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Shared Kernel Information Embedding
for Discriminative Inference

Roland Memisevic, Leonid Sigal, Member, IEEE, and David J. Fleet, Senior Member, IEEE

Abstract—Latent variable models, such as the GPLVM and related methods, help mitigate overfitting when learning from small or
moderately sized training sets. Nevertheless, existing methods suffer from several problems: 1) complexity, 2) the lack of explicit
mappings to and from the latent space, 3) an inability to cope with multimodality, and 4) the lack of a well-defined density over the latent
space. We propose an LVM called the Kernel Information Embedding (KIE) that defines a coherent joint density over the input and a
learned latent space. Learning is quadratic, and it works well on small data sets. We also introduce a generalization, the shared KIE
(sKIE), that allows us to model multiple input spaces (e.g., image features and poses) using a single, shared latent representation. KIE
and sKIE permit missing data during inference and patrtially labeled data during learning. We show that with data sets too large to learn
a coherent global model, one can use the sKIE to learn local online models. We use sKIE for human pose inference.

Index Terms—Latent variable models, kernel information embedding, inference, nonparametric, mutual information.

1 INTRODUCTION

MANY computer vision problems can be expressed as
inference tasks on high-dimensional observations
and/or high-dimensional unknowns, such as image fea-
tures, pose representations, or object descriptions. Non-
linear latent variable models are increasingly used to
resolve the well-known problems associated with such
high-dimensional data. By utilizing the low-dimensional,
nonlinear structure often inherent in such data sets, latent
variable models are commonly used to improve perfor-
mance in classification, recognition, and parameter estima-
tion tasks. A common modeling assumption underlying
many latent variable methods is that data are distributed
along a lower dimensional, homogeneous manifold, or
“sheet,” in the high-dimensional data space. Learning
amounts to estimating a parameterization of this manifold,
and inference to finding a latent representative in this
parameterization, given a high-dimensional query point not
seen during training [1], [2], [3], [4].

The metaphor of a well-sampled, low-dimensional
“sheet,” unfortunately, is not always appropriate in real-
world problems, where data can consist of multiple distinct
clusters or “submanifolds,” or where the intrinsic dimen-
sionality can be different in different parts of the data space.
Even when data are distributed along a homogeneous
manifold, inference is often not unique, due to manifold
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curvature and noise. Consider, for example, a query point
centered in a curved part of a one-dimensional manifold
embedded in a higher dimensional space (e.g., see Fig. 4).
When the query point has approximately the same
euclidean distance to two points along the manifold, it is
not clear how one should map the query point to the
manifold, as it is inherently ambiguous. Instead of a simple
mapping (or projection), a more appropriate representation
than a single latent point would therefore be a—possibly
multimodal—latent density conditioned on an observation.
Unfortunately, treating latent variables fully probabilisti-
cally is straightforward only under linear-Gaussian as-
sumptions (e.g., see [5]). The nonlinear case is typically
addressed using geometric rather than probabilistic ap-
proaches (e.g., [3], [2]), or by conditioning on the latent
variables, thereby treating them as deterministic parameters
rather than as random variables [6], [7].

We describe a latent variable model, called Kernel
Information Embedding (KIE) [8], that parameterizes a
latent data representation in terms of a low-dimensional
density. We show how, with kernel density estimates, it is
possible to elegantly combine the geometric reasoning
behind manifold learning methods, such as LLE [3],
ISOMAP [2], and many others, with the probabilistic
approach behind factor analysis and probabilistic PCA. In
this way, we retain the advantages of probabilistic models,
including the possibility of properly dealing with ambi-
guities and uncertainties in inference, while allowing us to
model highly nonlinear and non-Gaussian data distribu-
tions. We describe a training method whose time complexity
is quadratic in the number of observations, and thus
compares favorably with GPLVM and related methods,
whose complexity is cubic in the number of observations [6].

The shared Kernel Information Embedding (sKIE) [9] is
an extension of KIE in which latent densities are used to
mediate between multiple high-dimensional spaces. The
sKIE is motivated by the task to compute mappings between
high-dimensional observations, such as from image obser-
vations to a 3D object model. Common examples of this task
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in computer vision problems include articulated human
pose inference [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], articulated pose and shape estimation [20], and hand
pose estimation [21]. Such mappings are typically ap-
proached with discriminative methods, where, given a set of
training samples comprising image features, x, and 3D
poses, y, ie., {x(”,y(”};\il, the estimation of pose, y, is
viewed as a form of “regression,” or, more generally, as the
estimation of the conditional distribution, p(y | x).

1.1 Human Pose Inference

In this paper, we focus on human pose inference. This task
requires a mapping for which both the input (features) and
the output (pose) are high-dimensional vectors, i.e., y €
R% and x € IR*, where usually dy > 100 and dy, > 30.
With high-dimensional problems, large data sets are
usually necessary to learn a conditional distribution that
will generalize well. Furthermore, since synchronized
image and pose data are hard to obtain in practice, one is
often forced to work with small or moderately sized labeled
data sets, or with unlabeled data using semi-supervised
learning [14], [15]. Finally, since pose inference is often
ambiguous (i.e., one feature vector is consistent with
multiple poses), the conditional distribution, p(y | x), is
generally multimodal [17].

We show how the sKIE allows us to define a coherent,
multimodal density over one or more input feature spaces,
the output pose space, and a learned low-dimensional latent
space. With this model, it is also easy to condition on a
latent state, or some combination of input and output states.
The model can be learned from small data sets, with
complexity that is quadratic in the number of training
points. The latent model helps to mitigate problems of
overfitting that are common with high-dimensional data.
With data sets too large to learn a coherent global model,
one can also use sKIE to learn local models in an online
fashion. sKIE can deal with missing data during inference,
and partially labeled data during learning.

