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Abstract
This paper introduces Gaussian Process Dynamical Models (GPDM) for
nonlinear time series analysis. A GPDM comprises a low-dimensional
latent space with associated dynamics, and a map from the latent space
to an observation space. We marginalize out the model parameters in
closed-form, which amounts to using Gaussian Process (GP) priors for
both the dynamics and the observation mappings. This results in a non-
parametric model for dynamical systems that accounts for uncertainty in
the model. We demonstrate the approach on human motion capture data
in which each pose is 62-dimensional. Despite the use of small data sets,
the GPDM learns an effective representation of the nonlinear dynamics in
these spaces. Webpage: http://www.dgp.toronto.edu/ � jmwang/gpdm/

1 Introduction
A central difficulty in modeling time-series data is in determining a model that can capture
the nonlinearities of the data without overfitting. Linear autoregressive models require
relatively few parameters and allow closed-form analysis, but can only model a limited
range of systems. In contrast, existing nonlinear models can model complex dynamics, but
may require large training sets to learn accurate MAP models.

In this paper we investigate learning nonlinear dynamical models for high-dimensional
datasets. We take a Bayesian approach to modeling dynamics, averaging over dynamics
parameters rather than estimating them. Inspired by the fact that averaging over nonlinear
regression models leads to a Gaussian Process (GP) model, we show that integrating over
parameters in nonlinear dynamical systems can also be performed in closed-form. The
resulting Gaussian Process Dynamical Model (GPDM) is fully defined by a set of low-
dimensional representations of the training data, with both dynamics and observation map-
pings learned from GP regression. As a natural consequence of GP regression, the GPDM
removes the need to select many parameters associated with function approximators while
retaining the expressiveness of nonlinear dynamics and observation.

Our work is motivated by modeling human motion for video-based people tracking and
data-driven animation. An individual human pose is typically parameterized with more
than 60 parameters. Despite the large state space, the space of activity-specific human poses
and motions has a much smaller intrinsic dimensionality; in our experiments with walking
and golf swings, 3 dimensions often suffice. Bayesian people tracking requires dynamical
models in the form of transition densities in order to specify prediction distributions over
new poses at each time instant (e.g., [11, 14]); similarly, data-driven computer animation
requires prior distributions over poses and motion (e.g., [1, 4, 6]).
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Figure 1: Time-series graphical models. (a) Nonlinear latent-variable model for time se-
ries. (Hyperparameters �� and �� are not shown.) (b) GPDM model. Because the mapping
parameters � and � have been marginalized over, all latent coordinates �	��
 ��
������������������
are jointly correlated, as are all poses ����
 � 
!���������"���#��� .

Our work builds on the extensive literature in nonlinear time-series analysis, of which we
mention a few examples. Two main themes are the use of switching linear models (e.g.,
[11]), and nonlinear transition functions, such as represented by Radial Basis Functions
[2]. Both approaches require sufficient amounts of training data that one can learn the
parameters of the switching or basis functions. Determining the appropriate number of
basis functions is also difficult. In Kernel Dynamical Modeling [12], linear dynamics are
kernelized to model nonlinear systems.

Supervised learning with GP regression has been used to model dynamics for a variety
of applications [3, 7, 13]. These methods model dynamics directly in observation space,
which is impractical for the high-dimensional motion capture data. Our approach is most
directly inspired by the unsupervised Gaussian Process Latent Variable Model (GPLVM)
[5], which models the joint distribution of the observed data and their corresponding rep-
resentation in a low dimensional latent space. This distribution can then be used as a prior
for inference from new measurements. However, the GPLVM is not a dynamical model; it
assumes that data are generated independently. Accordingly it does not respect temporal
continuity of the data, nor does it model the dynamics in the latent space. Here we aug-
ment the GPLVM with a latent dynamical model. The result is a Bayesian generalization
of subspace dynamical models to nonlinear latent mappings and dynamics.

2 Gaussian Process Dynamics
The Gaussian Process Dynamical Model (GPDM) comprises a mapping from a latent space
to the data space, and a dynamical model in the latent space (Figure 1). These mappings
are typically nonlinear. The GPDM is obtained by marginalizing out the parameters of the
two mappings, and optimizing the latent coordinates of training data.

