
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Object categorization using bone graphs

Diego Macrini a, Sven Dickinson b,⇑, David Fleet b, Kaleem Siddiqi c

a School of Information Technology and Engineering, University of Ottawa, Colonel By, 800 King Edward Av, Room B407, Ottawa, Ontario, Canada K1N 6N
b Department of Computer Science, University of Toronto, 6 King’s College Rd, Room PT 283, Toronto, Ontario, Canada M5S 3H5
c McGill University, Rm 318, McConnell Eng., 3480 University Street, Montreal, Quebec, Canada H3A 2A7

a r t i c l e i n f o

Article history:
Received 1 November 2010
Accepted 15 March 2011
Available online 24 March 2011

Keywords:
Medial shape representation
Graph-based shape representation
Inexact graph matching
Object categorization

a b s t r a c t

The bone graph (Macrini et al., in press, 2008) [23,25] is a graph-based medial shape abstraction that
offers improved stability over shock graphs and other skeleton-based descriptions that retain unstable
ligature structure. Unlike the shock graph, the bone graph’s edges are attributed, allowing a richer spec-
ification of relational information, including how and where two medial parts meet. In this paper, we pro-
pose a novel shape matching algorithm that exploits this relational information. Formulating the problem
as an inexact directed acyclic graph matching problem, we extend a leading bipartite graph-based algo-
rithm for matching shock graphs (Siddiqi et al., 1999) [41]. In addition to accommodating the relational
information, our new algorithm is better able to enforce hierarchical and sibling constraints between
nodes, resulting in a more general and more powerful matching algorithm. We evaluate our algorithm
with respect to a competing shock graph-based matching algorithm, and show that for the task of
view-based object categorization, our algorithm applied to bone graphs outperforms the competing algo-
rithm. Moreover, our algorithm applied to shock graphs also outperforms the competing shock graph
matching algorithm, demonstrating the generality and improved performance of our matching algorithm.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The recognition of 3-D objects from their silhouettes demands a
shape representation which is invariant to minor changes in view-
point and articulation. This invariance can be achieved by parsing a
silhouette into parts and relationships that are stable across similar
object views. Medial descriptions, such as skeletons and shock
graphs, attempt to decompose a shape into parts, but suffer from
instabilities that lead to similar shapes being represented by dis-
similar part sets. In response to this ligature-induced instability,
we recently introduced the bone graph [23,25], a medial parts-
based shape decomposition based on identifying and regularizing
the ligature structure of a given medial axis, and capturing a more
intuitive notion of an object’s parts than a skeleton or a shock
graph. An example of the bone graph computed from an input sil-
houette is shown in Fig. 1.

As shown in Fig. 1, the bone graph forms a hierarchy of parts
with edges spanning adjacent parts. Like the shock graph [34,41],
a bone graph node encodes the geometry of a part. However, unlike
the shock graph, a bone graph edge is attributed, specifying the
attachment position (on each part) and the orientation of the
attachment. Therefore, the view-based recognition of 3-D objects

using bone graphs requires a matching algorithm that can compare
the attributes of nodes and edges as well as the structures of two
graphs in the presence of spurious and missing nodes. Fig. 2 illus-
trates an example of similar views of two horses, which are repre-
sented by similar, but not isomorphic, bone graphs. One important
difference between these two graphs is that in the graph on the
right, the front legs are connected directly to the body of the horse,
while in the graph on the left, there is a small shape part between
the legs and the body. This small part is not noise, as it represents a
true part between the legs and the torso. However, there is no nat-
ural corresponding part on the other shape, and the algorithm
must be able to leave it unassigned, yet still establish correspon-
dences between the front legs. Fig. 3 shows the node correspon-
dences found by the algorithm introduced in this paper.

The comparison of bone graphs defines an inexact graph match-
ing between DAGs with high-dimensional node and edge attri-
butes. There is a large body of work in the area of inexact graph
matching, but most of it is focused on graphs in which either the
nodes or the edges are attributed. Our experience with the inexact
graph matching algorithm proposed by Shokoufandeh et al.
[24,37,38,41,44] for DAGs with attributed nodes motivates our
extension of this approach in order to incorporate edge informa-
tion into the matching problem. We propose a generalization of
this algorithm that expands the range of constraints that can be ac-
counted for at matching time, leading to a general framework for
representing domain knowledge about the relevance of structural

1077-3142/$ - see front matter � 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.cviu.2011.03.002

⇑ Corresponding author. Fax: +1 416 978 1455.
E-mail addresses: dmac@cs.toronto.edu (D. Macrini), sven@cs.toronto.edu

(S. Dickinson).

Computer Vision and Image Understanding 115 (2011) 1187–1206

Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate/cviu

Author's personal copy

(a) (b) (c) (d)
Fig. 1. Computing a bone graph from an unstable skeleton is a two-pass procedure that’s based on identifying and rectifying the ligature-induced instability in a shape’s
medial axis: (a) skeletal instability arises from part oversegmentation and under-segmentation. For example, the medial axis of the dog’s body is given by two skeletal
branches (instead of one) due to the junction point that represents the connection between these branches and the skeletal segment extending from the shorter rear leg. A
similar situation occurs near the front legs. The vicinity of the part oversegmentation is enlarged in each case, showing the resulting perturbation of the skeleton. Those
skeletal segments shown in green are ligature regions, and they contribute little to the shape of the object. A purely local analysis of ligature is problematic in the presence of
such oversegmentation, as illustrated by the non-intuitive labeling of the body part in the vicinity of the oversegmentation as ligature. (b) Detecting and removing ligature-
induced skeletal instability uses a local ligature analysis to first identify and rectify the medial representations of part protrusions. (c) A second ligature analysis then yields a
set of salient parts, called bones (shown in black). The bones capture the coarse part structure of the object, as indicated by the colored parts reconstructed from the bones. (d)
The bones give rise to a bone graph, an intuitive and stable representation whose nodes represent the salient parts and whose edges, derived from the final ligature analysis,
capture part attachment. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Example of missing non-terminal nodes and natural violations to node adjacency relations in the bone graph. We show the bone graph representations of two different
horse exemplars as seen from similar viewpoints (only the non-ligature points of the medial axes are drawn). In this example, the left horse has internal shape parts between
its torso and its front/back legs and between its neck and ears that have no natural correspondence on the right horse. The representation of these parts in the graph leads to
differences in the parent-child relations of some nodes. For example, the torso (node 1) is the grandparent of the front legs (nodes 3 and 6) on the top graph, whereas on the
bottom graph, the torso is the parent of the front legs (nodes 2 and 9). In order to find the desired correspondences between the legs and ears, the graph similarity function
that drives the matching process must favor solutions in which the missing parts are left unassigned. Natural violations to node adjacency relations pose another challenge to
bone graph matching. In this example, the enforcement of node adjacencies would exclude a node correspondence solution in which the torsos and front legs of the horses are
assigned to one another. This is because the torso of the left horse (node 1) is not adjacent to the front legs (nodes 6 and 3) due to the presence of a shape part between them
(node 2), but the torso of the right horse is adjacent to the horse’s front legs.

Fig. 3. Matching result for the horse example. The correspondences found by the algorithm are shown as arcs connecting shape parts, and as matching node colors in the
graphs. In this case, the four internal shape parts (labeled 2, 11, 15, and 17) in between the left horse’s torso and legs, and neck and ears are left unassigned (white nodes) at
matching time. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

1188 D. Macrini et al. / Computer Vision and Image Understanding 115 (2011) 1187–1206

Author's personal copy

differences between the graphs. Because the matching problem is
intractable, the addition of domain knowledge is especially impor-
tant to guide the search for approximate solutions that are relevant
to the task at hand.

We evaluate our graph matching framework for the problem of
comparing bone graphs. This requires the definition of similarity
functions for nodes and edges, and the specification of the domain
assumptions about the relative importance of the structural dif-
ferences between two graphs. Our proposed node similarity func-
tion is a robust measure that can gracefully account for the
deformations produced by perspective transformations, part artic-
ulation, and within-class deformation. Our proposed edge similar-
ity function is able to measure the position and orientation of
each part attachment in terms of its local context. The result is
a recognition pipeline based on a novel 2-D medial axis-based
shape representation. We evaluate each component of this pipe-
line extensively, and compare it to a competing shock graph rec-
ognition framework.

The contributions of the paper are twofold: (1) we introduce a
novel framework for inexact graph matching, extending our
body of previous work on matching node-attributed graphs
[41,38,24,37] to accommodate node- and edge-attributed graphs,
and expanding the range of domain-dependent topological con-
straints that can be enforced during matching; and (2) we apply
the matching framework to a powerful new structured shape rep-
resentation, the bone graph [23], yielding the first end-to-end ob-
ject categorization system based on bone graphs. The improved
stability of the node- and edge-attributed bone graph, combined
with our matching algorithm’s ability to exploit both its edge attri-
butes and its domain-dependent topological constraints, yield an
object categorization system which outperforms a state-of-the-
art shape categorization system based on shock graphs.

The remainder of the paper is organized as follows. In Section 2,
we review other approaches to graph-based shape matching. In
Section 3, we present our approach to the inexact matching of hier-
archical graph structures, incorporating both node and edge con-
straints. We evaluate our matching framework in Section 4, by
applying it to the task of view-based object categorization using
bone graphs. Finally, we discuss limitations and conclusions in Sec-
tion 5.

2. Related work

The problem of matching graph representations of shape has re-
ceived considerable attention in the vision research community.
The graph matching task demands an algorithm that combines dif-
ferences in graph topology and node and edge attributes into a
continuous measure of graph similarity. Since this problem (sub-
graph isomorphism) is NP-complete (maximum common isomor-
phic subgraph is NP-hard), the choice is either to seek an
approximate solution or to consider graphs that can be matched
in polynomial time (e.g., rooted trees). In addition, domain-depen-
dent constraints may be assumed to simplify the matching prob-
lem. For example, Umeyama [43] proposes a matching algorithm
for graphs of equal size using an eigen-decomposition method to
find the permutation matrix that minimizes the difference of the
edge weights. Another example is the work of Gold and Rangarajan
[16], who use a graduated assignment heuristic to find the largest
isomorphic subgraph between two attributed graphs. Unfortu-
nately, these specific constraints are too limiting for the task of
matching shape representations, since the graphs representing
similar shapes might not have the same number of nodes or large
isomorphic subgraphs.

Conte et al. survey the field of exact and inexact graph matching
in pattern recognition in [6,7]. In this section, we review the body

of work in the area that is most relevant to the problem of match-
ing graph-based shape representations. The most popular classes
of graphs in this area are given by trees, directed acyclic graphs
(DAG), and attributed relational graphs (ARG) [12]. The attributed
tree- and DAG-based representations encode hierarchical relations
between nodes (i.e., shape parts), which, in turn, provide structural
constraints that simplify the matching problem. On the other hand,
an ARG is a more general structure than a tree or a DAG (it is an
attributed undirected graph that might contain cycles), but pro-
vides weaker constraints to exploit during matching.