1.2 Related Work

Approaches to discriminative articulated pose estimation
(and tracking) can be generally classified as either local or
global. Local methods take the form of kernel regression [16],
[19], where one first finds a subset of training exemplars that
are similar to the input features (e.g., using K-nearest
neighbors). These exemplars are then used to learn an online
regressor, like linear locally weighted regression [16] or
Gaussian Process (GP) regression [19]. The latter has the
advantage of also producing a confidence measure over the
regressed pose. While simple conceptually, the determina-
tion of the right local topology and a good distance measure
within the neighborhood of the test features can be difficult.
Typically, these methods require a large set of training
exemplars to densely cover the pose space. Furthermore,
these methods do not deal with multimodal conditional
distributions (or one-to-many mappings), so one must first
cluster the selected exemplars into local convex sets, for
which regression is unimodal (one-to-one).

Global methods learn a coherent model across the entire
training set. Early examples were formulated as Ridge
Regression or Relevance Vector Regression [10], [11]. The

problem with such approaches has been the multimodal
nature of pose estimation from image features. Early work
on multivalued regression that addressed this issue
includes [22]. Recent work on multivalued regression for
pose-estimation includes the multivariate RVM [23], or the
conditional Mixture of Experts (MoE) model [14], [20], [17].
The MOoE is fairly efficient since training and inference are
both O(N). On the other hand, the MoE model typically
requires large training sets to properly fit the parameters of
the gating and expert functions [15]. This makes it prone to
overfitting with small data sets. The second issue with such
approaches is the implicit independence of different output
dimensions, and hence the failure to capture critical
correlations between output dimensions (e.g., different
joints of the body in pose estimation) [24].

Some recent latent variable models naturally capture
correlations in the outputs, and are capable of learning
models from small or moderately sized data sets. For
example, models based on the Gaussian Process Latent
Variable Model (GPLVM) [12], [15], [25] and the Spectral
Latent Variable Model (SLVM) [26] have been proposed
(see Fig. 2). These models exploit an intermediate low-
dimensional latent space to effectively regularize the
conditional pose distribution (i.e., pose conditioned on
features). This helps avoid overfitting with small training
sets. Nevertheless, as with other Gaussian Process (GP)
methods, learning is expensive, O(N®) for N training
exemplars, and therefore impractical for all but small data
sets. Inference with the GP model is also expensive as it
involves an O(N?) optimization (with multiple restarts) of
the likelihood in the latent space [15]. Sparsification
methods [27] reduce learning complexity from O(N?) to
O(Nd?*), where d is the number of pseudo-inputs (ideally
d < N), but the use of such techniques is not always
straightforward and effective.

The KIE is closely related to the GPLVM [6] and to
existing embedding methods that utilize kernel densities,
such as [7], [28]. In contrast to [6] and [7], inference and
learning for the KIE do not scale with the dimensionality of
the data space. In contrast with [28], the KIE optimizes
positions of latent representatives rather than the band-
widths of a kernel density estimate on a spectral embedding.
Optimizing latent positions was shown to give more
accurate embeddings in [29]. Furthermore, while the KIE
has many benefits in common with the GPLVM,, it has lower
complexity for both learning, O(N?), and inference, O(N).
Most importantly, the KIE provides an explicit density over
the latent space and closed-form expressions for conditional
distributions, allowing one to easily condition on either a
data-space location or a latent-space location.

The sKIE is a generalization of KIE to handle multiple
input and output spaces (e.g., see Fig. 2), allowing a
dynamic regression from any subset of inputs to any subset
of outputs at test time (without learning separate pair-wise
models, as would be required with MoE, for example).
Furthermore, the sKIE can also be used to learn local
models in an online fashion (cf., [19]).

2 KERNEL INFORMATION EMBEDDING

Given samples {x/) }jv: 1 drawn from a data distribution p(x),
we aim to find a low-dimensional latent distribution, p(z),
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that captures the structure of the data distribution. For
probabilistic models, a natural measure of the goodness of
the latent distribution is the mutual information (MI) between
the latent distribution and p(x), i.e.,

1(x,z) = /p(x,z) log% dx dz (1)
= H(x)+ H(z) — H(x,2), (2)

where H(-) is the usual (differential) Shannon entropy (see,
e.g., [30]).

In practice, MI and other entropy-based quantities are
not often used for nonlinear embedding because they are
hard to evaluate for all but very specific distributions, e.g.,
Gaussians. Most nonlinear embedding methods rely instead
on geometric arguments and try to match local geometric
properties of the set of data points and a corresponding set
of latent representatives (e.g., [3], [2]). Here, we suggest
combining geometric with probabilistic reasoning using
kernel density estimation (KDE).

A KDE models a probability density as a superposition
of local kernel functions and is thus based on the
assumption of local smoothness of the underlying density
[31]. With a KDE, we can capture geometric structure
through the locality of the kernel, providing probabilistic
nonlinear embeddings. To this end, the KIE formulation
begins with a set of latent representatives {z"/) }j\zl, one for
each of the data samples {x/ }jV: 1- The latent representa-
tives support a KDE in the latent space:

1 :
pz) = D ka(z2"). (3)

With this kernel density estimate, we can approximate the
latent entropy as

H(2) = - [ pla)logp(z) da (4)
R S T
& 7N;10gp(z ) (5)

1

~ _
~

=l

N N
D logy " ky (2", 29) + log(N) (6)
i=1 j=1

= H(2). (7)

In doing so, we are making two approximations. First, in (5)
we use a Monte Carlo approximation to the expected log
probability of the latent distribution. Second, in (6) we
approximate the latent distribution using the kernel density
estimate p(z).

To learn a KIE model, we approximate all of the high-
dimensional integrals in (2) with kernel density estimates
for p(x), p(z), and p(x,z). That is, if we let kx(-,-) and k,(-, )
denote kernels for the data and latent spaces, we can
approximate the entropies and the mutual information as

I(x,z) = H(x) + H(z) — H(x,z)

1 N N ] )
= ——Zlog Z Fx (x9, x1)
N =1
NN o 8
_ lZlog Sk, (49, 29) (8)
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In what follows, we use isotropic, Gaussian kernels for
convenience

L 1 [x® — x0)|?
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* (27r02)dX/2 20%

X

L 1 |z — ZU)HZ
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(27ra§)dZ/2 207

but one can also use anisotropic kernels.

