted Gabor func-
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tions as a measure of receptive field shape. They found that the monocular
receptive field shapes of binocular cells are often different. Moreover, the
differences depend on orientation; cells tuned to horizontal orientations have
similar receptive field shapes, while cells tuned to near vertical orientations
exhibit a wide range of phase shifts (from 0° to 180°). While these data show
that phase shifts exist, the existence of additional positional-shifts cannot
be excluded because eye movements were not strictly controlled.

This reverse-correlation procedure works well for simple cells as their
monocular responses depend strongly on the stimulus position within the re-
ceptive field. More sophisticated procedures, analyzing higher-order kernels
of the white noise responses, would be needed to determine the monocular
receptive field properties underlying disparity selectivity of complex cells.

1.4.3 Position- and Phase-Shifts of Simple Cells

Anzai et al. (1995) used white noise stimuli to estimate the best fitting
Gabor functions to the monocular subfields of cat simple cells . From the
phases of the Gabor functions they estimate receptive field phase shifts.
From the locations of the centers of the fitted Gabor functions, with respect
to a reference cell, they estimate the receptive field position shift.

Their results suggest that both position- and phase-shifts contribute to
the disparity selectivity of binocular simple cells. Phase-shifts appear more
significant at lower spatial frequencies, while position shifts contribute more
to the disparity selectivity in cells tuned to higher spatial frequencies.

1.4.4 Proposed Experiment for Estimating Position- and
Phase-Shifts of Simple and Complex Cells

The method used by Anzai et al. (1995) applies only to simple cells. In ad-
dition, their analysis depends on the validity of the Gabor function receptive
field model. Here, we propose an experiment for estimating the phase-shift
and the position-shift of all binocular (both simple and complex) neurons.
Our method relies only on the cosinusoidal nature of the disparity tuning
curves (see Figure 1.4).

The procedure is as follows: 1) Measure disparity tuning curves with
drifting sinusoidal gratings of various spatial frequencies w;. As expressed
in equation (1.12) the response of a binocular energy neuron depends cosi-
nusoidally on stimulus disparity, where the frequency of the cosinusoid is w;.
2) Fit a cosinusoidal function with frequency w; to each tuning curve, from
which a phase, denoted by ®(wj), is obtained (see Figure 1.4A). 3) Plot these
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Fig. 1.4. (A) Cosinusoidal disparity tuning curve of a hybrid energy neuron. With
the peak closest to the origin (zero disparity) at § and an input spatial frequency of
w = 1/A, the phase of the cosinusoidal tuning curve is ® = 27déw. (B) This phase ®
is a linear function of stimulus spatial frequency, the slope and intercept of which
give the position-shift and the phase-shift of the monocular receptive fields.

fitted phase values ®(w;) as a function of spatial frequency. From equation
(1.12), these fitted phase values should depend linearly on stimulus spatial
frequency, ®(w;) = 2mw;s + 1, as depicted in Figure 1.4(B). 4) The slope of
the line gives the receptive field position shift s, and the y-intercept of the
line gives the receptive field phase-shift 1. In particular, the slope equals
27rs and the y-intercept equals ¢ +n27. Because v is unique only within —n
and 7, one can find the phase-shift from the intercept by adding whatever
multiple of 27 is required to bring the result into the range (—m, 7).

Similar methods have been used to explore the encoding of interaural
time differences in the auditory system of cats (Yin & Kuwada, 1983). In the
visual system this method can be used to measure position- and phase-shifts
in simple and complex cells, without requiring that the monocular receptive
fields shapes be accurately localized or described. It is necessary however
to stabilize the eyes for the duration of the matrix of spatial frequency and
disparity conditions. If stabilization can not be guaranteed, then one could
define disparity with respect to a reference cell.

1.5 Response Normalization

Many aspects of simple and complex cell responses are consistent with the
linear and energy models. However, the linear/energy model falls short of a
complete explanation of cell responses in primary visual cortex. One major
fault with the model is the fact that cell responses saturate (level off) at
high contrasts. A second fault with the linear model is revealed by testing
superposition. A typical simple cell responds vigorously to its preferred
orientation but not at all to the perpendicular orientation. According to the
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linear model, the response to the superimposed pair of stimuli (preferred plus
perpendicular) should equal the response to the preferred stimulus alone. In
fact, the response to the superimposed pair is about half that predicted (e.g.,
[Bonds, 1989]), a phenomenon known as cross-orientation suppression.