Pelillo et al. [29,30] match node-attributed trees by construct-
ing a maximum weight clique problem. This algorithm looks for
the set of nodes in the query and in the model graphs that preserve
the hierarchical constraints imposed by the representation while
maximizing the pairwise node similarities among the nodes. An-
other matching approach for node-attributed trees is the work of
Sebastian et al. [35], which measures the edit distance between
two graphs (this is also known in the literature as error-correcting
or error-tolerant algorithms [6]). The graph edit distance is defined
as the minimum cost of the deformation path that makes two
graphs isomorphic. Four edit operations are defined to deform a
graph representation of one shape into another. Three of these
operations allow for different types of merges and deletions of
nodes, while the fourth operation allows for altering node attri-
butes. The merge operation allows for assigning many-to-many
correspondences between nodes (or one-to-many, if merges are
applied only to the query graph) and can be used to find similari-
ties at higher levels of abstraction. However, this flexibility comes
at high computational cost, as finding a common graph between
largely dissimilar graphs can define an extremely large space of
possible edit operations. This is particularly problematic for clut-
tered or occluded scenes, where much of the edit cost may be
due to the removal of extraneous clutter.

Pelillo et al. [31] also propose a solution to the many-to-many
matching of node-attributed trees by reducing tree isomorphism
to the problem of solving a maximum weight clique in an associa-
tion graph. Their solution to the matching problem uses replicator
dynamical systems from evolutionary game theory. In more recent
work, Demirci et al. [10] present a framework for many-to-many
matching, where features and their relations are represented using
directed edge-weighted graphs. The method begins by transform-
ing the graph into a metric tree. Next, using graph embedding tech-
niques, the tree is embedded into a normed vector space. This two-
step transformation reduces the problem of many-to-many graph
matching to a simpler problem of matching weighted distributions
of points in a normed vector space. The distance between two
weighted point distributions is computed using the Earth Mover’s
distance [5,32].

For the case of node-attributed DAGs, Shokoufandeh et al.
[37,38] propose a recursive bipartite matching algorithm in which
a node similarity function measures both the attribute similarity of
nodes and the topological similarity of the subgraphs rooted at
each node. The result is a one-to-one assignment of node corre-
spondences that yields a similarity value between arbitrary DAGs.
This approach has been used to match shock graphs [38] as well as
multiscale blob decompositions of shape [37]. In this latter ap-
proach, edge attributes are not accounted for explicitly, but can
be embedded in the node similarity function. For example, in
[37] the relative orientation of parts (i.e., edge attributes) is seen
as a parameter of the node similarity function. However, since edge
attributes are not compared explicitly, the ability of the matcher to
independently measure structural and geometrical similarity is
reduced.

All the above matching approaches suffer from one important
limitation; they either ignore edge attributes or allow only for sca-
lar edge weights. A popular method for matching fully-attributed

D. Macrini et al. / Computer Vision and Image Understanding 115 (2011) 1187–1206 1189

Author's personal copy

graphs is to treat the problem as a tree search with backtracking
[18]. The basic mechanism in this family of approaches is to itera-
tively grow a solution set (initially empty) by adding node corre-
spondences that are compatible with the mappings already in
the set. The search is usually guided by the cost (or similarity
weight) of the partial mapping spanned by the solution set and a
heuristic that estimates the cost of matching the remaining nodes.
The heuristic allows the matching algorithm to prune unfruitful
search paths (and backtrack the population of the solution set),
and/or to determine the order in which the search tree is traversed.
The search is usually performed using a depth-first or best-first
strategy.

Our algorithm for matching fully-attributed DAGs is a tree
search approach, and in that respect it is similar to the previous
work on ARGs. However, it differs from such work in the way it
treats noisy nodes and edge attributes. In the case of ARG-based
methods, noisy nodes are matched (with a cost) to a special null
node that represents the node deletion operation in a graph edit
distance. The addition of null nodes (one for each graph) increases
considerably the number of possible solutions that must be inves-
tigated. In our approach, the hierarchical structure of DAGs is used
to constrain the node correspondences at each iteration of the
algorithm, which allows for solutions with unmatched noisy nodes
without adding null nodes. Another important difference is that
the ARG matching approaches seek a mapping that preserves node
adjacency by editing the graphs to create an isomorphism, while
this is not the case in our approach (unless node adjacency preser-
vation is specified by the domain constraints). This results in a dif-
ferent treatment of edge similarity, since in our case there is no
strict one-to-one correspondence between edges if node adjacency
is not preserved.

A different family of methods is based on formulating the
problem as a continuous nonlinear optimization. Fischler and
Elschlager [13] propose a relaxation labeling approach that assigns
a label to each node in the model ARG that determines its corre-
spondence to a node in the query ARG. The algorithm begins by
computing the probability of each possible label assignment as a
function of the node attributes and any other local information,
such as the attributes of the edges incident on the model and query
nodes. In subsequent iterations, the probabilities are updated by
taking into account the assignment probabilities of neighboring
nodes until either convergence or a maximum number of iterations
are reached. A similar approach is proposed by Kittler and Hancock
[20]. Christmas et al. [4] extend the relaxation labeling approach to
consider edge attribute information at each iteration (i.e., not just
in the initialization step). In the same spirit, Wilson and Hancock
[45] propose an error-correcting method that exploits structural
constraints by defining a probabilistic dictionary of consistent
node mappings for neighborhoods of nodes (augmented with null
nodes to represent deletions). The matching solution in this formu-
lation is given by the maximum a posteriori (MAP) estimate of a
Bayesian formulation of the node correspondence probabilities.
Huet and Hancock [19] extend this approach to consider edge attri-
butes in the probability of node neighborhood transformations en-
coded by the consistency dictionary in [45]. Similar probabilistic
error-correcting approaches based on relaxation labeling are
proposed by Myers et al. [28] and by Torsello and Hancock [42]
(for trees). Finally, Luo and Hancock [22] use the EM algorithm
[11] (instead of relaxation labeling) to find the MAP solution to a
probabilistic graph matching problem in which the query graph
is treated as observed data and the model graph acts as hidden ran-
dom variables.

The probabilistic methods described above do not enforce a
one-to-one mapping between nodes (they allow for one-to-many
correspondences), and yield matches that are not symmetric (the
results depend on whether each graph takes the role of the model

or the query). These properties are appropriate for some domains
but are not desirable in others. In contrast, the matching algorithm
that we present in Section 3 yields a one-to-one node mapping that
does not depend on the role of each graph. Our approach does bear
some resemblance to the probabilistic methods in that the similar-
ity of node attributes may be updated at each iteration of the algo-
rithm as a function of the current matching information, whereas
previous tree search approaches assume that the node attribute
similarities are constant.

It should also be noted that there are graph matching ap-
proaches specifically tailored to the problem of matching skele-
tal-based representations of object silhouettes. Zhu and Yuille
[46] propose an error-correcting graph matching algorithm in
which the relative sizes of shape parts are used to define the pen-
alty for missing parts. Baseski et al. [2] propose an error-correcting
algorithm for trees based on a coarse skeleton representation of
each shape, and integrate knowledge about object categories into
their shape similarity measure. In contrast to these approaches,
Bai and Latecki [1] propose a framework that abstracts out the
structure of the skeleton graph entirely, and instead computes
the similarity of skeletal paths connecting the terminal points of
the skeleton. The similarity of the shortest paths between each pair
of terminal points is used to establish the correspondences be-
tween skeleton graphs.

3. Inexact graph matching for bone graphs

In this section, we explore the problem of matching graph-
based representations in which both the nodes and edges of the
graphs have arbitrary sets of attributes. In a recent paper [23],
we performed graph matching experiments with bone graphs
and shock graphs using the matching algorithm for node-attrib-
uted (NA) DAGs proposed by Shokoufandeh et al. [37]. Since this
algorithm shows promising results when applied to bone graphs,
we propose a generalization of it for the problem of matching
fully-attributed (FA) DAGs. In addition, our generalization of the
algorithm expands the type of domain knowledge that can be
incorporated into the matching process, and allows us to improve
on the results obtained with the previous version of the
algorithm.

The problem of finding node correspondences between graphs
that might not be isomorphic is known as inexact graph matching.
In our case, we are also interested in computing a measurement of
graph similarity that can be used to rank order model graphs with
respect to a query graph. Given two graphs GðV ; EÞ and G0ðV 0; E0Þ,
our problem is to find the values of node assignment variables
avv 0 2 f0; 1g, for v 2 V and v0 2 V0, that maximize some function of
graph similarity, FðG;G0Þ. In the case of attributed graphs, the graph
similarity measure is a function of the attribute similarity of nodes
and/or edges and the structural similarity of the underlying graphs.
For example, in [21,27,40] the problem is stated as

FðG;G0Þ ¼ max
M2M

1
2

X
v2V

X
v 02V 0

Mðv ;v 0ÞNaðv ;v 0Þ; ð1Þ

where Na(v,v0) are constant weights representing measures of node
attribute similarity, and M¼ fMg is the set of all jVj � jV0j binary
matrices Mðv;v 0Þ ¼ avv 0 whose nonzero entries represent node
assignments that satisfy some set of constraints. Frequently, the
constraints enforce one-to-one node mappings that preserve node
adjacency, and therefore define a maximum common isomorphic
subgraph problem, which, for general graphs, is NP-hard [15].

In some domains, requiring the preservation of node adjacency
may exclude natural solutions to the node correspondence prob-
lem. For example, Fig. 2 shows that a minor shape difference can
make a mapping between salient bone graph nodes invalid if node

1190 D. Macrini et al. / Computer Vision and Image Understanding 115 (2011) 1187–1206

Author's personal copy

adjacency constraints are enforced. As a workaround, inexact
graph matching can be defined in terms of edit operations that
add or eliminate nodes with the objective of finding a graph iso-
morphism with minimum edit cost [3]. In this case, the similarity
weight between nodes v and v0 is not simply a function of their
attributes (like Na(v,v0) in Eq. (1)), but also accounts for the costs
of the edit operations needed to make v and v0 respect their adja-
cency to any previously matched nodes. The minimization of edit
costs is usually posed as tree search with backtracking, in which
a solution set (initially empty) is iteratively grown by adding node
correspondences that are compatible with the mappings already in
the set. We discuss the related work in this area in Section 2.

The tree search approach to graph matching provides a simple
mechanism for measuring the similarity of attributed graphs, but
is limited to exploiting only node adjacency constraints. Our algo-
rithm for graph matching is similar to the tree search approach in
that we: (a) iteratively grow a solution set of node correspon-
dences, (b) use heuristics to find an approximate solution in poly-
nomial time, and (c) define the similarity between two nodes as a
function of both their attributes and the set of previously selected
correspondences. However, unlike tree search, we consider con-
straints beyond adjacency in the evaluation of node similarity. This
allows us to account for edge attribute similarities and for the hier-
archical dependencies between the nodes of a DAG.