Because the data distribution is fixed, maximizing the
mutual information (2) reduces to maximizing H(z) —
H(x,z). This is equivalent to minimizing the conditional
entropy H(x | z), i.e., the expected negative log likelihood
of the data under the joint density p(x, z). It is interesting to
note the similarity to the GPLVM [6], which directly
minimizes the negative log likelihood of the data. Unlike
the GPLVM, the KIE provides an explicit density over the
latent space.

In general, kernel density estimates are known to perform
poorly in high-dimensional spaces, even in the case where
data are distributed along a lower dimensional manifold.
The reason is that the choice of kernel bandwidth implies a
tradeoff between capturing structure in the data on the one
hand and reducing waste of probability mass on the other: A
small bandwidth leads to density estimates where single
points form isolated clusters; a large bandwidth necessarily
wastes mass in areas where there are no data, that is, in
directions orthogonal to the manifold. Since high-dimen-
sional spaces are usually sampled sparsely, the waste of
probability mass is particularly common in such cases.

It is important to note that KIE does not rely on a
particularly “good” density estimate in the high-dimen-
sional space because KIE projects data into a low-dimen-
sional space, where it can avoid the waste of probability
mass. Like other latent variable models, training a KIE
model can be viewed as cutting a low-dimensional, non-
linear “slice” through the “thickened” manifold defined by
the high-dimensional kernel density estimate. Since KIE
normalizes that slice such that it defines an optimal density
estimate in the low-dimensional space, unlike for the high-
dimensional KDE its bandwidth can be chosen to properly
reflect the structure within the manifold.

When data are sampled densely enough, one can also
use anisotropic kernels to deal with the problem of high
dimensions (e.g., see [32]). In the experiments that follow,
we did explore the use of anisotropic kernels in the data
space of the KIE, but we did not see any demonstrable
advantage over isotropic kernels.
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2.1 Regularization

Interestingly, the KIE learning problem as stated above does
admit degenerate solutions. A trivial way to maximize
I (x,2) is to drive all latent positions infinitely far from one
another. This can be seen by rewriting objective (8) as a
linear combination of data-space kernel function evalua-
tions, where the weights in the linear combination are given
by a softmax which depends on the latent-space elements:

I(x,z) = H(x)

1 & N ky(29,29) L
+—-3"1 — 2= 2 ke (x®x0).
V& L ) )

(10)

The easiest way to optimize the objective is then by
converting the softmax to the max-function that picks,
instead of averaging, the best kernel to evaluate.

To prevent the latent representatives from moving
arbitrarily far apart, and thereby encouraging more mean-
ingful solutions, one can adopt a prior (or regularizer).
Here, we consider generalized Gaussian priors over the
latent positions. This simply adds %ZQ 129]7 to (8) to
create the regularized objective function. Here, A controls
the influence of the regularizer and (3 its shape, where § = 2
results in a Gaussian, i.e., radially symmetric, prior.

Similar priors are used to avoid degenerate solutions in
the GPLVM and in other embedding methods, including
spectral methods (such as [1], [2], [3], [26], [28]). While
spectral methods constrain latent embeddings to be mean-
centered and uncorrelated, KIE allows for a more general
way to avoid degenerate solutions, as we demonstrate in
Section 2.4.

The influence of the regularization constant A on the
embedding is illustrated in Fig. 3. A large value for A leads
to an oversmoothed latent density (leftmost plot on the top).
A small value leads to overfitting (rightmost plot). A simple
way to find an optimal value for X is with cross validation.
This can be achieved by using a sweep over different
values, starting with a large value that is slowly decreased,
and tracking a validation cost, such as reconstruction error’
on a validation set, during the optimization. Slowly
reducing the regularization can be viewed as a kind of
“annealing” that helps find a good local optimum of the
nonconvex objective function. We used this approach in
most of our experiments.

2.2 Inference

Since KIE defines a joint kernel density estimate over latent
representatives and observations, inference takes a particu-
larly simple form. It is straightforward to show that the
conditional distributions p(x | z) and p(z | x) are given by
weighted kernel density estimates:

AN—c
pox | =3 2D

—N . o~ ij (X7 X<’L))7
i=1 Z]V:I ko (2,20)

(11a)

1. Fig. 3 shows average marker error in pose space, but one can use other
task-specific measures of merit. See Section 4 for a formal definition of
average marker error.

. .
2 k(xx)

pz|x)=) =
; Z]\Ll ke (x, x9))

These conditional distributions are straightforward to
compute and they may be multimodal. For Gaussian
kernels, they become Gaussian mixtures.

k, (z7z(i>). (11b)

2.3 Learning

Learning the KIE entails the maximization of I(x,z) (8) plus
the regularization term on the latent representatives z'".
This can be done using any gradient-based optimization
method (e.g., conjugate gradient). Toward this end, it
follows from (8) that the gradient of I(x,z) with respect to
latent position z() is the sum of two terms (since H(x) does
not depend on z):

Ok, (29, 29
oz

(12)

q 1L, , Ok (29, 20)
0H(x,z) 3(k +H;Z)kx(x<z>’x(1))m

0z N = xz 0z ’
(13)
where
) 1
= 14
" S Ky (29, 20) ()
and
) 1
. (15)

Ryz = N - - .
D oimy b (x0, x D)k, (200, 2(0)
For the isotropic Gaussian kernel,

8kz(z<”, Z(J‘))
0z

k(g g2 =2

= —k,(2",z") p

Since we are optimizing the positions of latent representa-
tives (and assuming isotropic kernels), any change in the
bandwidth of the latent kernel, k,, is equivalent to rescaling
the entire latent space. The choice of the latent-space
bandwidth o, is therefore arbitrary, and for the remainder
we assume a fixed bandwidth of o, = 1.

The same argument does not hold for the bandwidth of
the data-space kernel, ox. A common heuristic, which we
use below, is to set the bandwidth based on the average
distance of nearest neighbors:

oy = ii | < — XU
N i=1

where j(i) is the index of the nearest neighbor of x). One
could also learn the bandwidth using cross validation.

Since the objective function is not convex, one should
expect to find local optima. One strategy to obtain a good
local optimum is to slowly decrease the influence of the
regularization, as we discuss in Section 2.1.