To explain response saturation, cross-orientation suppression, and other
violations of the linear/energy models, we and others have recently pro-
posed a new model of V1 cell responses called the normalization model
[Robson et al., 1991, Albrecht and Geisler, 1991, Heeger, 1991, Heeger, 992a,
Heeger, 1993, Carandini and Heeger, 1994, Fleet et al., 1995]. The normal-
ization model is based on an underlying linear stage. The linear stage is
followed by a normalization stage, where each neuron’s linear response to
the stimulus is divided by a quantity proportional to the pooled activity of a
large number of other neurons. Thus, the activity of a large pool of neurons
partially suppresses the response of each individual neuron. Normalization
is a nonlinear operation: one input (a neuron’s underlying linear response) is
divided by another input (the pooled activity of a large number of neurons).
The effect of this divisive suppression is that the response of each neuron is
normalized (rescaled) with respect to stimulus contrast.

The normalization model explains a large body of otherwise unexplained
physiological phenomena [Heeger, 992a]. According to the model, a cell’s
selectivity is attributed to summation (the linear stage) and its nonlinear
behavior is attributed to division (the normalization stage). The model ex-
plains response saturation because the divisive suppression increases with
stimulus contrast. The model explains cross-orientation suppression because
a given cell is suppressed by many other cells including those with perpen-
dicular orientation tunings.

Response normalization and gain control appear to be significant in binoc-
ular neurons as well. With respect to the site of the normalization, there is
evidence for response normalization both before and after the combination
of signals from the two eyes.

In support of binocular normalization, Anzai et al. (1995) found that
binocular neurons exhibit sub-linear binocular interactions. Binocular con-
trast response saturates at a higher firing rate than the monocular curves,
but only by a factor of about v/2. In other words, the response to a binoc-
ular stimulus is less than the sum of the two responses to the component
monocular stimuli. In addition, Sclar et al. (1985) reported that there is a
significant interocular transfer of contrast adaptation.

In support of monocular normalization, the preponderance of evidence
implies that cross-orientation suppression is monocular. There is little or
no suppression when the preferred and perpendicular gratings are presented
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dichoptically (one in one eye and one in the other) [DeAngelis et al., 1992,
Ohzawa and Freeman, 1994]. However, Bonds (1989) found no evidence for
cross-orientation suppression in the LGN, suggesting that it occurs in the
cortex.

A second source of evidence for monocular normalization stems from a
surprising result reported by Freeman and Ohzawa (1990) and by Ohzawa
and Freeman (1993). As mentioned above, simple and complex cells re-
spond with periodic disparity-tuning curves when stimulated with drifting
sinusoidal gratings. Freeman and Ohzawa measured the depth of modula-
tion of the periodic disparity-tuning curves while varying grating contrast
in one eye. As shown in Figure 1.5 they found that the depth of modulation
depends surprisingly little on interocular contrast differences.

The energy model predicts a strong dependence on interocular contrast
differences. As shown in Figure 1.6, when the left and right contrasts are
equal, then the depth of modulation is expected to be one. But when there
is a 10-fold difference in the left and right contrasts, the depth of modulation
predicted by the un-normalized energy model is below 0.2. This does not
agree with the data shown in Figure 1.5. The predictions in Figure 1.6 were
computed from equation (1.6); a cosinusoid modulating about a mean value
given by the sum of the monocular energies, and with an amplitude given
by twice the product of the monocular energies.

1.5.1 Binocular Normalization Model

There are two simple ways that the depth of modulation can be kept nearly
constant as the contrast of one eye’s input is changed. Both involve monoc-
ular normalization preceding the binocular summation in the energy model.
The first way, which we call the monocular gain model, involves independent
monocular normalization of the left- and right-eye responses. This is shown
schematically in Figure 1.7. The second way is an interocular model, where
the amplitude of the right eye’s response (plus an additive constant) acts
as a multiplicative gain for the left signal, and vice versa. In what follows
we will concentrate on the monocular gain model as this is more consistent
with the lack of interocular cross-orientation suppression.