Our matching algorithm seeks to approximate the result of
evaluating all possible ways of populating a solution set of node
assignments, and selecting the set with the maximum sum of
assignment weights. One simple way of expressing this function
is to assume that every node in V is mapped to every node in V0

with some weight, which is nonzero only if the nodes are assigned
to each other. Then, if we order the set of jVj � jV0j correspondences
fðv;v 0Þgv2V ;v 02V 0 as a list, and let L be the set of all possible permu-
tations of that list, the graph similarity function can be expressed
as

FðG;G0Þ ¼max
A2L

1
N

X
v2V

X
v 02V 0

wðv ;v 0;Avv 0 Þ; ð2Þ

where Avv 0 is the set of node correspondences that appear before
(v,v0) in the totally ordered set A 2 L, and wðv; v 0;Avv 0 Þ 2 ½0;1� are
node similarity weights, which are nonzero if and only if v is
assigned to v0. N is a normalization constant that penalizes for un-
matched nodes (i.e., nodes of a graph whose similarity weights
are zero for every node of the other graph), and is needed for rank
ordering matching results. We let N = max(jVj, jV0j) for bone graph
and shock graph matching, which is an appropriate normalization
constant when the nonzero solutions are constrained to be one-
to-one node mappings.

The dependency of node correspondence weights on Avv 0 allows
for measuring node similarity with respect to structural and
attribute constrains given by the node assignments already in the
solution. Generally, these constraints render some permutations
redundant (e.g., they yield node mappings with zero weights),
which can be exploited by the matching algorithm. In Section
3.2, we propose a novel definition of similarity weights that leads
to a general approach for graph matching, which includes the ap-
proach of Shokoufandeh et al. [37] as a special case. Our approach
allows us to naturally incorporate domain knowledge that cannot
be expressed when the node correspondence weights are treated
as constants. We present an efficient algorithm that exploits the
structure of the problem to recompute only a small set of similarity
weights at each iteration of the algorithm. Furthermore, in Section
3.2.3, we describe a straightforward extension to our algorithm in
order to explore a bounded number of matching solutions. Later, in
Section 4, we evaluate empirically the benefit of considering multi-
ple solutions for the case of bone graphs and shock graphs.

3.1. Notation

We assume that we are given a pair of fully-attributed DAGs of
the form G(V,E,k,c), where V is a set of nodes, E is a set of edges
e = (u,v) directed from node u 2 V to node v 2 V, k(v) is a function
that maps each node v 2 V to a domain-dependent set of node
attributes, and c(e) is a function that maps each edge e 2 E to a do-
main-dependent set of edge attributes. The given graphs are con-
stant throughout the matching process, and so need not be
passed as arguments to the functions that require access to their
node adjacency matrices, or to the attributes of their node and
edges.

We also assume that, in addition to the graphs, we are given a
domain-dependent function of node attribute similarity Na(v,v0),
for v 2 V, v0 2 V0, and a domain-dependent function of edge attri-
bute similarity Ea(e,e0), for e 2 E, e0 2 E0. All measures of similarity
referred to throughout this section, whether they involve graphs,
nodes, or edges, are assumed to be values in the interval [0,1]. A
similarity value equal to zero represents total dissimilarity, while
a value of one represents equality.

The algorithms discussed below make frequent references to
the problem of maximum-weight bipartite matching (MWBM)
[14]. Then, it is convenient to define special notation for this prob-
lem. To this end, let M = MWBM(A,B,W) be the solution to the
MWBM problem, where A and B are disjoint sets of elements,
and W is an jAj � jBjmatrix of similarity weights between each pair
of elements spanning A and B. The solution to this problem is the
set M = {(a,b)} of one-to-one correspondences with nonzero weights
between the elements of A and B that yields the maximum sum of
similarity weights. In the case of ties, we assume that M is any set
with maximum cardinality among all possible sets with maximum
weight.

In some cases we are only interested in the value of the weight
sum rather than the set of correspondences, and so we define an
appropriate function:

MðA;B;WÞ ¼
X

ða;bÞ2MWBMðA;B;WÞ
Wða; bÞ;

where W(a,b) is the weight associated with matching element a 2 A
and b 2 B. Finally, it should be assumed that whenever we evaluate
M, the set of correspondences M can also be recovered from the
solution if needed.

3.2. The FA-DAG matcher

We begin by reviewing the matching algorithm of
Shokoufandeh et al. [37] for node-attributed DAGs (NA-DAG),
and then motivate our generalization of this work to the problem
of matching fully-attributed DAGs (FA-DAG) and the exploitation
of a wider range of domain knowledge. The NA-DAG matcher mea-
sures the similarity between two DAGs by searching for the node
correspondences that maximize the sum of pairwise node similar-
ities, while attempting to respect the hierarchy imposed by the
edge directions in each graph. In each iteration of the algorithm,
one node correspondence is added to the solution set in a greedy
fashion. The selection of each correspondence is given by first solv-
ing the M = MWBM(V,V0,W) problem, where the weights for each
possible correspondence (v,v0) are a function of the attribute sim-
ilarities of the nodes and a measure of the structural similarity of
the subgraph rooted at each node. Then, the node correspondence
(v,v0) 2M with the largest weight is added to the solution set (ini-
tially the empty set). Next, the selected node correspondence is
used to split the graphs into two subgraphs formed by the descen-
dants of v and v0, and two subgraphs formed by their respective
non-descendants. Finally, the algorithm proceeds recursively by

D. Macrini et al. / Computer Vision and Image Understanding 115 (2011) 1187–1206 1191

Author's personal copy

matching the pairs of descendant and non-descendant subgraphs
independently until there are no more possible correspondences
left to select. This algorithm is depicted in Fig. 4.

The measure of structural similarity encoded in the correspon-
dence weights is a low-dimensional spectral signature computed
from the adjacency matrix of the subgraph rooted at each node.
This measure is an attempt to let the matcher account for the
structure underneath nodes before committing to a node corre-
spondence. In practice, the signature vectors can be seen as part
of the node attributes, since they are constant and can be precom-
puted before the matching process takes place. We take this view,
and assume that the same technique can be used in our generaliza-
tion of the algorithm, if desired.

The pairwise node correspondence weights in each iteration of
the algorithm remain constant and correspond to a possibly subop-
timal solution to Eq. (1) [38]. In [37], variable weights are consid-
ered to overcome the problem that whenever the graphs are split
and each pair of subgraphs is matched, the subgraphs of non-
descendants can lead to correspondences that violate the hierar-
chical constraints imposed by the DAGs. For example, a pair of sib-
ling nodes in one graph can be assigned to a pair of parent-child
nodes in the other graph. To prevent this, some of the weights in
W are penalized in each iteration of the algorithm. Unfortunately,
the update of weights can lead to a solution that is not consistent
with Eq. (1), which assumes that the correspondence weights are
constant.

We generalize the NA-DAG matching algorithm to fully-attrib-
uted DAGs by considering the objective function given by Eq. (2),
and defining correspondence weights w(v,v0,At) that are a function
of the node and edge attributes of nodes v and v0, and the solution
set, At, at each iteration, t, of the algorithm. This definition of cor-
respondence weights also allows us to encode the graph split oper-
ation of the NA-DAG matcher as a structural constraint of the
problem. In fact, by encoding structural constraints as weights,
we provide a more general approach for incorporating domain
knowledge into the matching problem. The weights can be used
to penalize correspondences that violate different types of node
relations, whereas the graph split operation of the NA-DAG match-
er is restricted to a single type of node relation (i.e., descendant),

and to a binary decision on whether or not the node correspon-
dences satisfy the relation.

We decompose w(v,v0,At) into four factors, which measure sim-
ilarity as a function of

graph structure, such that the violation of a hierarchical
relation with respect to nodes in At is
penalized;

edge attributes, where the attribute similarity of all edges
incident on nodes v and v0 is evaluated.
This similarity is computed while
accounting for the paths that connect
nodes in At to both nodes v and v0;

assignment uniqueness, such that correspondences involving
nodes already in At are assigned a zero
weight;

node attributes, where the similarity of node attributes is
measured using a domain-dependent
function.

Our objective is to let any of these factors veto a node assign-
ment by yielding a similarity value equal to zero. This can be ex-
pressed as a product over all the factors. Then, we let the
similarity weights be

wðv ;v 0;AtÞ ¼ Sðv ;v 0;AtÞEðv ;v 0;AtÞUðv; v 0;AtÞNaðv; v 0;AtÞ; ð3Þ

where S, E, and U are the structural, edge, and uniqueness similarity
functions, and Na is a domain-dependent similarity function for
node attributes. The structural and edge similarity functions de-
serve special consideration and are defined in Sections 3.2.1 and
3.2.2, respectively. The uniqueness similarity is simple, and can be
defined as

Uðv ;v 0;AtÞ ¼
1 if8u0 2 V 0ðv;u0Þ R At and 8u 2 Vðu;v 0Þ R At ;

0 otherwise:

�

ð4Þ

The matching algorithm is simply given by the successive
iteration of two main steps. In the first step, we create/update a

(a) (b) (c)

(d) (e)
Fig. 4. The NA-DAG matcher. (a) Given a pair of directed acyclic graphs G and G0 , (b) form a bipartite graph in which the edge weights are the pairwise node similarities. Then,
(c) compute a maximum weight matching and add the best edge to the solution set. Finally, (d) split the graphs at the matched nodes and (e) recursively descend.

1192 D. Macrini et al. / Computer Vision and Image Understanding 115 (2011) 1187–1206

Author's personal copy

complete bipartite graph with node sets V and V0, and edge weights
Wt computed as a function of the current solution set At (initially
the empty set). In the second step, we solve the MWBM problem,
M = MWBM(V,V0,Wt), and add the correspondence (v,v0)� 2M with
largest weight to the solution set, such that At+1 = At [{(v,v0)�}. The
algorithm terminates when there are no more node correspon-
dences to consider, i.e., Wt = 0. In Section 3.2.3, we present this
algorithm and also present a less greedy variation of it.

An example of the first three iterations of the algorithm is
shown in Fig. 5. In this example, we assume that the structural
similarity S(v,v0,At) is equal to zero if the union of {(v,v0)} and At

is a set in which an ancestor-descendant assignment is inverted.
i.e., a set in which a pair of ancestor-descendant nodes in one graph
is assigned to a pair of ancestor-descendant nodes in the other
graph with the ancestors assigned to the descendants.

3.2.1. Measuring structural similarity
The structural similarity of a node assignment (v,v0) given a set

of previous assignments At can be thought of as a measure of how
much the node relationships in each graph would differ if node v is
assigned to node v0. For example, Fig. 6 shows an example in which
an assignment between an ancestor of node v and a descendant of
node v0 has been previously established. In this case, if node v is as-
signed to node v0, the resulting set of node assignments would not
respect the hierarchical ordering imposed by the DAGs.