2.4 Example: 2D S-Curve

Fig. 1 shows a learned KIE model of a two-dimensional
“S-curve” manifold embedded in three dimensions. The

(16)



782 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 4, APRIL 2012

Fig. 1. Three-dimensional “S-curve” data set (left) and its two-
dimensional embedding (right). The alignment of the embedding with
the coordinate axes is encouraged with a penalty on the latent variables.

data set consists of 2,000 points sampled uniformly from the
“S”-shaped sheet. The right plot shows a two-dimensional
embedding with a color-coding scheme that reveals the
underlying mapping.

We used a Gaussian kernel with o, = +/10.0. We used
the regularization described in Section 2.1 with § =4,
resulting in an L4-penalty on the latent space. The contours
of the L4-norm in two dimensions look like a “rounded
box” that is aligned with the coordinate axes. Using this
regularizer therefore encourages the embedding to align
with the coordinate axes as well, as can be seen in the
figure. One can also use an L2-penalty, but one would
lose the axis alignment in this case (and, arguably, some of
the interpretability of the embedding). Note that this kind of
alignment would be impossible to achieve using, for
example, a spectral method.

We initialized the latent representative z to small
random values. We set A to 0.1 initially and gradually
reduced it (by 80 percent of its previous value) for 20 steps
during the optimization. We have repeated the experiment
10 times with different random initializations and with no
noticeable difference in the result (except that, in some cases,
the embedding is rotated by 90 degrees in the latent space).

We also experimented with a wide range of kernel
bandwidths, again without significant differences in the
results. Note that, regardless of the bandwidth, the kernel
density estimate necessarily underestimates the true density
in this data set. The data set is drawn from an infinitely thin,
two-dimensional sheet in the three-dimensional space, so
the density is infinite within this sheet. Even though the
estimate is necessarily suboptimal, KIE finds the underlying
two-dimensional structure.

3 SHARED KERNEL INFORMATION EMBEDDING

The Shared KIE (sKIE) is an extension of KIE to multiple
(high-dimensional) data sets, with a single hidden cause
that is responsible for the variability across all data sets. In
what follows, we consider the case of two data sets,
comprising image feature vectors, x, and poses, y. As
illustrated in Fig. 2, the sKIE model is undirected, and
hence, it has several natural factorizations and different
ways of generating samples or performing inference. For
example, with two data sets one could obtain samples (x,y)
by first sampling from the latent distribution z* ~ p(z), and
then sampling x and y (independently) from their condi-
tionals p(y|z*) and p(x|z"). Alternatively, given an
observed feature vector x*, one could draw a sample from

Mixture of Experts sGPLVM sKIE

Fig. 2. Graphical models for regression problems. Gray and white nodes
depict observed and hidden variables. MoE and sGPLVM are directed
models. The Shared KIE is undirected, and can be factored easily in
multiple ways.

the conditional latent distribution z* ~ p(z | x*), and then
sample the conditional pose distribution, p(y | z*). While
we continue to focus on two data sets below, the general-
ization to more than two is straightforward.

The sKIE joint embedding for two data sets is obtained
by maximizing the mutual information I((x,y),z). Assum-
ing conditional independence of x and y given z, the MI can
be expressed as a sum of two MI terms, i.e.,

I((x,y),2) = 1(x,2) + I(y, 2).

Like the KIE objective in (8), we maintain a fully
nonparametric model, using kernel density estimates for
the integrals in (17):

I(x,y).2) = 1(x,2) + I(y.2).

In contrast to KIE, here the labeled training data
{(x",y@)}Y  share a single hidden cause. Thus, each
pair (x®,y) is represented by a single, shared latent
element z”. The use of shared hidden variables is
reminiscent of canonical correlation analysis (CCA) and
similar methods (e.g., [33]), which also represent two
observable variables using a single shared cause. Like the
KIE, which can be viewed as a nonlinear extension of
probabilistic PCA, one could think of the sKIE as the
corresponding analog of (a probabilistic formulation of)
CCA. Because of the conditional independence assumption
(cf., (17)), the sKIE, in contrast to an embedding of the
concatenation (x,y), learns a representation of the relation-
ship between x and y. Only the similarities within an
individual space determine the value of the kernel density
estimate in each space, not the similarities across the spaces.
It is the embedding that then represents structure across the
individual density estimates and that thereby encodes their
relations. A repercussion of this is that scaling and other
properties of these spaces do not need to be comparable or
to be measured on the same scale since no joint kernel has to
simultaneously accommodate all of these. It would also be
straightforward to extend sKIE to the case of factorized
orthogonal latent models [34].

For the sKIE, semi-supervised learning is also possible
with multiple data sets. For example, one might have image
feature vectors xU) that correspond to images for which
pose was unavailable. Alternatively, one might have pose
data without the corresponding images. To handle incom-
plete data like this, some latent representatives will only be
constrained directly by elements in one of the two data sets.

More formally, in the general case, let Zy and Zy denote
two sets of indices for the available training data points,

(17)

(18)
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100 iterations

12 iterations

1 iteration

Validation Error (mm)

o

20 40 60 80 100
Annealing lteration

Fig. 3. Annealing with cross validation. The plot on the bottom shows
cross-validation error as a function of the number of annealing iterations.
The plots on the top show latent distributions p(z) at annealing levels
before, at, and after the minimum of the cross-validation curve. The
latent space is initially concentrated, but then spreads out as the
annealing progresses. In the limit, the regularizer has no influence and
the latent points drift far apart.

with cardinalities Nx and Ny. Indices for labeled training
samples are included in both sets. Indices for training
samples of x (respectively, y) for which there is no
corresponding sample from y (x) exist only in Zy (Zy). If
we then ignore the terms of the approximate mutual
information (18) that are independent of the latent posi-
tions, Z = {z(j)};v:l, where N is the cardinality of
Z =TI x UZy, the sKIE objective function becomes

{Zbg 3 k(29,29 ki (x9, x0)

€Ty JE€Lx

L(Z) = Ni

X

_ Z log Z k, (z(i), z(.i))]

i€y Jj€Ly

(19)
+i Zlog Zkz(z(i)7z(j))ky<y(i)’y(j))
Ny icIy j€Ty
S log Y k(2 z<j))} _
i€Ty j€Ty
3.1 Learning

Learning the sKIE entails the maximization of L(Z) with
respect to the unknown latent positions Z. In the experi-
ments below, we use a gradient-based approach. The
gradients for sKIE optimization have the same basic form
as those for KIE in (12) and (13).