More precisely, our goal is to model the probability density of a sequence of vector-valued
states �$
!���������&%'���������"��� , with discrete-time index ( and �)%+*-,/. . As a basic model, consider
a latent-variable mapping with first-order Markov dynamics:

� % � 0/12� %43&
65 �87)9;: <!= % (1)�&%>� ?&1@�&% 5 �A7)9;:$B = % (2)

Here, � % *C,�D denotes the E -dimensional latent coordinates at time ( , :�<F= % and : B = % are
zero-mean, white Gaussian noise processes, 0 and ? are (nonlinear) mappings parameter-
ized by � and � , respectively. Figure 1(a) depicts the graphical model.

While linear mappings have been used extensively in auto-regressive models, here we con-
sider the nonlinear case for which 0 and ? are linear combinations of basis functions:

0/1@� 5 �87>� GIHKJ HMLMH 1@�)7 (3)

?&1@� 5 �N7>� G�OQP OSR$O 1@�)7 (4)



for weights �	�Q
 J 
!�"J � ������� � and � ��
 P 
6� P � ������� � , and basis functions
L H

and
R$O

. In order
to fit the parameters of this model to training data, one must select an appropriate number
of basis functions, and one must ensure that there is enough data to constrain the shape of
each basis function. Ensuring both of these conditions can be very difficult in practice.

However, from a Bayesian perspective, the specific forms of 0 and ? — including the
numbers of basis functions — are incidental, and should therefore be marginalized out.
With an isotropic Gaussian prior on the columns of � , marginalizing over ? can be done in
closed form [8, 10] to yield� 1@��� � � �� 7 � � ��� �� 1	��
)7 � . � ��
�� .������ ���������� � � 3�

 �!� � � �#"�$ � (5)

where � �Q
 �$
!���������"���#� � , ��
 is a kernel matrix, and �� �&% � 
 � � � ���������'�)( comprises the
kernel hyperparameters. The elements of kernel matrix are defined by a kernel function,1*� 
 7 H = O �,+ 
 12� H �"� O 7 . For the latent mapping, �.- � , we currently use the RBF kernel

+/
�1@���"�10�7 � � 
 ���2� ��� � �� �3� � � �104�5� � $ 9 � 3&
687:9 = 9�; � (6)

As in the SGPLVM [4], we use a scaling matrix � <>=�?A@�B 1DC 
�� �������'C . 7 to account for
differing variances in the different data dimensions. This is equivalent to a GP with kernel
function +�1@����� 0 7�EFC �G for dimension H . Hyperparameter

� 
 represents the overall scale of
the output function, while

� � corresponds to the inverse width of the RBFs. The variance
of the noise term :/B = % is given by

� 3�
6 .

The dynamic mapping on the latent coordinates � is conceptually similar, but more subtle.1

As above, we form the joint probability density over the latent coordinates and the dynamics
weights � in (3). We then marginalize over the weights � , i.e.,� 1 �&���� 7 �JI � 1 � � �&���� 7 E � �KI � 1 �&� � �F�� 7 � 1 �&���� 7 E �	� (7)

Incorporating the Markov property (Eqn. (1)) gives:� 1 �&���� 7 � � 12� 
 7 I �L
%DM � � 1@� % � � %43�
 � � � �� 7 � 1 �&���� 7 E �	� (8)

where �� is a vector of kernel hyperparameters. Assuming an isotropic Gaussian prior on
the columns of � , it can be shown that this expression simplifies to:� 12�&�!�� 7 � � 12� 
 7 �� 1N�F
)7PO ��3&
'Q D � ��RS� D �:��� �T���� �U� � � 3&
R �WV'XZY � � V'X[Y "�$ � (9)

where � V'XZY ��
 � � � �������"���#��� , � R is the 1*\ � � 7^] 1*\ � � 7 kernel matrix constructed from% �$
���������������3�
Z( , and � 
 is assumed to be have an isotropic Gaussian prior.

We model dynamics using both the RBF kernel of the form of Eqn. (6), as well as the
following “linear + RBF” kernel:+ R 1@����� 0 7 � � 
 �:���`_ � � �� �3� � � � 0 �3� ��a 9 � 6 � � � 0 9 � 3�
b 7�9 = 9 ; � (10)

The kernel corresponds to representing ? as the sum of a linear term and RBF terms. The
inclusion of the linear term is motivated by the fact that linear dynamical models, such as

1Conceptually, we would like to model each pair ced�fhghdifejlkhm as a training pair for regression withn . However, we cannot simply substitute them directly into the GP model of Eqn. (5) as this leads to
the nonsensical expression olcedlp�grqsqsqsghdlt�uNd k grqsqsqsghdlt^v k m .