There are three types of hierarchical relations in which we are
interested for bone graphs: ancestor, descendant, and sibling.
However, we can describe our approach more generally by assum-
ing a set of node relations R ¼ frkgK

k¼1 that we are interested in
maintaining, and defining predicates rk(a,b) that are true iff node
a and b satisfy relation rk. Briefly, our goal is simply to ensure that
both nodes v and v0 have similar relations with the previously

matched nodes (u,u0) 2 At. Whenever this is not the case, i.e.,
rk(u,v) – rk(u0,v0) for any k = 1, . . ., K, we penalize the assignment
(v,v0) according to a domain-dependent penalty pk 2 [0,1] for the
relation k. This can be expressed as a product over all relations of
interest between nodes v and v0 and the nodes in the current solu-
tion set. Then, we define the structural similarity function as

Sðv ;v 0;AtÞ ¼
Y

ðu;u0 Þ2At

Y
rk2R

p½rkðu;vÞ–rkðu0 ;v 0 Þ�
k ; ð5Þ

(a) (b)

(c) (d)
Fig. 5. The generalized DAG matching algorithm. (a) The given pair of DAGs. (b) In the first iteration of the algorithm, we form a bipartite graph with similarity weights
computed as a function of the empty solution set A0. Then, we solve the MWBM problem and add the correspondence with largest weight, in this case (3,30), to the solution
set. (c) In the next iteration, we recompute the similarity weights as a function of the augmented solution set A1. Here, all correspondences of the form (3,v0) and (v,3) have a
zero weight due to the U(v,v0 ,At) term in Eq. (3). Similarly, the S(v,v0 ,At) term evaluates to zero for the correspondences that violate structural constraints. For example, the
correspondence (1,40), if added to A1, would have an ancestor of node 3 assigned to a descendant of node 30 , and so S(1,40 ,A1) = 0. Only nonzero correspondences need be
considered when solving the MWBM problem. (d) A possible third iteration of the algorithm. The algorithm terminates when all the possible correspondences between
unassigned nodes have zero weights.

v'v

x

G'G

x'

Fig. 6. Example of hierarchical similarity. Here we assume that the node
correspondence (x,x0) is in the current solution set At, and want to compute the
structural similarity for the node correspondence (v,v0). Since x is an ancestor of v,
but x0 is a descendant of v0 , the addition of (v,v0) to the solution would create a node
mapping that does not respect the hierarchical ordering between the nodes of each
DAG. A structural similarity equal to zero would prevent this assignment from
being added to the solution.

D. Macrini et al. / Computer Vision and Image Understanding 115 (2011) 1187–1206 1193

Author's personal copy

where ½P� is the square bracket notation, which is equal to one if the
predicate P is true, and zero otherwise.

In our experiments, we specify the penalties for the ancestor,
descendant, and sibling relations as follows. For the ancestor and
descendant relations, we let their penalties be p1 = 0, p2 = 0, so that
violations of such relations are not allowed in the solution. This dif-
fers from the NA-DAG matching approach of Shokoufandeh et al.
[37], which does not penalize for violations to the ancestor relation
(see Fig. 7). For the sibling relation (see [37] for a discussion on this
relation), we let the penalty be p3 = 0.8, which encodes the fact that
shape parts frequently switch parents when the shapes are repre-
sented by bone graphs or shock graphs.

In summary, our structural similarity function is a general ap-
proach to incorporating assumptions about the importance of pre-
serving certain node relations when matching two graphs. Our
formulation of the problem allows us to specify arbitrary types of
node relations, and to penalize mismatches according to the
importance of each relation.

3.2.2. Measuring edge similarity
The edge similarity of a node assignment (v,v0) given a set of

previous assignments At is the normalized sum of pairwise edge
attribute similarities for the inward and outward edges incident
on nodes v and v0. We compute this value by assuming that there
is a one-to-one correspondence between inward edges and be-
tween outward edges, and find the set of edge correspondences
that maximizes the sum of pairwise similarities. We account for
the previous node matches (u,u0) 2 At by ensuring that if both u
and u0 are connected to v and v0 by a directed path, then the edges
linking these paths to nodes v and v0 are assigned to one another
when we sum the pairwise edge similarities. An example of this
constraint is illustrated in Fig. 8.

We define the problem of measuring edge similarity as that of
solving a MWBM problem for the set of edges incident on nodes
v and v0. For the special case in which both v and v0 have empty sets
of incident edges, we assume that their edge similarity is one.
Otherwise, we represent the pairwise edge attribute similarity be-
tween edges, and the constraints on path information from previ-
ously matched nodes as the weights of the MWBM problem. Thus,
the edge similarity function becomes

Eðv ;v 0;AtÞ ¼
MðEv ; Ev 0 ;WÞ

maxðjEv j; jEv 0 jÞ
; ð6Þ

where Ev = {ek} and Ev 0 ¼ fe0lg are the sets of incident edges on
nodes v and v0, respectively, M is the solution to the MWBM prob-
lem (Section 3.1), and W is the jEv j � jEv 0 j matrix of edge corre-
spondence weights defined below. The denominator of this
equation normalizes the sum of edge correspondence weights to
unity, yielding a similarity measure that penalizes for unmatched
edges.

In order to define the edge correspondence weights, let P(a,b)
be the (possibly empty) set of edges along the directed path that
connects nodes a and b (i.e., a non-empty set means that a is either
an ancestor or a descendant of b). Then, we let the edge correspon-
dence weights W(k, l) be equal to zero if

� the edges ek and e0l have opposite direction with respect to
nodes i and j (this condition is optional, as it may not be appro-
priate in some domains); or

Fig. 7. Example of the ancestor relation. Here we assume that the node
correspondence (x,x0) is in the current solution, and want to compute the structural
similarity for the candidate correspondence (v,v0). Since v0 is an ancestor of x0 , but v
is not an ancestor of x, the addition of (v,v0) to the solution would create a node
mapping that does not respect the ancestor relation. In this case, we apply a penalty
to the weight of the candidate correspondence (v,v0) to make it less likely to be
added to the solution. In contrast, the NA-DAG matcher does not penalize for the
violation of this node relation.

(a) (b)
Fig. 8. The edge similarity function. (a) We evaluate E(3,30 ,At) by summing the pairwise similarities of edges incident on nodes 3 and 30 as a function of the solution set At. In
this example, we assume that the node correspondence (6,70) is the only element in At. E(3,30 ,At) is equal to the maximal sum of nonzero one-to-one correspondences
between edges. A correspondence (ei,ej) may have a nonzero weight W(i, j) iff: (1) both edges have equal direction, and (2) they are consistent with the contents of At. For
example, here the only possibly nonzero correspondence for either edge e3 or e40 is ðe3; e40 Þ, since there is a directed path from nodes 3 to 6 and from nodes 30 to 70 . In contrast,
edges e4; e20 , and e30 have no ancestors or descendants in At, and have more than one possible correspondence. (b) E(3,30 ,At) is equal to the solution of the MWBM problem
shown here, where the weights of the correspondences that meet conditions (1) and (2) are given by a domain-dependent measure of edge attribute similarity, Ea(e,e0).

1194 D. Macrini et al. / Computer Vision and Image Understanding 115 (2011) 1187–1206

Author's personal copy

� there exists a node correspondence (u,u0) 2 At such that the path
P(u,v) includes ek but the path P(u0,v0) does not include e0l, or
conversely, that P(u0,v0) includes e0l but P(u,v) does not include
ek.

Otherwise, we let W(k, l) be equal to a domain-dependent func-
tion Ea(v,v0) that measures the similarity of the edge attributes.

In conclusion, our edge similarity function incorporates edge
attribute information in a nontrivial way by combining it with
the information provided by the node correspondences in the
solution. This measure of similarity exploits the structural depen-
dencies between nodes to obtain an assignment of edge correspon-
dences that is consistent with the node assignments that are in the
solution set. As this set grows in each iteration of the algorithm, so
too does the information available for assigning the edge corre-
spondences. This, in turn, makes the measure of edge attribute
similarity less ambiguous, and strengthens the overall measure
of node similarity weights.

3.2.3. Searching the solution space
The matching algorithm of Shokoufandeh et al. [37] takes a

greedy approach to establish node correspondence. This is
motivated by the assumption that the measures of node attribute
similarity should provide a strong indication of the best correspon-
dences, and make a broad search of the solution space less neces-
sary. In our generalization of this algorithm, we propose to relax
the greediness of the approach by incorporating a bounded queue
to evaluate more that one possible solution to the problem. We
form a queue of solution sets of size bounded by the maximum
number of solutions that we want to evaluate. In each iteration
of the algorithm, we add one node correspondence to a solution
set in the queue. The algorithm terminates when the queue is
empty.

We present the algorithm that considers a single solution first,
and later introduce a queue to consider multiple solutions. The two
main steps of the algorithm are the computation of node similarity
and the selection of node correspondences. In the first iteration of
the algorithm, t = 0, the weights of all possible pairwise node cor-
respondences, Wt, are computed as a function of the empty solu-
tion set, At = ;, according to Eq. (3). Next, the MWBM problem,
M = MWBM(V,V0,Wt), is solved and correspondence (v,v0)� 2M
with largest weight is added to the solution set, such that
At+1 = At [{(v,v0)�}. In the subsequent iterations, t P 1, the corre-
spondence weights are updated to reflect the current contents of
the solution set, and a new correspondence is added to the solution
as previously described. The algorithm terminates when all possi-
ble new node correspondences have zero weight (i.e., they are
incompatible).

When considering multiple solutions, we queue the alternate
solution sets that can be obtained in the first few iterations of
the algorithm. The motivation for this is that the first elements
added to a solution set condition all subsequent correspondences,
and so selecting the correct ones early on is important. We bound
the maximum number of solution sets that can be considered by a
given constant K P 1. We also let the maximum number of solu-
tion sets added to the queue in each iteration be a given constant
1 6 s 6 K. Then, we modify the matching algorithm such that at
each iteration, we pop one solution set A from the queue of active
solution sets Q, and compute the correspondence weights as a
function of it. If all correspondences have zero weight, we add A
to the set of completed solutions S. Otherwise, we solve a MWBM
problem for the nodes of the graph using the current weights, and
then select the top n = min(s,K � jQj � jSj + 1) correspondences
ðv;v 0Þ�k 2 M, for k = 1, . . ., n. Each of these correspondences is used
to create new solution sets Ak ¼ A [ðv ;v 0Þ�k

� �
, which are added to

the back to the queue. The algorithm terminates when the queue of
active solution sets is empty. This algorithm is shown below.