Like KIE, regularization is necessary to constrain the
model, for example, by using a mean-zero Gaussian prior
over latent positions. We can utilize this prior by perform-
ing “annealing” in conjunction with a validation set in order
to obtain a good local optimum of the learning objective. As
mentioned above, we use cross validation to determine
when to stop the annealing procedure. In particular, we use
MSE in discriminative pose inference on a validation set as
a measure of cross-validation error. Fig. 3 shows the effect
of typical annealing on the latent sKIE space and illustrates

the cross-validation error as a function of annealing
iterations; the details of the data and model being learned
here are given in Fig. 10.

3.2 Inference

For discriminative pose inference, we want to find likely
poses y conditioned on input image features x*. We are
therefore interested in the conditional pose distribution:

oy 1) = [0y |2 plalx)dn (0)
z

We have explicit closed-form expressions for the two
conditional factors in the integrand in (20), but p(y | x*) is
not straightforward to express or compute in closed form.
While the second factor in the integrand is a mixture of
Gaussian functions of z, the first factor is a conditional
mixture whose weights given by normalized Gaussian
functions of z (cf., (11)).

The integral can be approximated with Monte Carlo
integration, by drawing latent samples and then pose
samples as described above, but this can be computationally
expensive, especially when p(y | x*) is multimodal. Alter-
natively, here we focus on identifying the principal modes of
p(y | x*). To this end, we assume that the principal modes of
p(y | x*) coincide with the principal modes of the conditional
latent distribution p(z | x*). That is, we first search for local
maxima (MAP estimates) of p(z | x*), denoted {zZ}f:] for
K modes. From these latent points, it is straightforward to
perform either MAP inference or take expectations over the
conditional pose distributions p(y | z}).

To understand this form of approximate inference, it is
useful to note that pose is often not fully constrained by
image features. That is, it is often the case that the
conditional distribution over pose, i.e., p(y | x*), is multi-
modal. Under the sKIE formulation, the latent distribution
models the joint distribution, and therefore, when we
condition the latent space on input features, we expect
the distribution p(z | x*) to be similarly multimodal. The
conditional distribution over pose, given a single latent
position, say z;, is typically unimodal.

3.2.1 Local Modes of p(z | x*)

As with KIE, conditional distributions for sKIE take the
form of weighted kernel density estimates (cf., (11)). To find
modes of p(z|x*), one can choose one or more starting
points, and then some form of gradient ascent (e.g., with
mean shift [35]). Starting points could be found by
evaluating (11b) for each latent representative, and then
selecting those with the highest conditional density. One
could also draw random samples from p(z | x*), or, among
the training exemplars, one could find nearest neighbors to
x* in feature space, and then begin gradient ascent from
their latent representatives (cf., [15]). The most probable
latent representatives found in this way are often suffi-
ciently probable in the latent space that subsequent
optimization is unnecessary.

3.2.2 Pose Inference

Because the conditional pose distribution is typically
unimodal, it is reasonable to use conditional expectation
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Fig. 4. Multimodal inference. The plots in the top row show a two-
dimensional data set (the same in each plot) and the learned one-
dimensional KIE manifold. Conditioning on an observable point x (a
different one in each plot) can lead to an inferred latent density that is
unimodal (left plot) or multimodal (center plot, right plot). The density is
shown using color coding, where red corresponds to high-density
regions and dark blue to low-density regions. For better visibility, the row
below depicts the same latent densities in the one-dimensional latent
space.

to find the mean and covariance in the pose space. From the
form of the conditional distributions (11a), the mean of
p(y | z*) is a convex combination of training exemplars.
That is,

N ;
ko (z* Z<")) .
Ey|z]=) < ———y".
i=1 Zj\le Ky (2%, 200))

With some algebraic manipulation, one can also derive the
form of the conditional covariance, that is,

(21)

J(z",21)

G =0 ey ¥

_Zk;z(z*7z(i>)kz(z*,Z;j)) (i)y(j)T’
i (Zz kz(z*az(l)))

where Cj, is the kernel covariance matrix; here, Cy, = 031.

@7

(22)

3.3 Latent Densities

Unlike other nonlinear embedding models, such as the
GPLVM and spectral methods, the latent representation of
an out-of-sample observation x for both the KIE and the
sKIE is a density, not a point-estimate (cf., (11b)).

Fig. 4 illustrates how the KIE latent densities make
ambiguities in the mapping from data space to latent space
explicit, using a one-dimensional synthetic example. The
plots in the top row show a two-dimensional data set and a
learned low-dimensional manifold, defined as the condi-
tional mean of the latent space mapped back into the data
space. The bottom row of the figure shows the same
densities in the one-dimensional latent space.

In each of the three plots, a different element x is chosen
as a conditioning data point (depicted using a cross
symbol). The color of the manifold encodes the value of
the conditional latent density at the corresponding latent
position and shows how ambiguities in the mapping lead to
multimodal latent densities. Multiple factors can influence
these densities: In Fig. 4 (center plot), the curvature of the

manifold leaves unclear which “branch” of the manifold
generated the observation, leading to a projection ambiguity
and thus to a bimodal latent density.

Latent densities also reflect nonuniformities in the data
density, as shown in Fig. 4 (right plot), where a dense region
in the data density provides extra support for one of the
latent modes (the “rightmost” mode in the bottom plot)
which, as a result, is larger than the other two.

Also shown in the plots at the bottom are some random
samples drawn from the latent densities. Sampling latent-
space elements is a common operation in many applications
of both probabilistic and nonprobabilistic latent variable
models (see also Section 3.2). The KIE densities make it
possible to know how representative a sample set is of the
density.