After binocular summation of the (normalized) monocular signals, we pro-
pose that there is a second stage of binocular normalization, as depicted in
Figure 1.8. The binocular normalization stage is a straightforward extension
of the monocular normalization model proposed by Heeger (1992b).
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Fig. 1.5. (A) Response as a function of disparity for drifting grating stimuli with
equal (50%) contrasts in both eyes. The disparity tuning curve is nearly sinusoidal.
(B) Response as a function of disparity when the left eye contrast is reduced to 5%.
The mean response drops somewhat but the depth of modulation is virtually unaf-
fected. (C) Left and right stimulus intensity profiles for binocular phase differences
of 0, 90, 180, and 270 degrees. (D) Depth of modulation is defined as the amplitude
of the first harmonic divided by the mean response. (E) Depth of modulation of the
binocular response as a function of left eye contrast (with right eye contrast fixed at
50%), and response as a function of contrast for monocular (left eye) stimulation.
The monocular (left eye) contrast-response curve increases monotonically with con-
trast, but the depth of modulation of the binocular response is virtually unaffected
by left eye contrast. (F) Mean and standard deviation of depth of modulation for
21 cells as left eye contrast was varied. (Redrawn from Freeman and Ohzawa, 1990
and Ohzawa and Freeman, 1993).
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Fig. 1.6. Depth of modulation prediction of unnormalized energy model, as a func-
tion of the ratio of contrasts in the right and left stimuli.
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Fig. 1.7. Monocular component of response normalization. The left and right
monocular neurons are normalized separately. The normalization pool includes
a range of spatial positions, a range of spatial frequency preferences, and all orien-
tation preferences.
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Fig. 1.8. Binocular component of response normalization. The binocular normal-
ization pool includes a range of spatial positions, and all disparity preferences.
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Monocular Normalization

The monocular normalization signal is the sum of a pool of rectified linear
responses plus a small constant o,,, as shown in Figure 1.7. Since we use
half-squaring for the rectifier, the monocular gain can be computed either as
an average of the monocular half-squared (model simple cell) responses or as
an average of the monocular energy (complex cell) responses [Heeger, 992b].
In either case the normalizing signal is proportional to the local Fourier
energy of the stimulus plus a small constant.

Formally, let | Lgo(t)]? denote the half-squared response of a monocular,
left-eye, linear neuron, where |Lgg|? = Log |Loo|. Let Ej(t) be the local
monocular energy, i.e., a local average of half-squared neurons with different
orientation and spatial frequency preferences, and different receptive field
phases. Then, the normalized, monocular, left-eye, response is:

| Lgo(t)]?
E/(t) + om

Since the energy in the denominator includes the half-squared response in

Loo(t) = (1.13)

the numerator, the normalized response will saturate at high contrasts. The

o, parameter is called the monocular semi-saturation constant because it

determines the contrast that evokes half the maximum attainable response.
The right-eye responses are also normalized:

| Rgo(t)]?

Ryo(t) = () +om

(1.14)
The inputs Lgo(t) and Rgp(t) to the energy model described by equation
(1.4) are then replaced by Lgg(t) and Rgo(t), as depicted in Figure 1.7.
Note that there are now two stages of squaring in this model; half-squaring
before the monocular normalization, and then full-squaring in the binocular
energy computation. Even with this “extra” squaring step, the disparity
tuning of the binocular energy responses are still (very nearly) sinusoidal.
For the simulations results reported here, we used even and odd-symmetric
Gabor functions with a bandwidth of 1.5 octaves for the underlying linear
weighting functions. The monocular normalization signal was pooled over a
small, Gaussian weighted, spatial neighbourhood; the spatial extent of the
Gaussian window was equal to that of the Gabor weighting functions.

Binocular Normalization

The binocular normalization signal is the sum of a pool of binocular en-
ergy responses. The binocular pool includes the complete range of pre-
ferred binocular disparities (arising from position- and /or phase-shifts), from
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within a small local spatial neighbourhood. But unlike the monocular nor-
malization, only neurons with the same spatial frequency and orientation
preference are included. Formally, we write the normalized binocular en-
ergy as follows

B(t; s, )

E(t) = S +oy, (1.15)

where

Sty = > E(ts, ¢), (1.16)
T,s,Y

where E(t; s, 1) is the binocular energy response computed from the position-
and phase-shifted, monocularly normalized responses.