Algorithm 1. The FA-DAG matcher

Require: G(V,E,c,k), G0(V0, E0,c0,k0), K P 1, s 6 K {for K, s
defined in Section 3.2.3}

1: Q {;} {let Q be a queue with an empty solution set in it}
2: S ; {let S be the empty set of completed solution

sets}
3: while jQj– 0 do
4: A Q.Pop() {retrieve a solution set from the queue}
5: W f(G,G0,A) {set node correspondence weights

according to Eq. (3)}
6: if W – 0 then
7: M MWBM(V,V0,W) {solve the MWBM problem

(see Section 3.1)}
8: L Sort(M) {sort correspondences by decreasing

weight}
9: n Min(s,K � jQj � jSj + 1) {set max number of

new solutions}
10: L Prune(L,n) {reduce the list to top n

candidates}
11: for all (v,v0) in L do
12: A0 A [{(v,v0)} {create a new solution set with

A and (v,v0) in it}
13: Q.Push(A0) {add the new solution set to the

queue}
14: end for
15: else
16: S S [{A} {add A to the set of completed

solution sets}
17: end if
18: end while

argmaxA2S
P

v2V
P

v 02V 0wðv ;v 0;AÞ {select the set with
maximum weight sum}

3.2.4. Algorithm complexity

We focus our complexity analysis on the case in which the max-
imum number of solution sets is one, since a greater constant limit
does not affect the algorithm’s complexity. We also assume that
the algorithm is efficiently implemented such that only the
weights that may change from one iteration to the next are up-
dated. For the case of bone graphs, we update only the weights that
involve ancestors, descendants, and siblings of the nodes v and v0

that are added to the solution set in the previous iteration of the
algorithm. In this case, we use appropriate data structures in order
to efficiently visit the required weights, and to evaluate the
structural and uniqueness similarity factor of the weight function.
By recursively following the parents and children associated
with each node correspondence added to the solution set, we can
visit the weights that must be updated in time O(N), for
N = max(jVj, jV0j). The ancestor, descendant, and sibling relations
can be evaluated in constant time by precomputing appropriate
data structures for each graph. An efficient representation of the
ancestor and descendant relations can be computed in linear time
(they are given by the transitive closure of a graph [17]), while that
of the sibling relation can be computed in quadratic time (it re-
quires a combination of the transitive closure and the adjacency
matrix of a graph [37]). We also use an appropriate data structure
to evaluate the membership of a node to the solution set in order to
compute the uniqueness similarity factor of the weight function in
constant time.

D. Macrini et al. / Computer Vision and Image Understanding 115 (2011) 1187–1206 1195

Author's personal copy

The computation of the edge similarity factor demands more
work, as it requires solving a MWBM problem. The complexity of
this step is O(e2 loge), where e is the maximum number of incident
edges for any node in either graph. Then, the complexity of updat-
ing the weights in each iteration is O(N e2 loge). In addition to
updating weights, each iteration of the algorithm must solve a
MWBM problem for the nodes, which has complexity O(N2 logN).
The number of iterations of the algorithm can be bounded by N if
only one-to-one correspondences are allowed. Thus, the complex-
ity of the algorithm is O(N3 logN + N2 e2 loge). In the case of hierar-
chical structures, such as bone graphs and shock graphs, the
number of nodes grows much faster than the maximum number
of incident edges on a node, and e2 is generally smaller than N
for DAGs of significant height, which results in O(N3 logN) com-
plexity. Similarly, the complexity of the NA-DAG matcher algo-
rithm is O(N3 logN) [37], since the edge similarity term need not
be computed.

3.3. Similarity functions for bone graphs

We present measures of similarity for the attributes of nodes
and edges in the bone graph. These similarity measures are the do-
main-dependent components of the matching algorithms de-
scribed in the previous sections. Our goal is to compare
silhouettes obtained by the perspective projection of 3-D objects
onto a plane. Moreover, since we aim to find similarities between
the silhouettes of different exemplars of the same object class,
we propose coarse measures of node and edge similarity that at-
tempt to not overpenalize the within-class deformations of both
shape parts and part relationships.

3.3.1. Node attribute similarity
We define the similarity Na(v,v0) between the attributes of

nodes v and v0 as a function of the length and width of the shape
part represented by each node. Our measure of similarity is in-
spired by that of shock graphs [26], which compares the radius
functions of the skeletal segments encoded as the attributes of
nodes. The radius function of a bone captures the variation of the
width along a shape part and the length of the part. By comparing
radius functions, we obtain a similarity measure that is invariant to
relative rotation, translation, and bending. This measure is not
scale invariant, and so we assume that the global scale of each
shape is normalized. We obtain a continuous representation of
the radius function by approximating its discrete values with a
piecewise linear function. This approximation is the result of min-
imizing the number of line segments without surpassing a maxi-
mum fitting error (see [26] for details). Fig. 9 illustrates examples
of the radius functions of bone graph nodes, and their approxima-
tion by piecewise linear functions.

In the shock graph, the piecewise linear approximation of the
radius function is used to create the shock graph nodes, and to

compare their attributes at matching time. During the construction
of a shock graph, this approximation is used to decompose the
skeletal branches into segments with constant or monotonically
varying radii, which then become nodes in the graph. At matching
time, the approximation is used to compare the radius functions
encoded by the nodes. For the bone graph, we only use the approx-
imation of the radius function at matching time, since we do not
partition skeletal segments according to radius. Thus, our problem
is to compare radius functions that vary arbitrarily.

We propose a measure of similarity that accounts for the abso-
lute radius differences and for the variations of the radii along the
medial axes. We begin by subdividing the radius functions into an
equal number of segments for the part of the domain on which
they are both defined. Given two piecewise linear functions, r(x)
and r0(x), defined on the respective intervals [0,L] and [0,L0], we
subdivide the line segments that fall in the interval [0, min(L,L0)]
into N subsegments. The subdivision is performed such that the
x-coordinates fxigN

i¼0, for xi < xi+1, correspond to the endpoints,
intersection points, and knots between the segments of both func-
tions (see Fig. 10). Then, we compute the areas and slopes of the
pair of linear functions defined on each interval [xi,xi+1], and com-
bine them into a piecewise measure of similarity.

First, we define the area-based similarity as a normalized mea-
sure of area difference. Let ai and a0i be the respective nonzero areas
under r(x) and r0(x) on the interval [xi,xi+1], and

ai ¼ 1� jai � a0ij
ai þ a0i

ð7Þ

be their area-based similarity. Next, we define the slope-based sim-
ilarity as a Gaussian function of slope difference. Let mi and m0i be
the respective slopes of r(x) and r0(x) along the interval [xi,xi+1], and

Fig. 9. Examples of piecewise linear approximations of radius functions. The discrete points of the radius functions for a back leg and the torso parts are plotted, with their
corresponding piecewise linear approximations overlaid.

Fig. 10. Example of the comparison of two radius functions. The piecewise linear
functions are subdivided into N segments for the part of the domain on which they
are both defined. The segments are partitioned such that each x-coordinate xi, for
i = 0, . . ., N, corresponds to an endpoint, intersection point, or segment knot on
either function.

1196 D. Macrini et al. / Computer Vision and Image Understanding 115 (2011) 1187–1206

Author's personal copy

bi ¼ e�
ðmi�m0

i
Þ2

2r2 ð8Þ

be their slope-based similarity (we let r = 0.15 in our experiments).
Finally, we combine the area- and slope-based similarities and the
relative length of each interval into a measure of node attribute
similarity

Naðv ;v 0Þ ¼
XN�1

i¼0

aibi
ðxiþ1 � xiÞ
maxðL; L0Þ

: ð9Þ

Our measure of node attribute similarity penalizes the differ-
ences in the lengths of the medial axes, and in the relative widths
and width variations along the medial axes. In our experiments, we
consider a value of r that is constant for all shapes and shape parts,
but this could be replaced by a values obtained as a function of the
model shapes or model parts being matched. We leave the problem
of learning shape deformation parameters conditioned on object
classes as the subject of future research.

3.3.2. Edge attribute similarity
We define the similarity Ea(e,e0) between the attributes of edges

e and e0 as a function of the relative side and position of the attach-
ment represented by each edge. The attribute c(e) = pu,v of edge
e = (u,v) is the normalized signed position of the attachment of
node v onto node u. The sign of pu,v encodes the side of the attach-
ment, and the absolute value of pu,v encodes the attachment posi-
tion between endpoints 0 and 1 along the bone represented by
node u [23]. Fig. 11 illustrates an example of the edge attributes
of a bone graph.

The ‘‘0’’ end of the position along the medial axis encoded by a
node is chosen arbitrarily for root nodes and for nodes with multi-
ple parents. In the case of nodes with a single parent, the ‘‘0’’ end is
the point closer to the attachment point with the parent node. The
sign of the position is specified by considering that the bone rotates
around its ‘‘0’’ end. For example, in Fig. 11, a black edge represents
an attachment on the side corresponding to a clockwise rotation of
the parent bone, while a red edge is associated with a counter-
clockwise rotation. We take this into consideration, and for the
cases in which the parameterization is ambiguous, i.e., nodes
whose in-degree is not one, we evaluate the node and edge attri-
butes with respect to both possible choices for the ‘‘0’’ end, and
keep the one that maximizes similarity.

We compute the edge attribute similarity as the product of sign
similarity and position similarity. We define a constant penalty
x 2 [0,1] for attachments on opposite sides, and let the sign simi-
larity be

dðpu;v ;pu0 ;v 0 Þ ¼
1 if signðpu;vÞ ¼ signðpu0 ;v 0 Þ
x otherwise:

�
ð10Þ

In our experiments, we found that x = 0 was too strict a penalty,
and that any value in [0.1,0.8] yielded similarly good results (we
let x = 0.6 in our experiments). Next, we let the position similarity
be the absolute difference in the positions of the attachments

wðpu;v ;pu0 ;v 0 Þ ¼ 1� jpu;v � pu0 ;v 0 j: ð11Þ

The product of these two measures of similarity becomes our edge
attribute function

Eaðe; e0Þ ¼ dðcðeÞ; c0ðe0ÞÞ wðcðeÞ; c0ðeÞ0Þ: ð12Þ

Our measure of edge attribute similarity combines a linear penalty
for the differences in the positions of the attachments with a con-
stant penalty for the differences in the sides of the attachments.
This represents a coarse measure of the similarity of part relations,
and does not account for the relative ordering of child nodes that
are attached to the same point of a parent node. Similarly to the
case of node attributes, our measure of edge similarity could be im-
proved by learning, at training time, the relative importance of the
differences in the position and side of part attachments as a func-
tion of each object’s class. Then, this information could be exploited
at matching time, when a novel exemplar is compared against a
model of a known object class. We leave this problem as future
research.

4. Experiments

In this section, we evaluate the bone graph representation to-
gether with the graph matching algorithm presented in Section 3
for the task of object categorization. The goal in this task is to rec-
ognize 2-D views of novel 3-D exemplars of known object catego-
ries. This task differs significantly from the exemplar-based object
recognition and pose estimation experiments considered in [23]. In
particular, in our previous experiments, the task of estimating pose
from unknown views of known exemplars allowed us to evaluate
the benefits of addressing the over- and under-segmentation of

Fig. 11. Example of the edge attributes of a bone graph. The attribute of an edge corresponds to the attachment position between a child bone and its parent bone. For clarity,
we show the absolute value of each position and let the color of the edge represent its sign (i.e., the side of the attachment). The parameterization of edge attributes assumes
that the lengths of all bones are normalized to the unit length. In the case of the root node 1, the ‘‘0’’ end is chosen arbitrarily. The ‘‘0’’ end of all other nodes is specified as the
skeletal point closer to the attachment with their parent bone. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

D. Macrini et al. / Computer Vision and Image Understanding 115 (2011) 1187–1206 1197

Author's personal copy

skeletal parts, but provided little information about how the repre-
sentation might cope with views of novel exemplars. The categori-
zation problem, on the other hand, addresses this question directly.
It also provides us with a more stringent task to evaluate the rep-
resentation and the matching algorithms as part of a complete rec-
ognition framework.