first or second-order autoregressive models, are useful for many systems. Hyperparameters� 
6� � � represent the output scale and the inverse width of the RBF terms, and � 6 represents
the output scale of the linear term. Together, they control the relative weighting between
the terms, while � 3�
b represents the variance of the noise term :�<F= % .
It should be noted that, due to the nonlinear dynamical mapping in (3), the joint distribution
of the latent coordinates is not Gaussian. Moreover, while the density over the initial state
may be Gaussian, it will not remain Gaussian once propagated through the dynamics. One
can also see this in (9) since � % terms occur inside the kernel matrix, as well as outside of
it. The log likelihood is not quadratic in �)% .
Finally, we also place priors on the hyperparameters ( � 1 �� 7�� � H � 3&
H , and � 1 �� 7��� H � 3�
H

) to discourage overfitting. Together, the priors, the latent mapping, and the dy-
namics define a generative model for time-series observations (Figure 1(b)):� 1 � ��� � �� � �� 7 � � 12� � � � �� 7 � 12� �@�� 7 � 1 �� 7 � 1 �� 7S� (11)

Multiple sequences. This model extends naturally to multiple sequences � 
 ���������"��� .
Each sequence has associated latent coordinates � 
����������"� � within a shared latent space.
For the latent mapping ? we can conceptually concatenate all sequences within the GP
likelihood (Eqn. (5)). A similar concatenation applies for the dynamics, but omitting the
first frame of each sequence from � V'X[Y , and omitting the final frame of each sequence from
the kernel matrix � R . The same structure applies whether we are learning from multiple
sequences, or learning from one sequence and inferring another. That is, if we learn from
a sequence � 
 , and then infer the latent coordinates for a new sequence � � , then the joint
likelihood entails full kernel matrices � R and ��
 formed from both sequences.

Higher-order features. The GPDM can be extended to model higher-order Markov
chains, and to model velocity and acceleration in inputs and outputs. For example, a
second-order dynamical model,

�&%/� 0/1@�&%43�
6�"�&%43 � 5 �87$9 : <!= % (12)

may be used to explicitly model the dependence of the prediction on two past frames (or
on velocity). In the GPDM framework, the equivalent model entails defining the kernel
function as a function of the current and previous time-step:+/RA1I
 � % �"� % 3�
 �4�)
 ��� ����� 3�
 �67>� � 
 �:���`_ � � �� �5� � % � �����5� � � � 6� �5� � % 36
 � ��� 36
 �3� � a9 � b � �% ��� 9 ��� � �% 36
 ��� 36
 9 � 3&
	 7 % = � (13)

Similarly, the dynamics can be formulated to predict velocity:


 %43&
#�K0/1@�&%43&
 5 � 7�9 : <F= % (14)

Velocity prediction may be more appropriate for modeling smoothly motion trajectories.
Using Euler integration with time-step � ( , we have �)% �	�&%43&
 9 
 %43&
�� ( . The dynam-
ics likelihood � 12�&�!�� 7 can then be written by redefining � V'X[Y � 
 � � � � 
 � �������"� � �
� ��3&
 � �^E
� ( in Eqn. (9). In this paper, we use a fixed time-step of � ( � �

. This is analo-
gous to using ��%43�
 as a “mean function.” Higher-order features can also be fused together
with position information to reduce the Gaussian process prediction variance [15, 9].

3 Properties of the GPDM and Algorithms

Learning the GPDM from measurements � entails minimizing the negative log-posterior:� � ����� � 12� � �� � �� � � 7 (15)
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 �)9 �� ��� � � 3�

 �!� � � � " 9 G O ��� � O

up to an additive constant. We minimize
�

with respect to � � �� � and �� numerically.

Figure 2 shows a GPDM 3D latent space learned from a human motion capture data com-
prising three walk cycles. Each pose was defined by 56 Euler angles for joints, 3 global
(torso) pose angles, and 3 global (torso) translational velocities. For learning, the data was
mean-subtracted, and the latent coordinates were initialized with PCA. We used 3D latent
spaces for all experiments shown here. Using 2D latent spaces leads to intersecting la-
tent trajectories. This creates large “jumps” to appear in the model, leading to unreliable
dynamics. Finally, the GPDMs are learned by minimizing

�
in (16).

Figure 2(a) shows a 3D SGPLVM learned from walking data. Note that the latent trajec-
tories are not smooth; there are numerous cases where consecutive poses in the walking
sequence are relatively far apart in the latent space. By contrast, Fig. 2(b) shows that the
GPDM produces a much smoother configuration of latent positions. Here the GPDM ar-
ranges the latent positions roughly in the shape of a saddle.