A simple way of computing how well a sample set
represents the density is to compare sample statistics with
expectations under the distribution. For example, let  be
the latent standard deviation divided by the empirical
standard deviation of the sample set. The closer r is to 1, the
more representative the sample set is. In particular,
“missed” modes in the latent-space density will typically
correspond to a small value for r. In Fig. 4, latent-space
variances and the ratios r are shown next to the plots of the
latent densities (bottom row). The rightmost plot illustrates
the case where the sample set is not representative of the
latent density.

One might also compute the “significance” of a mode by
fitting a Gaussian centered at the mode. To this end, note
that the Hessian H(z | x) of the negative log (conditional)
density p(z | x), using Gaussian kernels (9), takes the form

0*’L ;
H(z|x)= 9202t — 21+ 42(7,;7, —byi)(z —2')(z — )7,
]
(23)
where
B wik(z,z") B k(x,x")
IS k) T k) Y

6y = 1,iff i = [, and I is the ¢ x ¢ identity matrix. One can
obtain a local approximation to the latent-space density at
mode z, using a Gaussian with inverse covariance matrix
H(zo | x) whose normalizing constant is given by
p(zo | x)(27) 2 | H(z | x) | 2. For unimodal densities, this
approximation is known as the Laplace approximation (e.g.,
see [36]).

3.4 Complexity

Learning KIE and sKIE has complexity O(N?), while
inference (cf., (11)) is O(N). Since learning and the search
for latent modes during inference (where required) do
involve iterative optimization,; however, the number of
iterations is an additional multiplicative constant. Because
of this and since KIE is a nonparametric method, these
operations can be time consuming on large data sets, and it
can be useful to make use of parallelization, as we discuss
also in Section 3.6.

In general, the complexity of learning and inference
compares favorably with the GPLVM, for which learning is
O(N?) due to the inversion of the N x N kernel matrix, and
inference is O(N?). Indeed, in quadratic time with the KIE
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Fig. 5. Comparison of skKIE, GPLVM, and sGPLVM on S-curve data. The
red curves depict the true mean of the joint density. For the sKIE and
GPLVM, the blue points are produced by uniformly sampling latent
positions z, and then taking the mean of p(x,y | z). For sGPLVM, the
latent positions are optimized with NN initialization before taking the
mean of p(y | z).

one could, in principle, use gradient ascent on the
conditional distributions (11) from each training point to
find the majority of the modes.

For both the GPLVM and KIE, one can also achieve
greater efficiencies with sparsification methods (e.g., [27]),
and numerical approximations such as fast multipole
methods (e.g., [37]). For KIE, one can also employ fast
mean-shift algorithms for efficient mode finding on the
conditional distributions (e.g., [38]).

3.5 S-Curve Data

To demonstrate sKIE on a simple problem, following [15],
[17], we first consider data from a one-dimensional
synthetic “S-curve.” Points were sampled from a 2D density
p(x,y) defined by

X = t+sin2nt) +nx, y = t+ny,

where 7, and 7, are IID mean-zero Gaussian noise with
variance o2 and t =2(0,1) is uniform. The conditional
density p(y | x) has up to three modes.

Fig. 5 shows sKIE, GPLVM, and the shared GPLVM
(sGPLVM) models learned from noisy and noiseless data (the
GPLVM was learned from the joint data samples). Our
sGPLVM model was based on the formulation and imple-
mentation in [12]. Bandwidths were optimized based on the
standard GPLVM hyperprior. All models learn a 1D latent
space, encoding the shared structure of the 2D joint
distribution. The GPLVM does not capture the S-curve with
only eight samples, consistent with [15]. sKIE and sGPLVM
do a better job with eight points. Interestingly, our sGPLVM
results are inconsistent with the results in [15], which claimed
that eight samples are insufficient to capture the structure of
the S-curve. We found that initialization using shared PCA
and proper setting of kernel bandwidth for back-constraints
in sGPLVM are critical in achieving the illustrated sGPLVM
performance. In the presence of the noise, sKIE recovers the
structure of the curve well, while the GPLVM and sGPLVM
exhibit a small bias in the upper lobe. Finally, we note that the
Mixture of Experts (MoE) model cannot be trained with eight
points. With 50 points, MoE can be trained but typically
overfit and overestimate the variance (see [15]).

Fig. 6 shows sKIE learned from partially labeled data.
While sKIE tolerates significant amounts of unlabeled data,
the model often generalizes well without it, so the
unlabeled data mainly help to reduce the variance of

Training Data Learned sKIE

Fig. 6. Semi-supervised learning. The sKIE is learned from 8 joint and
142 marginal noisy samples. The curve is not as smooth as in the fully
supervised case, but the model does tolerate nearly 20 times as many
unlabeled as labeled samples.

the output estimates. With only eight fully labeled samples,
the reconstruction of the joint distribution is smooth (see
Fig. 5), but the variance is high because the data are sparse.

3.6 Implementation on Graphics Hardware

For both the KIE and the sKIE, inference (cf., Sections 2.2 and
3.2) as well as gradient-based learning (cf., Sections 2.3 and
3.1) comprises element-wise evaluation of simple expres-
sions, such as “exp,” “power 2,” and “multiply,” over large
arrays. This allows for straightforward parallelization using
graphics processing units (GPU). To that end, note that
because KIE is a nonparametric model, it is defined as a
function of the training data. Therefore, once training data
and other storage have been initialized on a GPU, learning
does not require any further transfer of data between GPU
and main memory. However, when using a general-purpose,
gradient-based optimizer for learning, the gradients and
model parameters (latent representatives) do need to be
transferred between parameter updates. Since the main
computational bottleneck in learning is the calculation of the
gradient and objective function, not memory transfer, we
found this to be a reasonable approach nevertheless.
Conjugate gradients, in particular, can be very efficient at
optimizing the model objective. For inference, one can use
batches of test data to minimize the effect of latency when
transferring data to and from the GPU. We provide GPU-
based implementations® of KIE and sKIE in the Python
language at http:/ /learning.cs.toronto.edu/~rfm/kie.