Like the experiments in [23], we compare the bone graph repre-
sentation to the shock graph. In review, both bone graphs and
shock graphs are derived from the medial axis of a closed contour
(silhouette). In the case of a shock graph [41], the points making up
the medial axis are labeled according to their radius function:
monotonically increasing, constant, monotonically decreasing
from both directions toward a local minimum, and monotonically
decreasing in both directions away from a local maximum. Contig-
uous points sharing the same label are clustered and become the
nodes in the shock graph, in which nodes are labeled medial point

clusters (forming branches) and directed edges represent branch
adjacency, directed from larger to smaller (in terms of radius)
parts. Unlike the shock graph, every medial axis point is not
mapped to a node in a bone graph. As illustrated in Fig. 1, those
medial axis points that are classified as ligature, i.e., non-salient
points that contribute little to the boundary shape, are abstracted
out and are used to define the connections between the remaining
salient shape parts. Like the shock graph, the edges of a bone graph
are directed from larger to smaller parts. However, unlike the
shock graph, the edges of a bone graph are attributed, and encode
attachment positions.

This comparison between shock graphs and bone graphs is
meaningful because both representations take a skeleton as input
and yield a graph of skeletal parts as output. This means that for
the bone graph to outperform the shock graph, its structure and
edge attribute properties must be more beneficial for matching

Fig. 12. The dataset of 3-D models. It is formed by eight classes with five exemplars per class. Half of the dataset is formed by ‘‘inorganic’’ objects, while the other half
contains ‘‘organic’’ objects. This set of objects captures a wide range of part structure complexity, which ranges from very simple, in the case of the hot air balloon class, to
fairly complex, in the case of the walking human and bird classes.

1198 D. Macrini et al. / Computer Vision and Image Understanding 115 (2011) 1187–1206

Author's personal copy

than those of the shock graph. In our experiments, we measure the
individual contribution of these properties by matching graphs
with and without node and edge attributes. In contrast to the
experiments in [23], where for the purpose of comparison we
sub-partitioned the nodes of the bone graph according to radius,
here we are concerned with evaluating the bone graph as defined
in [23]. This definition of bone graph leads to shapes that are rep-
resented in terms of fewer nodes than required by the shock graph,
and has the advantage of significantly improving matching time,
since the time complexity of the matching algorithms are functions
that grow with the size of the input graphs. For example, in our
dataset the average size of bone graphs is 10.8 nodes, while that
of shock graphs is 20.5.

4.1. The dataset

The dataset in our experiments is a subset of the Princeton
Shape Benchmark (PSB) [36]. This dataset is publicly available
and widely used for evaluating learning and recognition ap-
proaches using 2-D and 3-D shape representations. We select eight
classes and five 3-D exemplars per class out of the 1814 exemplars
and 90 classes available in the PSB. Our selection of exemplars,
shown in Fig. 12, includes models whose part structure varies from
simple (e.g., the hot air balloon class) to fairly complex (e.g., the
walking human class). This subset provides enough data to com-
pare the bone graph and shock graph representations and to dis-
cuss the limitations of our approach while performing a
comprehensive set of experiments. In future research, we expect
to consider larger datasets by combining our representation and
matching approach with learning and indexing components.

We populate a model database of 2-D shapes by taking 25 uni-
formly-sampled views per exemplar in our dataset, which yields a
total of 1000 shapes. We collect the sets of 2-D views of each 3-D
exemplar by sampling a portion of its viewing sphere. We select
the views that fall within the azimuth and elevation angles in
the ranges [�180,�90] and [�30,30] degrees, respectively. We
take five evenly spaced views along each coordinate (i.e., 25 views
per object). We found that this selection of views provides a suffi-
ciently dense sampling of a 3-D object while capturing most of its

non-degenerate views. As an example, the set of views of one of the
horse exemplars is shown in Fig. 13.

4.2. Experimental set up

We evaluate two graph matching algorithms in our experi-
ments, and for simplicity, we refer to them as algorithms A and
B. Algorithm A is the matching algorithm of Shokoufandeh et al.
[37], and does not exploit edge attributes. Algorithm B is our gen-
eralization of algorithm A (Section 3.2), and accounts for edge attri-
butes, as well as structural graph constraints that differ from those
of algorithm A (Section 3.2.1). We consider the most greedy ver-
sion of algorithm B, in which the size of the solution queue is
bounded to one. Later, we evaluate the performance of the algo-
rithm as a function of the size of the solution queue. Both matching
algorithms require a domain-dependent node similarity function,
while algorithm B also requires a domain-dependent edge similar-
ity function. We use the node similarity function presented in [26]
for shock graphs, and, when needed, let the edge similarity func-
tion be the identity function. For the bone graph, we use the node
similarity function described in Section 3.3.1 and the edge similar-
ity function described in Section 3.3.2.

The node similarity functions used for the bone graph and the
shock graph are both based on comparing only the skeletal radius
function represented by each node. That is, these functions do not
account for skeletal curvature or other skeletal properties encoded
in the node attributes. The two functions differ mainly in that with
the shock graph, the radius function of a node is assumed to be
constant or vary monotonically, while with the bone graph, this
need not be the case. Thus, the minor differences between the node
similarity functions should not provide an unfair advantage for
either representation.

In order to understand the influence of edge attributes of the
bone graph, we carry out experiments with and without edge attri-
butes (i.e., we let the edge similarity of the bone graph be the iden-
tity function) using algorithm B. Similarly, we evaluate the
influence of graph structure in the matching process of both bone
graphs and shock graphs by performing experiments with both
node and edge similarity functions set to the identity function. In

Fig. 13. Subset of the model database of object views. Here we show the complete collection of 25 views used to represent one of the exemplars belonging to the horse class.

D. Macrini et al. / Computer Vision and Image Understanding 115 (2011) 1187–1206 1199

Author's personal copy

each figure plotting experimental results, we specify the attributes
considered at matching time by labeling each representation as
fully-attributed (FA), node-attributed (NA), edge-attributed (EA),

and unattributed (UA). For example, when matching the bone
graph (BG) using both its edge and node attributes, we label the re-
sults as FA-BG.

4 3 2 1
40

45

50

55

60

65

70

75

80

85

Number of Model Exemplars for Each Query Class

R
ec

og
ni

tio
n

Pe
rfo

rm
an

ce
 (%

)

Varying Number of Model Exemplars

FA−BG B
NA−SG A

4 3 2 1
35

40

45

50

55

60

65

70

75

80

85

Number of Model Exemplars for Each Query Class
R

ec
og

ni
tio

n
Pe

rfo
rm

an
ce

 (%
)

Varying Number of Model Exemplars

FA−BG B
NA−BG A
NA−SG B
NA−SG A

4 3 2 1
5

10

15

20

25

30

35

40

45

Number of Model Exemplars for Each Query Class

R
ec

og
ni

tio
n

Pe
rfo

rm
an

ce
 (%

)

Varying Number of Model Exemplars
Using Only Graph Structure Information

UA−BG B
UA−BG A
UA−SG B
UA−SG A

4 3 2 1
10

15

20

25

30

35

40

45

Number of Model Exemplars for Each Query Class

R
ec

og
ni

tio
n

Pe
rfo

rm
an

ce
 (%

)
Varying Number of Model Exemplars

Using Only Graph Structure Information

UA−BG B
UA−BG A
UA−SG B
UA−SG A

4 3 2 1
0

10

20

30

40

50

60

70

80

90

Number of Model Exemplars for Each Query Class

R
ec

og
ni

tio
n

Pe
rfo

rm
an

ce
 (%

)

Varying Number of Model Exemplars
The Bone Graph with and without node/edge attributes

UA−BG B
EA−BG B
NA−BG B
FA−BG B

1 2 3
72

74

76

78

80

82

84

86

88

90

92

Ranking Position Threshold

R
ec

og
ni

tio
n

Pe
rfo

rm
an

ce
 (%

)

Varying Maximum Top Ranking Position

FA−BG B
NA−BG A
NA−SG B
NA−SG A

(a) (b)

(c) (d)

(e) (f)

Fig. 14. System evaluation (see text for discussion).

1200 D. Macrini et al. / Computer Vision and Image Understanding 115 (2011) 1187–1206

Author's personal copy

We perform two sets of experiments in which all 1000 shapes
are considered as queries while the contents of the model database
vary as a function of the query class. In the first set of experiments,
we evaluate recognition performance as a function of number of
model exemplars for the query class. Here we expect the recogni-
tion performance to decrease as the shape variation of the exem-
plars in the query class becomes underrepresented by the
reduction of its model exemplars. In the second set of experiments,
we evaluate performance as a function of number of model views
per exemplar of the query class. In this case, we also expect the
performance to decrease as the query class is represented using
fewer views per exemplar than the other classes. These experi-
ments allow us to measure the performance of bone graphs and
shock graphs relative to the performance associated with the num-
bers of exemplars and views of the query class.

In each experiment trial, we take an exemplar’s view and com-
pare it against all shapes in the model database that belong to
exemplars different from the query’s. That is, for each query view,
the model database contains four exemplars of the query class and
five exemplars of every other class (each exemplar is represented
by 25 views). We say that class recognition is correct if the view
that receives the highest similarity score belongs to the same ob-
ject class as the query view. In the case of ties between a view of
the query class and a view of a non-query class, we consider the
outcome to be unsuccessful, since we seek a unique answer to
the categorization question.

4.3. Object categorization

We measure the influence of within-class shape deformation by
evaluating recognition performance as a function of decreasing
number of exemplars for the query class. In the first set of trials,
each given query view is removed from the model database, along
with all other views of the same query exemplar. In the next set of

trials, we remove all the views of another exemplar of the query
class. We repeat this procedure until there is only one exemplar
of the query class remaining in the model database. All ways of
removing one, two, and three exemplars out of four are considered,
and the average and standard error of their recognition rate is plot-
ted. That is, the values 3, 2 and 1 along the x-axis in Fig. 14a corre-
spond to the average performance obtained from 4, 6, and 4 sets of
1000 trials, respectively. Each of such trials represents a different
way of removing exemplars of the query category prior to
matching. The number of exemplars of the classes that are not that
of the query view remains constant in each trial.

Fig. 14a plots the recognition performance as the number of
exemplars for each query class decreases from 4 to 1 (all the
non-query classes are represented by five exemplars). The results
exhibit the superiority of bone graphs and algorithm B over shock
graphs and algorithm A. For the case of four exemplars, the score of
the bone graph framework is 80.4% while that of the shock graph
framework is 73.6%. This performance difference, 6.8 percentage
points, is significant, as it is comparable to the decrease in perfor-
mance due to matching bone graphs using three exemplars instead
of 4, which has a score of 73.9%.

We determine whether the performance improvement of the
bone graph is due to the representation, the matching algorithm,
or both, by evaluating the four combinations of matching algo-
rithms and shape representations. Fig. 14b plots these results
and shows that algorithm B is the most effective algorithm for
matching both bone graphs and shock graphs. The results also
show that the superiority of bone graphs over shock graphs is
not due to the matching algorithm alone, since, for example, in
the case of four exemplars the algorithm used only accounts for
less than half the performance difference between the two repre-
sentations. The standard error in the results of the exemplar re-
moval trials suggests that both representations are sensitive to
the choice of model exemplars that are left in the database.