For the simulations reported here, we used position-shift energy neurons
with preferred disparities that span three wavelengths. The binocular nor-
malization signal was pooled over a Gaussian weighted spatial neighbour-
hood with standard deviation equal to that of the monocular spatial pooling.

1.5.2 Contrast Response of Normalized Energy Neurons

The full model includes some monocular neurons and some binocular neu-
rons. The monocular neurons in the model are identical to those in Heeger’s
(1992a) normalization model. The contrast response function of these monoc-
ular model neurons is given by

c2

Rle)=K ———
(c) 2+ o2

)
that is, a hyperbolic ratio function with an exponent of 2.

The contrast response curves of the model’s binocular neurons are simi-
lar: Figure 1.9(A) shows monocular contrast response curves from a model
binocular energy neuron. The curves look like hyperbolic ratio functions
with an exponent slightly greater than 2. Although the binocular energy
neurons have gone through two squaring nonlinearities, the cumulative ef-
fect is an exponent between 2 and 3 (see Appendix).

The contrast-response curves also depend on the semi-saturation con-
stants, o, and op. In particular, changing o, shifts the contrast response
curve laterally (Figure 1.9A). As oy is increased, its effect eventually di-
minishes and the contrast response curve depends primarily on o,,. If g
is very small, however, then the contrast response curve shifts to the left
and becomes somewhat steeper (Figure 1.9B). The slope on the log-contrast
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Fig. 1.9. Monocular contrast response curves for a model binocular energy neuron.
(A) The three curves correspond to three different values of o,,, with o, held
constant. (B) The three curves correspond to three different values of oy, with oy,
held constant.

axis corresponds to roughly to the exponent of the hyperbolic ratio func-
tion. Therefore, Figure 1.9(B) shows that the effective exponent depends
implicitly on o} (see Appendix).

Figure 1.10(A) shows the monocular and the binocular contrast response
curves recorded extracellularly from a simple cell and a complex cell in the
cat A17 [Anzai et al., 1995a]. The binocular contrast response curves have a
lower threshold and rise somewhat more steeply than the monocular curves.
Moreover they saturate at a high firing rate. Figure 1.10(B) shows that a
normalized, energy neuron behaves similarly.

1.5.3 Stability of Depth of Modulation and Mean

As discussed above, a remarkable property of binocular neurons in A17 of
the cat is that the depth of modulation in their sinusoidal disparity tuning
curves is invariant to interocular contrast differences. In many cells, the
depth of modulation was largely unaffected even with 10-fold differences in
contrast between the right-eye and left-eye (Figure 1.5). The unnormalized
energy model predicts a 5-fold decrease in the depth of modulation for a
10-fold contrast difference (Figure 1.6). When normalization is included in
the model, however, the depth of modulation is significantly less sensitive to
interocular contrast differences, as shown in Figure 1.11. The simulations
of the binocular energy neuron in Figures 1.11(A,B) can be compared with
Freeman and Ohzawa’s data which is replotted here in Figures 1.5(A,B).
Finally, Figure 1.12 shows both the depth of modulation as a function of
left eye contrast, and the contrast-response curve for monocular (left eye)
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Fig. 1.10. (A) Monocular (left and right, circles) and binocular (squares) contrast
response curves for a simple cell and a complex cell in A17 of the cat (redrawn from
Anzai et al., 1995). (B) Monocular and binocular contrast responses curves for a
normalized, binocular, energy neuron.

stimulation. These simulation results can be compared with Freeman and
Ohzawa’s data, replotted here in Figure 1.5(E).

As explained in the appendix, the depth of modulation is controlled mainly
by the monocular semi-saturation constant o,,. In these simulations we have
therefore set o, in order to keep the depth of modulation above 0.95.