4 HumAN PoOSE ESTIMATION

We next consider human pose inference. We use two data
sets: one synthetic, called POSER [11], and the HUMANEVA
data set [39] with synchronized video and mocap data.

4.1 Poser Data Set

POSER contains 1,927 training and 418 test images,
synthetically generated from mocap data® (54 joint angles
per frame). The image features and error metric are
provided with the data set [11]. The 100D feature vectors
encode the image silhouette using vector-quantized shape
contexts.

2. Training an embedding of an S-curve with 2,000 points using a full 15-
step annealing schedule on an NVIDIA GeForce GTX 580 takes well less
than 1 minute. For comparison, a naive Python implementation on a
standard PC takes about 20 minutes. Similarly, inference on 2,000 query-
points using mode-finding takes about 40 seconds on the GPU versus
several minutes with the native Python implementation on a CPU.

3. The data set is available at http:/ /lear.inrialpes.fr/pubs/2004/AT04/
Data/index.html.
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To measure errors in estimated poses, we use the mean
RMS error, averaged over all joints. This is given by

X 1 M . R
m=1

Here, M =54, and y,; and y; correspond to the ith joint
angles for the true and estimated poses.

4.2 HumanEva Data Set

HUMANEVA-I [39] contains synchronized multiview video
and mocap data. It comprises three subjects performing
multiple activities. Here, we use walking and jogging
sequences® with observations from three color cameras.’
This includes 5,985 training samples (image-pose pairs) and
6,291 test samples (for global models, we only use subject S1,
for which there are 2,190 training and 2,625 test samples).
Where smaller training sets are used, data are randomly
sampled from the entire training set.

4.2.1 Features

Following [40], our features are based on shape context
descriptors. From each image, we extract a silhouette using
background subtraction to which we fit a bounding box.
The shape context representation is constructed by ran-
domly sampling 400 points on internal edges and outer
contours of the silhouette, from which histograms are
constructed.® We then cluster 40,000 randomly sampled
histograms to learn a codebook of size 300. Shape context
histograms are subsequently vector-quantized using that
codebook. The final 300D feature vectors are normalized to
unit length. This choice of feature vector was motivated by
simplicity and ease of implementation; better features have
been shown to perform favorably on HUMANEVA-I (e.g.,
hierarchical features [14], HMAX, Spatial Pyramid, Hyper-
features, and Vocabulary Trees have all been explored).

4.2.2 Errors

Pose is encoded by 15 3D joint centers defined relative to
the pelvis in camera-centric coordinates, so y € RY.
Estimation errors (in mm) are measured as an average
euclidean distance to the M = 15 markers [39]:

R 1 M .
EpoS(Ya Y) = MZ ||(Y7' 7yi)||'
1

m=

(26)

4.3 Monocular Pose Inference

Fig. 7 shows how the performance of sKIE depends on the
number of training examples. For each of POSER and
HUMANEVA, we perform 10 runs using a different random
initialization and a different random subset of the training
data in each run. We fixed the number of latent dimensions
to 10 as we found it to yield good performance on these
types of data. One could also set this number using cross

4. We ignore walking from subject 3 due to corrupt motion capture data.

5. Like [40], [19], we do not use the four grayscale views.

6. Histograms are computed at 12 angular and 5 radial bin log-polar
resolution, with minimal and maximal radial extent set to 1/8 and 3 of the
mean distance between all 400 sampled points. The histograms are thereby
invariant to the overall scale of the silhouette.

‘ Poser dataset
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Fig. 7. Single hypothesis inference. The plots show the average error
with standard error bars for sKIE, NN Regression, and Kernel
Regression on POSER (top) and HUMANEVA-| (bottom) as a function
of the training set size.

validation; this would take longer to learn, but would likely
improve performance.

For this experiment and others below, unless stated
otherwise sKIE inference proceeds as follows: Given a
feature vector x*, we find the most probable training
exemplar according to the conditional latent distribution
p(z | x*), from which we use mean shift to find a local
maximum. Conditioned on this point, z*, we compute the
mean pose from p(y | z*). We also implemented Nearest
Neighbor (NN) regression and kernel regression (with
Gaussian kernels). Performance for all estimators is simply
the average error (i.e., (25) and (26)) over the respective test
sets. Standard error bars are also shown in all cases.

sKIE consistently outperforms NN Regression. Kernel
regression performs favorably compared to sKIE on POSER
data when the number of training examples is greater than
100. We postulate that this is due in part to the relatively
clean data that does not exhibit much multimodality. Kernel
regression is sensitive to the kernel bandwidth and
performance can quickly degrade as the kernel bandwidth
increases.” sKIE seems to be relatively insensitive to kernel
bandwidths in both the input and output spaces.

7. Performance of kernel regression on HUMANEVA-I in Fig. 7 can be
improved by manually tuning kernel bandwidths, but for consistency with
sKIE we used the same heuristic, (16), for all models in all experiments.
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Fig. 8. Multihypothesis inference. Graphs show the performance of sKIE as a function of the number of hypotheses, & (for 200, 400, and 1,500
training examples for POSER data and 200, 400, and 2,000 training examples for HUMANEVA-| data). We compare performance of skKIE with
k-Nearest Neighbor Regression and Kernel Regression; different inference methods are explored as described in the text. The plots show angular
error (in degrees) for POSER and average marker distance (in mm) for HUMANEVA-I. The plots show 1-standard deviation error bars.

We also conducted a set of experiments in which sKIE
produces multiple predictions (called k-sKIE, for k predic-
tions). In doing so, we explore several alternate forms of
inference: 1) finding the latent representatives associated
with the k nearest neighbors of x* in the input feature space
and computing the £ mean poses conditioned on the latent
points; 2) sampling k samples from p(z | x*), followed by
mode finding, and then estimation of the mean pose from
the conditional pose distribution; and 3) like (1) but with
intermediate latent mode finding. In all cases, the annealing
schedule was A1 = 0.9); starting with Ay = 0.5 and was
run for a maximum of 20 annealing iterations.