1

0

.10 1
1

.1 1
1

1

2

3

4

5

6 7

8 9

1

0

.8 1
1

1
1

.2
1

1

1

2

3

4 6 9

1110875

1

.6

1
1

1
1

.6

1
1

1 1

1

2

3

8

9

1110

12

4 5

6 7

1

1
1

1
1

1
1

1 .9
.7

1

2 7

8

4

5 6

3

11

9 10

Fig. 15. Successful matching examples for bone graphs and matching algorithm B. In each pair of shapes and graphs, the one on the left is the query view and the one on the
right is the best ranked model view. The part correspondences found by the matcher are illustrated as arcs between each pair of shapes, and as matching node colors between
each pair of graphs. The number of each bone graph node corresponds to the shape part represented by it.

D. Macrini et al. / Computer Vision and Image Understanding 115 (2011) 1187–1206 1201

Author's personal copy

Moreover, the decrease in performance as the number of exem-
plars is reduced is slightly more pronounced for bone graphs than
for shock graphs, especially when algorithm A is considered. We
attribute this to the larger number of nodes in the shock graphs,
which, in some cases, helps reduce the penalties incurred by miss-
ing parts. Note that the number of missing/different parts between
query and model shapes increases proportionally to the dissimilar-
ity between the most similar model and the query.

We evaluate the contribution of graph structure stability to the
matching process by considering the problem of matching bone
graphs and shock graphs without their node and edge attributes.
Fig. 14c plots recognition performance for unattributed (UA) bone
graphs and shock graphs using algorithms A and B. Here the struc-
ture of the bone graph seems to contribute little information. In the
case of four exemplars, the recognition score is just 26.6% with
algorithm B, which is slightly more than twice the chance level
of 10.26% (i.e., 4 correct exemplars over 39 exemplars). On the
other hand, the score for shock graphs is 34.1% with algorithm A,
and 40.1% with algorithm B. One reason for this large performance
disparity between bone graphs and shock graphs is that the parti-
tioning of skeletal branches according to radius performed by the
shock graph effectively encodes geometrical attributes of the shape
parts into the structure of the graph. In contrast, the structure of
the bone graph is influenced less by the geometrical properties of
the shape parts, which leads to more dissimilar shapes having
equal structure. This effect can be seen in Fig. 14d, where we plot
the same results but count ties for first ranking position as success-

ful trials. Now, the recognition score for bone graphs and algorithm
B jumps from 26.6% to 42.9%, while that for shock graphs and
algorithm B has a more modest increase from 40.1% to 42%. This
confirms that bone graphs have a much larger number of ties in
the similarity ranking than shock graphs.

We analyze the contribution of the edge attributes to the
matching process by comparing the results of matching fully-
attributed, node-attributed, edge-attributed, and unattributed
bone graphs. Fig. 14e plots these results and shows that the pres-
ence of edge information does not improve recognition perfor-
mance when combined with node attributes, but it does lead to a
significantly better score than using graph structure alone. This
suggests that the graph structure of bone graphs can become sig-
nificantly more informative when combined with edge attributes.
This result has important implications for the problem of indexing
graphs based on their unattributed structure, such as the spectral
approach proposed by Shokoufandeh et al. [39]. In the case of bone
graphs, the results suggest that indexing features based on graph
structure would indeed benefit from incorporating edge attribute
information.

In the experiments above we treat all unsuccessful cases
equally, i.e., regardless of whether the correct answer is close to
the top or at the bottom of the ranking. However, it is also impor-
tant to evaluate the actual ranking position of the correct answer
that is best ranked. This is useful when the goal of the matching
process is that of pruning the model classes down to a small set
of candidates. Fig. 14f plots recognition performance when the

1

1

0 .7 .6 .4 .0 .2 .91
.7

0 0

9 10 1312

1

2

3

6 75 114

8

14

1

1

0

1
.1

.5 .8
0

1
1.7

.10
0 0

1 8

2 5 6 7 9 10 13

5141211143

1

11

1

0 1

1

1
.8

1

0 .3 .5 1
.8

.1

0 .8

1
1

1
1 .8

1
1

1
1

1
1

24 23

25

26

27

20

4

5 6

14

3

2

1

7 16

17

28

29

18 19

8 9

10 11

151312

21

22

30

1

1

1

1
1

0
0

1
1

1
1

1
1

1 1

.8 1
1

92

1

14 15

3 6 10 11 16

4 5 7 8 12 13 17 18 19

0
1

.6

.2
.5

1
1

2

1

3 8

74

5 6

1

0 1 .6 .10 .6 1

1

2 4 5 6 7 8

3

Fig. 16. More successful matching examples for bone graphs. See Fig. 15 for details.

1202 D. Macrini et al. / Computer Vision and Image Understanding 115 (2011) 1187–1206

Author's personal copy

correct answer is ranked in the top three positions. These results
show that with bone graphs, the correct answer is ranked within
the top three positions for 90.3% of the queries, while with shock
graphs and algorithm A this happens only with 83.9% of the que-
ries. In addition, the performance of the shock graph improves with
algorithm B to 87.2%, which provides further evidence of the supe-
rior performance obtained by our matching algorithm regardless of
the shape representation used.

Finally, we evaluate the performance of algorithm B when the
size of the solution queue grows up to 12. In particular, we conduct
trials in which the constants (K,s) discussed in Section 3.2.3 are
(1,1), (3,1), (6,2), (9,3), and (12,4). We test the case of bone graphs
when the query class is represented by four exemplars and 25
views per exemplar. In these trials, the performance remains con-
stant at 80.4% up to a solution queue of size 6, and increases mono-
tonically to only 80.6% for a queue of size 12. Since this represents
a small performance increase at a high computational cost, it jus-
tifies the approach of considering only one greedy solution. Natu-
rally, a more exhaustive search of the solution space could lead
to better performance, but the computational cost would render
the approach impractical.

4.4. Example matches

Figs. 15–17 illustrate a number of successful matches drawn
from the experiments. The set of node correspondences found
for each shape is shown by arcs connecting each pair of shapes,
and by matching node colors between the corresponding bone
graph representations of each shape. The examples demonstrate

cases in which the matcher finds natural correspondences be-
tween parts with largely dissimilar geometries, such as the torso
and the legs. We have not measured the correctness of part corre-
spondence among successful matches, but we have found that in
practice, the correct matches generally yield mostly correct part
correspondences.

It is interesting to analyze some examples of unsuccessful
matches in order to determine the limitations of our approach.
We show four such cases in Figs. 18 and 19. Case (a) in Fig. 18 illus-
trates the limitation of edge attributes for representing ordering
and orientation of multiple end-to-end attachments. Here, the
neck and tips next to it of the electric guitar have similar attach-
ment (edge) attributes with the guitar’s body to the posts of the
mailbox and its box. However, it can be seen that there is a strong
visual difference in how these parts are attached to each other.
Case (b) in Fig. 18 provides an example of two simple but very dif-
ferent objects with isomorphic graph structures. Here, in spite of
the geometrical differences between the node attributes, the fact
that the knife view is able to explain all nodes of the hot air balloon
allows it to rank ahead of views of the correct class with more sim-
ilar nodes. This illustrates that small details in a simple shape, such
as convex corners, may have a disproportionate influence in the
matching process. Finally, the examples in Fig. 19 show that strong
structural similarities can lead to matches between exemplars of
object classes that may seem to have nothing in common, such
as a fish and a knife, or a guitar and a bird.

It should be noted that the inherent ligature-induced instability
of a shock graph suggests a matching framework that’s many-to-
many, rather than one-to-one. While a number of many-to-many

0
0

3

1

2

0 0
1 1

1

2 3 4 5

.6 .6
1 1

3

1

2 4 5

.8 .8
1 1

5432

1

.5

1
1

1

2

3 4

.4
.5

1
1

1

2 5

3 4

Fig. 17. More successful matching examples for bone graphs. See Fig. 15 for details.

D. Macrini et al. / Computer Vision and Image Understanding 115 (2011) 1187–1206 1203

Author's personal copy

1
0

0
0

1

2 4

3

5

0
.5 .1

1

432

1
1

1

2 3

1
1

1

32

(a)

(b)
Fig. 18. Incorrect matching examples for bone graphs and matching algorithm B. Here we show two cases in which the graph structures and edge attributes are very similar,
even though the shapes are not. The strong structural and edge attribute similarities in these cases help the wrong model exemplars rank well by compensating for the
dissimilarity between the node attributes.

.8 .8

1

2 3

.5 .6

1

32

1

1 1
1 1

1

2

4365

1
1

1

0
0

5

2

1

3 4

6

(a)

(b)
Fig. 19. Incorrect matching examples for bone graphs and matching algorithm B. Here we show more cases in which two views of conceptually dissimilar classes have similar
part structures.

1204 D. Macrini et al. / Computer Vision and Image Understanding 115 (2011) 1187–1206

Author's personal copy

graph matching frameworks do exist, e.g., [3,8–10,33], they often
make restrictive assumptions (lack of occlusion or clutter, lack of
edge attributes, etc.). We have therefore limited our study to
one-to-one matching frameworks, although we expect that a
many-to-many matching framework would benefit the matching
of both shock graphs and bone graphs.

Finally, while our matching framework was developed to match
bone graphs, it is applicable to other classes of directed acyclic
graphs. The matching algorithm only demands node and edge sim-
ilarity functions in order to compare the domain-dependent attri-
butes of nodes and edges, and a set of penalty weights for the
possible violation of hierarchical relations in the assignment of
node correspondences. The penalty weights are also domain-
dependent, and depend on the amount of noise in the graphs and
the expected structural graph stability in the representation of
similar objects.

5. Conclusions

In order to exploit all the information encoded by a bone graph
when comparing shapes, we explore the problem of matching di-
rected acyclic graphs (DAG) with arbitrary sets of attributes for
both nodes and edges. We build on our previous work on matching
hierarchical structures in the presence of noise, occlusion and clut-
ter. We propose a novel generalization of the graph matching ap-
proach of Shokoufandeh et al. [37] that incorporates edge
information, expands the range of domain constraints considered,
and ensures (if desired) that node correspondences do not violate
the ancestor/descendant relations between nodes. This framework
is a contribution to the problem of matching generic DAGs, and
therefore can be applied to a multitude of problems in pattern
recognition.

Our new matching algorithm applied to the domain of bone
graphs forms a coherent framework for view-based object recogni-
tion, which we evaluate for the task of object categorization. This
task is a central problem in computer vision and requires an ap-
proach that can accommodate the within-category shape variation
of object views. We compare the bone graph against the shock
graph by matching them using both the algorithm of
Shokoufandeh et al. [37] and our proposed generalization of this
algorithm. This provides a relevant comparison since both repre-
sentations take the same shape skeletons as input and yield
graph-based encodings of their skeletal parts as output. This means
that for the bone graph to outperform the shock graph, its structure
and attributes must be more beneficial for matching than those of
the shock graph. Our experimental results show that the bone
graph significantly outperforms the shock graph for the object cat-
egorization task, and that the additional structural constraints
exploited by our graph matching algorithm improve the recogni-
tion performance of both representations. The bone graph also
leads to better computational performance as it represents the ob-
ject silhouettes using, on average, half the number of nodes than
the shock graph.