Figure 2(c) shows a volume visualization of the inverse reconstruction variance, i.e.,� � ��� ����� 9 = � = ��=
	� . This shows the confidence with which the model reconstructs a pose
from a latent position � . In effect, the GPDM models a high probability “tube” around
the data. To illustrate the latent dynamical process, Fig. 2(d) shows 25 fair samples from
the latent dynamics of the GPDM. All samples are conditioned on the same initial state,�
� , and each has a length of 60 time steps. As noted above, because we marginalize over
the weights of the dynamic mapping, � , the distribution over a pose sequence cannot be
factored into a sequence of low-order Markov transitions (Fig. 1(a)). Hence, we draw fair
samples

�� O O Q
�� 	 ��� � 1 ��-
�� 	 � � �
� �"� ��� � �� 7 , using hybrid Monte Carlo [8]. The resulting
trajectories (Fig. 2(c)) are smooth and similar to the training motions.

3.1 Mean Prediction Sequences
For both 3D people tracking and computer animation, it is desirable to generate new mo-
tions efficiently. Here we consider a simple online method for generating a new motion,
called mean-prediction, which avoids the relatively expensive Monte Carlo sampling used
above. In mean-prediction, we consider the next timestep

��$% conditioned on
���%43&
 from the

Gaussian prediction [8]: ��&% � � 1�� R 1 ��&%43&
 7 5 � �R 1 ��&%43&
 7�� 7 (17)

� R 1@�)7+�C� � V'XZY � 3&
R�� R 1@�)7+� � �R 1@�)7S�,+ R 1@���"�)7 � � R 12�)7 � � 3&
R�� R 12�)7 (18)

where � R 12�)7 is a vector containing + RA1@����� H 7 in the � -th entry and � H is the � %�� training
vector. In particular, we set the latent position at each time-step to be the most-likely (mean)
point given the previous step: ��% ��� R 12�&%43&
 7 . In this way we ignore the process noise
that one might normally add. We find that this mean-prediction often generates motions
that are more like the fair samples shown in Fig. 2(d), than if random process noise had
been included at each time step. Similarly, new poses are given by � % ��� 
 1@� % 7 .
Depending on the dataset and the choice of kernels, long sequences generated by sampling
or mean-prediction can diverge from the data. On our data sets, mean-prediction trajec-
tories from the GPDM with an RBF or linear+RBF kernel for dynamics usually produce
sequences that roughly follow the training data (e.g., see the red curves in Figure 3). This
usually means producing closed limit cycles with walking data. We also found that mean-
prediction motions are often very close to the mean obtained from the HMC sampler; by
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Figure 2: Models learned from a walking sequence of 2.5 gait cycles. The latent positions
learned with a GPLVM (a) and a GPDM (b) are shown in blue. Vectors depict the temporal
sequence. (c) - log variance for reconstruction shows regions of latent space that are recon-
structed with high confidence. (d) Random trajectories drawn from the model using HMC
(green), and their mean (red). (e) A GPDM of walk data learned with RBF+linear kernel
dynamics. The simulation (red) was started far from the training data, and then optimized
(green). The poses were reconstructed from points on the optimized trajectory.
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Figure 3: (a) Two GPDMs and mean predictions. The first is that from the previous figure.
The second was learned with a linear kernel. (b) The GPDM model was learned from 3
swings of a golf club, using a ���FD order RBF kernel for dynamics. The two plots show 2D
orthogonal projections of the 3D latent space.

initializing HMC with mean-prediction, we find that the sampler reaches equilibrium in a
small number of interations. Compared to the RBF kernels, mean-prediction motions gen-
erated from GPDMs with the linear kernel often deviate from the original data (e.g., see
Figure 3a), and lead to over-smoothed animation.

Figure 3(b) shows a 3D GPDM learned from three swings of a golf club. The learning
aligns the sequences and nicely accounts for variations in speed during the club trajectory.