1.6 Discussion

To understand the neural basis for stereoscopic vision one must address sev-
eral issues including the form of binocular interaction in simple and complex
cells, the basis for their disparity selectivity, and the way in which they en-
code disparity. This article examines an energy model of binocular interac-
tion with monocular and binocular response normalization. Disparity selec-
tivity of the model neurons arises from a combination of position-shifts and
phase-shifts between the monocular subfields of binocular receptive fields.
Position- and phase-shifts have different quantitative properties, and it is
argued that both likely contribute to the disparity selectivity of cells in V1.
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the left-eye contrast is 5% the depth of modulation decreases only slight to 0.95.
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Fig. 1.12. Depth of modulation (solid curve) as a function of left-eye contrast (with
right-eye contrast fixed at 50%), and monocular (left-eye) contrast-response curve
(dashed curve), for a normalized, binocular energy neuron. The monocular (left
eye) contrast-response curve increases monotonically with contrast, but the depth
of modulation of the binocular response is largely unaffected by left-eye contrast.

The relative contribution of position- and phase-shift can be inferred by
measuring disparity-tuning curves using drifting sinusoidal grating stimuli
with several different spatial frequencies.

The model also involves two stages of response normalization. There is a
monocular form of normalization that occurs before binocular interaction,
followed by normalization of binocular responses. These stages of normaliza-
tion help to account for observed properties of the monocular and binocular
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contrast response curves. Normalization also accounts for the invariance of
disparity tuning with response to interocular contrast differences.
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Appendix: Mathematical Notes on Binocular Normalization

According to equation 1.6 in Section 1.3.4, the response of an unnormalized
binocular energy neuron has the form

E(d) = pf + p? + 2pip, cos(2mwd) .

The response mean is p? + p2, and the amplitude of modulation is 2p;p,.
The depth of modulation, shown in Figure 1.6, is equal to the amplitude
divided by the mean. In the normalized model, plZ and p? are replaced by
the normalized monocular energies

pi = Lg+ L
o R R
where Lo and the other normalized responses are defined by equation 1.13.

The normalized binocular response is then approximately equal to:

Eu)%ﬁ%+ﬁ+mwwmww®
pi + P2+ o

Both the mean response and the modulation amplitude of the response have
the same denominator. Thus the ratio of the modulation amplitude and the
mean response is given by
2p1pr
P+ pt
Note that the depth of modulation does not depend on the binocular gain
parameter o,. Rather, it depends only on the monocular energies, which
depend on the input contrasts and the monocular gain parameter o,,. Given
the contrasts of the left and right stimuli, and a desired depth of modulation,
one can solve for o,, in closed form. In the simulations reported here, unless
otherwise stated, we set o, to 0.0005.
The normalized binocular energy model has two squaring nonlinearities.
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The first, in equation (1.13), is monocular. The second occurs after binoc-
ular interaction, in equation (1.4). The monocular contrast response curves
shown in Figure 1.9 are well approximated by equation (1.5.2) with an ex-
ponent between 2 and 3, rather than an exponent of 4 as one might expect.

To explain this, consider the binocular energy response when the right
stimulus contrast is zero, that is

_ L3+ L}
= 72 . 72

(1.17)

One can derive this from equation 1.15 by setting Ry = Rgy = 0. If we
substitute the normalized monocular responses defined by equation (1.13)
into equation (1.17), then we obtain

. L + L3,
Ly + Ly + ou(Ey +om)?

Here, E; is the average broad-band monocular energy in the left stimulus.
For sine-grating stimuli this is constant and equal to c;.

To simplify this expression further one can approximate L3 4 L§, by p;l =
c} AL, If we ignore the attenuation of the response due to the sensitivity of
the neuron’s transfer function to the stimulus frequency (which introduces a
multiplicative constant), then one can approximate Lo* + Lgo* by c?. This
allows us to write the energy response as

4
_ c;

E =
ct + op(c + op)?
i
ct + op(ct + 02, + 2ctom)
- i (1.18)
¢} (1 + 0p) + 2¢iopom + 0402,

The third term in the denominator will usually be extremely small, because
0, 18 small in order to keep the depth of modulation stable. Thus, when ¢; is
relatively large, this third term can be ignored and the monocular contrast
response then simplifies to

2

_ C
E = L . 1.19
e (1+ op) + 20401, (1.19)

Thus for larger contrasts, the contrast response resembles a hyperbolic ratio
function with an exponent of about 2. For smaller values of ¢; the third term
in the denominator of equation (1.18) remains significant and the exponent
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of the effective hyperbolic ratio function is between 2 and 4. When oy, is
small this effect is more evident.
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