The experiments in Section 4 also evaluate whether the infor-
mation provided by the edge attributes of the bone graph contrib-
ute to improving recognition performance. The results suggest that
edge attributes improve performance in the absence of node attri-
butes, but that when both node and edge attributes are considered,
the edge attributes do not offer a significant benefit. A possible
explanation for this is that the parameters that determine the pen-
alty for edge attribute dissimilarities are sensitive to the category
of the model being matched. That is, the positions and sides of part
attachments (i.e., the edge attributes) may provide discriminating
features for some object classes but not for others, which can lead

to an over- or under-penalization of dissimilarities. We have found
evidence of this phenomenon when analyzing a significant number
of matching cases in our experiments.

A limitation of our view-based object recognition framework is
that the rules to detect protrusions, discussed in [23], may fail to
capture the part variability of some objects. When this problem
affects the decomposition of large shape parts (of similar silhou-
ettes), it can lead to bone graphs with significantly different
structures. Because the structures of the graphs are used to con-
strain the assignment of node correspondences, the matching
algorithm cannot correct this type of parsing errors. A possible
solution to this problem is to perform a denser sampling of the
viewing sphere of each model object in order to ensure that all
the representational variations of its views have a representative
in the model database. Since this can lead to a large number of
redundant model views, it must be integrated with a clustering
procedure to find and eliminate views that are too similar. An-
other solution is to represent each shape using multiple bone
graphs computed by varying the parameters that control the
detection of protrusions. The disadvantage of this solution is its
high computational cost, since a pair of query and model views
would be represented by a multitude of graphs, which must be
matched against each other.

Acknowledgments

The authors would like to thank Allan Jepson and Ali Sho-
koufandeh for their thoughtful feedback and support over the
course of this work. The authors would also like to gratefully
acknowledge the support of OCE, NSERC, CIFAR, MRI, and DARPA.

References

[1] X. Bai, L.J. Latecki, Path similarity skeleton graph matching, IEEE Transactions
on Pattern Analysis and Machine Intelligence 30 (7) (2008) 1282–1292.

[2] E. Baseski, A. Erdem, S. Tari, Dissimilarity between two skeletal trees in a
context, Pattern Recognition 42 (3) (2009) 370–385.

[3] H. Bunke, On a relation between graph edit distance and maximum common
subgraph, Pattern Recognition Letters 18 (8) (1997) 689–694.

[4] W.J. Christmas, J. Kittler, M. Petrou, Structural matching in computer vision
using probabilistic relaxation, IEEE Transactions on Pattern Analysis and
Machine Intelligence 17 (1995) 749–764.

[5] S.D. Cohen, L.J. Guibas, The earth mover’s distance under transformation sets,
in: International Conference on Computer Vision, Kerkyra, Greece, 1999, pp.
1076–1083.

[6] D. Conte, P. Foggia, C. Sansone, M. Vento, Thirty years of graph matching in
pattern recognition, International Journal of Pattern Recognition and Artificial
Intelligence 18 (3) (2004) 265–298.

[7] D. Conte, P. Foggia, C. Sansone, M. Vento, How and why pattern recognition and
computer vision applications use graphs, Applied Graph Theory in Computer
Vision and Pattern Recognition 52 (2007) 85–135.

[8] F. Demirci, B. Platel, A. Shokoufandeh, L. Florack, S. Dickinson, The
representation and matching of images using top points, Journal of
Mathematical Imaging and Vision 35 (2) (2009) 103–116.

[9] F. Demirci, A. Shokoufandeh, S. Dickinson, Skeletal shape abstraction from
examples, IEEE Transactions on Pattern Analysis and Machine Intelligence 31
(5) (2009) 944–952.

[10] F. Demirci, A. Shokoufandeh, Y. Keselman, L. Bretzner, S. Dickinson, Object
recognition as many-to-many feature matching, International Journal of
Computer Vision 69 (2) (2006) 203–222.

[11] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum-likelihood from incomplete
data via the em algorithm, Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 39 (1977) 1–38.

[12] M.A. Eshera, K.S. Fu, A similarity measure between attributed relational graphs
for image analysis, In International Conference on Pattern Recognition (1984)
75–77.

[13] M. Fischler, R. Elschlager, The representation and matching of pictorial
structures, IEEE Transactions on Computers 22 (1973) 67–92.

[14] H.N. Gabow, R.E. Tarjan, Faster scaling algorithms for general graph matching
problems, Journal of the ACM 38 (1991) 815–853.

[15] M. Garey, D. Johnson, Computer and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, 1979.

D. Macrini et al. / Computer Vision and Image Understanding 115 (2011) 1187–1206 1205

Author's personal copy

[16] Steven Gold, Anand Rangarajan, A graduated assignment algorithm for graph
matching, IEEE Transactions on Pattern Analysis and Machine Intelligence 18
(4) (1996) 377–388.

[17] A. Goralcikova, V. Konbek, A reduct and closure algorithm for graphs,
Mathematical Foundations of Computer Science, Lecture Notes in Computer
Science, vol. 74, 1979, pp. 301–307.

[18] W.E.L. Grimson, T. Lozano-Pérez, Localizing overlapping parts by searching the
interpretation tree, IEEE Transactions on Pattern Analysis and Machine
Intelligence 4 (9) (1987) 469–482.

[19] B. Huet, E.R. Hancock, Shape recognition from large image libraries by inexact
graph matching, Pattern Recognition Letters 20 (1999) 1259–1269.

[20] J. Kittler, E.R. Hancock, Combining evidence in probabilistic relaxation,
International Journal of Pattern Recognition and Artificial Intelligence 3
(1989) 29–51.

[21] J. Kobler, The Graph Isomorphism Problem: Its Structural Complexity,
Birkhauser, Boston, 1993.

[22] B. Luo, E.R. Hancock, Structural graph matching using the em algorithm and
singular value decomposition, IEEE Transactions on Pattern Analysis and
Machine Intelligence 23 (2001) 1120–1136.

[23] D. Macrini, S. Dickinson, D. Fleet, K. Siddiqi, Bone graphs: medial shape parsing
and abstraction, Computer Vision and Image Understanding, (2011),
doi:10.1016/j.cviu.2010.12.011.

[24] D. Macrini, A. Shokoufandeh, S. Dickinson, K. Siddiqi, S. Zucker, View-based 3-
D object recognition using shock graphs, in: International Conference on
Pattern Recognition, Quebec City, August 2002, pp. 24–28.

[25] D. Macrini, K. Siddiqi, S. Dickinson, From skeletons to bone graphs: medial
abstraction for object recognition, in: Conference on Computer Vision and
Pattern Recognition, Anchorage, Alaska, June 2008, pp. 1–8.

[26] Diego Macrini, Indexing and matching for view-based 3-d object recognition
using shock graphs, Master’s thesis, University of Toronto, 2003.

[27] E. Mjolsness, G. Gindi, P. Anandan, Optimization in model matching and
perceptual organization, Neural Computation 1 (1989) 218–229.

[28] R. Myers, R.C. Wilson, E.R. Hancock, Bayesian graph edit distance, IEEE
Transactions on Pattern Analysis and Machine Intelligence 22 (2000) 628–
635.

[29] M. Pelillo, K. Siddiqi, S. Zucker, Attributed tree matching and maximum weight
cliques, in: International Conference on Image Analysis and Processing,
September 1999.

[30] M. Pelillo, K. Siddiqi, S. Zucker, Continuous-based heuristics for graph and tree
isomorphisms, in: Approximation and Complexity in Numerical Optimization:
Continuous and Discrete Problems, 1999.

[31] M. Pelillo, K. Siddiqi, S.W. Zucker, Many-to-many matching of attributed trees
using association graphs and game dynamics, in: International Workshop on
Visual Form, 2001, pp. 583–593.

[32] Y. Rubner, C. Tomasi, L.J. Guibas, The earth mover’s distance as a metric for
image retrieval, International Journal of Computer Vision 40 (2) (2000)
99–121.

[33] T. Sebastian, P. Klein, B. Kimia, Recognition of shapes by editing their shock
graphs, IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (5)
(2004) 550–571.

[34] T. Sebastian, P.N. Klein, B. Kimia, Recognition of shapes by editing their shock
graphs, IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (5)
(2004) 550–571.

[35] Thomas Sebastian, Philip Klein, Benjamin Kimia, Recognition of shapes by
editing shock graphs, in: International Conference on Computer Vision, 2001,
pp. 755–762.

[36] Philip Shilane, Patrick Min, Michael Kazhdan, Thomas Funkhouser, The
princeton shape benchmark, in: Shape Modeling International, Genova, Italy,
June 2004.

[37] A. Shokoufandeh, L. Bretzner, D. Macrini, M.F. Demirci, C. Jonsson, S. Dickinson,
The representation and matching of categorical shape, Computer Vision and
Image Understanding 103 (2006) 139–154.

[38] A. Shokoufandeh, S. Dickinson, A unified framework for indexing and matching
hierarchical shape structures, in: International Workshop on Visual Form,
Capri, Italy, May 2001, pp. 28–46.

[39] A. Shokoufandeh, D. Macrini, S. Dickinson, K. Siddiqi, S. Zucker, Indexing
hierarchical structures using graph spectra, IEEE Transactions on Pattern
Analysis and Machine Intelligence 27 (7) (2005) 1125–1140.

[40] K. Siddiqi, A. Shokoufandeh, Sven J. Dickinson, Steven W. Zucker, Shock graphs
and shape matching, in: International Conference on Computer Vision, 1998,
pp. 222–229.

[41] K. Siddiqi, A. Shokoufandeh, Sven J. Dickinson, Steven W. Zucker, Shock graphs
and shape matching, International Journal of Computer Vision 35 (1) (1999)
13–32.

[42] Andrea Torsello, Edwin R. Hancock, Efficiently computing weighted tree edit
distance using relaxation labeling, in: EMMCVPR, 2001, pp. 438–453.

[43] S. Umeyama, An eigen decomposition approach to weighted graph matching
problems, IEEE Transactions on Pattern Analysis and Machine Intelligence 10
(5) (1988) 695–703.

[44] M. van Eede, D. Macrini, A. Telea, C. Sminchisescu, S. Dickinson, Canonical
skeletons for shape matching, in: International Conference on Pattern
Recognition, Hong Kong, August 2006.

[45] R.C. Wilson, E.R. Hancock, Structural matching by discrete relaxation, IEEE
Transactions on Pattern Analysis and Machine Intelligence 19 (1997) 634–
648.

[46] Song Chun Zhu, A.L. Yuille, Forms: a flexible object recognition and
modeling system, International Journal of Computer Vision 20 (3) (1996)
187–212.

1206 D. Macrini et al. / Computer Vision and Image Understanding 115 (2011) 1187–1206