3.2 Optimization
While mean-prediction is efficient, there is nothing in the algorithm that prevents trajecto-
ries from drifting away from the training data. Thus, it is sometimes desirable to optimize
a particular motion under the GPDM, which often reduces drift of the mean-prediction mo-



(a) (b)

Figure 4: GPDM from walk sequence with missing data learned with (a) a RBF+linear
kernel for dynamics, and (b) a linear kernel for dynamics. Blue curves depict original data.
Green curves are the reconstructed, missing data.

tions. To optimize a new sequence, we first select a starting point
���
 and a number of

time-steps. The likelihood � 1 ��&��� � �� 7 of the new sequence
�� is then optimized directly

(holding the latent positions of the previously learned latent positions, � , and hyperparam-
eters, �� , fixed). To see why optimization generates motion close to the traing data, note
that the variance of pose � %��$
 is determined by � �R 1@� % 7 , which will be lower when � % is
nearer the training data. Consequently, the likelihood of �$%��$
 can be increased by moving�&% closer to the training data. This generalizes the preference of the SGPLVM for poses
similar to the examples [4], and is a natural consequence of the Bayesian approach. As an
example, Fig. 2(e) shows an optimized walk sequence initialized from the mean-prediction.

3.3 Forecasting
We performed a simple experiment to compare the predictive power of the GPDM to a
linear dynamical system, implemented as a GPDM with linear kernel in the latent space and
RBF latent mapping. We trained each model on the first 130 frames of the 60Hz walking
sequence (corresponding to 2 cycles), and tested on the remaining 23 frames. From each
test frame mean-prediction was used to predict the pose 8 frames ahead, and then the RMS
pose error was computed against ground truth. The test was repeated using mean-prediction
and optimization for three kernels and first-order Markov dynamics:

Linear RBF Linear+RBF
mean-prediction 59.69 48.72 36.74

optimization 58.32 45.89 31.97

Due to the nonlinear nature of the walking dynamics in latent space, the RBF and Lin-
ear+RBF kernels outperform the linear kernel. Moreover, optimization (initialized by
mean-prediction) improves the result in all cases, for reasons explained above.

3.4 Missing Data
The GPDM model can also handle incomplete data (a common problem with human motion
capture sequences). The GPDM is learned by minimizing

�
(Eqn. (16)), but with the terms

corresponding to missing poses � % removed. The latent coordinates for missing data are
initialized by cubic spline interpolation from the 3D PCA initialization of observations.

While this produces good results for short missing segments (e.g., 10–15 frames of the
157 frame walk sequence used in Fig. 2), it fails on long missing segments. The problem
lies with the difficulty in initializing the missing latent positions sufficiently close to the
training data. To solve the problem, we first learn a model with a subsampled data sequence.
Reducing sampling density effectively increases uncertainty in the reconstruction process
so that the probability density over the latent space falls off more smoothly from the data.
We then restart the learning with the entire data set, but with the kernel hyperparameters
fixed. In doing so, the dynamics terms in the objective function exert more influence over
the latent coordinates of the training data, and a smooth model is learned.

With 50 missing frames of the 157 walk sequence, this optimization produces models



(Fig. 4) that are much smoother than those in Fig. 2. The linear kernel is able to pull
the latent coordinates onto a cylinder (Fig. 4b), and thereby provides an accurate dynam-
ical model. Both models shown in Fig. 4 produce estimates of the missing poses that are
visually indistinguishable from the ground truth.

4 Discussion and Extensions
One of the main strengths of the GPDM model is the ability to generalize well from small
datasets. Conversely, performance is a major issue in applying GP methods to larger
datasets. Previous approaches prune uninformative vectors from the training data [5]. This
is not straightforward when learning a GPDM, however, because each timestep is highly
correlated with the steps before and after it. For example, if we hold � % fixed during opti-
mization, then it is unlikely that the optimizer will make much adjustment to � %��$
 or �&%43&
 .
The use of higher-order features provides a possible solution to this problem. Specifically,
consider a dynamical model of the form 
 % � 0/12� %43&
 � 
 %43&
 7 . Since adjacent time-steps
are related only by the velocity 
 %�� 12�&% � �&%43�
 7UE
� ( , we can handle irregularly-sampled
datapoints by adjusting the timestep � ( , possibly using a different � ( at each step.

A number of further extensions to the GPDM model are possible. It would be straightfor-
ward to include a control signal � % in the dynamics 0/12� % ��� % 7 . It would also be interesting to
explore uncertainty in latent variable estimation (e.g., see [3]). Our use of maximum like-
lihood latent coordinates is motivated by Lawrence’s observation that model uncertainty
and latent coordinate uncertainty are interchangeable when learning PCA [5]. However, in
some applications, uncertainty about latent coordinates may be highly structured (e.g., due
to depth ambiguities in motion tracking).
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