Fig. 8 shows the results. For comparison, we also include
the performance of k-nearest neighbors and kernel regres-
sion. At k=1, the performance of conditional mode
inference is similar to that of conditional neighbor inference
for POSER data. For HUMANEVA-I data, mode inference
performs slightly better. It is interesting to note that for
POSER data the performance of conditional mode inference
(initialized with both sampling or nearest neighbors) tends
to level out (at k=2 for 200 training points, k=4 for
400 training points, and k =8 for 1,500 points). This is a
strong indication that the number of modes is very small
so that mode-finding reduces the diversity in the set of
neighbors (or samples) used as initialization and suggests
restricting the number of solutions to the respective
number k at which the leveling-off occurs.

In any case, it is clear that the latent model carries
significant value in regularizing the inference, i.e., with
sKIE we always perform better than k-NN for any k both in
the POSER and HUMANEVA-I experiments.

4.4 Local Monocular Pose Estimation

For very large training data sets, learning a coherent global
model can be prohibitively expensive. In such cases, we can
learn local sKIE models online for inference.

We demonstrate the use of local sKIE models using the
entire HUMANEVA-I data set. For each test case, we first
find the 25 training samples whose features vectors are
closest to the test feature vector. From those 25 samples,
we learn an sKIE with a 2D latent space. To speed up the
online learning, sKIE was trained by running a fixed (5)
number of annealing iterations starting at A =0.5 and
taking 100 gradient steps for every annealing iteration.
Once trained, the mode of the conditional latent distribu-
tion was found, from which the conditional mean was used
as the estimated pose. The full data sets were used for both
testing and training. As shown in Fig. 9, the online sKIE
performs favorably with respect to all methods considered,
including the GPLVM, whose performance was reported
with POSER data in [12].

Algorithm / Dataset HUMANEVA-I  POSER
Linear Regression [12] - 7.70 (deg)
Nearest Neighbor 81.12 (mm) 6.83 (deg)
GPLVM [12] - 6.50 (deg)
Kernel Regression 164.99 (mm)  5.79 (deg)
Gaussian RVM [11] - 6.00 (deg)
Global sKIE 80.44 (mm) 5.91 (deg)
Local sKIE (25 neigh) 64.63 (mm) 5.77 (deg)

Fig. 9. Performance of the local sKIE model.



788 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 4, APRIL 2012

[
o.' o .l.
* .':\‘\{I'ﬂo
.. “ .\..
: s \. to-‘ ...
.// 'Y f ° ‘\\\
| [ |
]
(features)
P(Z|X1) p(Z|X2 p(Z|X5
p(z[x1,%2) (z|x1,%3) (zlx2,x3)
P(Z\X1 X2, X3 Z|Y)

Fig. 10. Shared KIE for multiview pose inference. The sKIE is learned
from 200 random samples of walking from Subject 1 in HUMANEVA-I.
Inputs are 300D shape context features from each of three synchronized
cameras, {x1,Xs,x3}, plus a 45D pose vector (i.e., a joint model over
947-dimensional data). The top row depicts the learned 2D shared latent
space. The remaining rows depict conditional latent-space distributions
obtained by conditioning on subsets of the views and on the true pose
(bottom-right). The top-left figure illustrates individual training sample
positions in the latent space colored by their proximity within the
sequence. Nearby poses do end up close to one another in the latent
space. Also note that the conditional distributions obtained by
conditioning on observations and on the pose give consistent densities
in the latent space.

4.5 Multivariable Shared-KIE Models

An advantage of sKIE over direct regression models (e.g.,
MOoE) is its ability to learn joint models over many variables,
allowing conditioning on any subset of them at test time.
With other regression models, a separate regression func-
tion (or conditional distribution) would have to be learned
between all combinations of test inputs. To illustrate these
benefits of sKIE, we trained two models with more than one
input and one output, one for multiview pose inference and
one for tracking.

Multiview pose inference. Using the HUMANEVA-I data
set, we learned an sKIE with input features from three
synchronized cameras {x;,x2,x3} and pose y. The model
can be conditioned on any subset of inputs. The results,
explained in Fig. 10, clearly show the ambiguities that arise
in pose inference from only one or two views.

Monocular tracking. For Bayesian pose tracking, we want to
condition on both the current image features, x;, and the pose
at the previous time, y,,. Fig. 11 shows such a model. It can be

Frame: 430

p(z (z|x,yp)

Frame: 586

(zlyt)
Fig. 11. Shared KIE for tracking. lllustrated are the latent space, the
latent space conditioned on one current observation, and latent
space conditioned on the current observation and previous pose. We

utilize 200 samples from HUMANEVA-I data set (camera 1) used to
train the model in Fig. 10.

used to initialize a tracking discriminatively, or generatively
as a motion prior. Other methods (e.g., [10], [17]) would need
several models to perform the same task. Again, in Fig. 11 itis
interesting to see that the conditional latent distributions
(conditioned on image features) are sometimes multimodal
(frame 430) and sometimes unimodal (frame 586).

5 CONCLUSIONS

We introduced a probabilistic latent variable model called
the KIE and its extension, the sKIE. We applied the model to
human pose inference. The model has several appealing
properties, namely that 1) it has favorable complexity of
O(N?) for training and O(N) for inference, 2) it utilizes a
latent space as an intermediary in the inference process and
hence allows learning from small data sets (i.e., can
generalize well), and 3) it provides closed-form multimodal
conditional distributions, conditioning on the input space
(or spaces) of features, the shared latent space, and the
output pose space. Furthermore, the model can deal with
missing data during inference, and partially labeled data
during learning. For training, one can use gradient-based
optimization. Computation of gradients and cost functions
allow for the straightforward use of graphics hardware.

An interesting direction for future research is to use
sampling of latent and observable densities during learning,
which could further improve the accuracy of the learned
embeddings. Furthermore, additional parametric mappings
(e.g., [41], [42]) could be incorporated to obtain fast
feedforward inference where required, while retaining a
fully probabilistic model that can help detect and resolve
ambiguities and assess uncertainties in the predictions.

Another direction for research is the use of sparse priors
on the latent variables. This would allow the model to learn
sparse, overcomplete representations in a fully nonpara-
metric way, which can be useful, for example, in nonlinear
demixing tasks.
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