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Abstract— We consider the problem of inferring sensor
positions and a topological (i.e. qualitative) map of an envi-
ronment given a set of cameras with non-overlapping fields of
view. In this way, without prior knowledge of the environment
nor the exact position of sensors within the environment, one
can infer the topology of the environment, and common traffic
patterns within it. In particular, we consider sensors stationed
at the junctions of the hallways of a large building. We infer
the sensor connectivity graph and the travel times between
sensors (and hence the hallway topology) from the sequence of
events caused by unlabeled agents (i.e. people) passing within
view of the different sensors. We do this based on a first-
order semi-Markov model of the agent’s behavior. The paper
describes a problem formulation and proposes a stochastic
algorithm for its solution. The result of the algorithm is a
probabilistic model of the sensor network connectivity graph
and the underlying traffic patterns. We conclude with results
from numerical simulations

Index Terms— sensor networks, learning, Markov Chain
Monte Carlo, Expectation Maximization

I. INTRODUCTION

In this paper we propose and solve the non-standard
problem of inferring the relative positions of a set of
sensors that all look at the same scene, yet which have com-
pletely non-overlapping fields of view. This is in contrast
to the somewhat more traditional problem of inferring the
structure of a scene or tracking activities using a network of
sensors whose positions are known. Inferring the position
of well-separated cameras can be viewed as the precursor
to this traditional problem. Although, on the surface this
seems to be a difficult problem, in our approach, we exploit
the motion of objects between the fields of view of the
different sensors to probabilistically infer their positions.
That is, when an object leaves the neighborhood of one
sensor and subsequently appears within range of another,
this suggests that the two sensors are proximal. This leads,
as well, to a hierarchy of problems as a function of the
sensor separation and the domain assumptions involved.
We will specify this new problem hierarchy in the next
section.

In this paper we will infer the topology (i.e. connectivity)
of a set of sensors in the plane assuming they are separated
by substantial distances in the environment relative to their
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measurement range. For example, our sensors might be
stationed at the intersections between the hallways in a
large building. The result of our inference procedure is the
topological layout of the hallways, based on very weak
assumptions about what the sensors can discriminate. All
we demand of the sensors is that they can probabilistically
detect and signal the passage of an agent (e.g. a person
or other target) through the intersection at which they are
stationed. While we can cope with both spurious detections
(false positives) and missed detections (false negatives),
we assume that these types of errors are less probable
than correct measurements. Our formulation of the problem
does not require that individual agents be distinguished
or tracked by the sensor network. In practice, we are
developing an implementation of this system based on
video data, but that is outside the scope of this paper.

The simplest notional application of the work would
allow a set of sensors to be “dropped” into an environment
and to automatically learn the topology of their layout.

Our approach to the problem can be divided into two
main inter-dependent sub-problems: inferring the associa-
tion between observations and individual people (or agents)
moving in the world, and inferring the possible transitions
between the sites where the sensors are located. Our
approach is to jointly solve for the transition probabilities,
delays, and data associations, and then subsequently deter-
mine the topological map from the transition probabilities.

II. BACKGROUND

Self-localization and other more general self-
configuration algorithms are considered important issues
for both multi-robot systems and for sensor networks [1]
[2]. For many outdoor applications such as large scale
monitoring or tracking, a desired property is ad hoc
deployability, and yet the sensors will generally be too
small and inexpensive to employ advanced positioning
techniques such as GPS. In addition, even if GPS is
available, it can not be used for estimating traffic flow or
connectivity information.

Most network self-configuration efforts to date aim to
recover the relative or metric location of each node [3] [4]
or to self-organize for routing and networking efficiency
purposes [5]. Several authors have also considered the
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issues that arise when using a sensor network with known
sensor positions to track a robot as it moves and refines its
quantitative pose estimate [6], [7]. In addition, Batalin et
al. also consider the iterative update of both the robot and
sensor positions based on range data in two dimensions
(although results in [8] are based on simulation data).

Some recent work in the related area of multi-camera
calibration has looked at automatically learning the corre-
spondence between non-overlapped cameras by exploiting
the motion of agents present in the environment. These ef-
forts present methods for learning the spatial and temporal
relationships between the cameras, ultimately recovering
the topology and inter-camera travel times of the network.

Javed et al. [9] incorporated learning the topology of a
camera network as part of the task of tracking multiple
agents across disjoint fields of view. They employed a
Parzen window technique that looks for correspondences
in agent velocity, inter-camera travel time, and the location
of agent exit and entry in the fields of view of the camera.
Their method was verified experimentally on two and three
camera networks.

Ellis, Markis, and Black [10] [11] approached the topol-
ogy inference problem in the context of camera-based
sensing by exploiting temporal correlation in observations
of agents’ movements. They outlined an approach in which
they first identified entrance and exit points in camera fields
of view to generate a graph from video data. They then used
a thresholding technique to look for peaks in the temporal
distribution of travel times between entrance-exit pairs; a
clear peak suggesting that the cameras are linked. The
technique gave promising results on experiments carried
out on a six camera network. Although it requires a large
number of observations, the method does not rely on object
correlation across specific cameras. Thus, the method can
be used to efficiently produce an approximate network
connectivity graph, but when the network dynamics are
complex or the traffic distribution exhibits substantial vari-
ation it would appear the technique will have substantial
difficulty.

Unlike the Parzen window, or thresholding approach, we
propose a method for finding the topology of a network
by observing agents in the environment and constructing
plausible trajectories of their motion. This is closely re-
lated to multi-target tracking, which is a well established
research area in sensor networks [12] [13] and multi-robot
systems [14]. One of the key difficulties is maintaining
target identities during periods when two or more targets
move close together or are unobserved for a period of time.
Probabilistic techniques such as Identity Mass Flow [15]
have been devised to handle this situation. Other work
poses the target identity problem as a data association
problem [16] [17]. Pasula et al. [18] approached a traf-
fic monitoring problem in this manner and demonstrated
promising results on small networks through the application
of Monte-Carlo Expectation Maximization (MCEM).

Expectation Maximization (EM) is a well known sta-
tistical method for parameter estimation for incomplete
data models [19] and has been applied in many fields
including robotics [20], and tracking [21]. The technique
iteratively calculates the expected log-likelihood of the data
and current parameter guess with respect to the incomplete
data (E Step), and then updates the parameter guess to
maximize the expected log-likelihood (M Step).

MCEM expands the scope of this technique by executing
the E Step through Markov Chain Monte Carlo (MCMC)
sampling[22]. MCEM and other stochastic versions of EM
have been applied to the vision problem of structure from
motion [23] and to other fields such as bio-informatics [24].

III. DESCRIPTION OF ALGORITHM

In this section we describe an algorithm for inferring the
connectivity of a sensor network given binary observations
collected from each of the sensors.

A. The Problem

We describe the problem of topology inference in terms
of the inference of a weighted directed graph which cap-
tures the spatial relationships between the positions of the
sensors’ nodes. The motion of multiple agents moving
asynchronously through a sensor network region can be
modeled as a semi-Markov process. The network of sensors
is described as a directed graph G = (V,E), where the
vertices V = vi represent the locations where sensors are
deployed, and the edges E = ei,j represent the connectivity
between them; an edge ei,j denotes a path from the position
of sensor vi to the position of sensor vj . The motion of
each of the N agents in this graph can be described in
terms of their transition probability across each of the edges
An = {aij}, as well as a temporal distribution indicating
the duration of each transition Dn. The observations O =
{ot} are a list of events detected at arbitrary times from
the various vertices of the graph, which indicate the likely
presence of one of the N agents at that position at that
time.

The goal of our work is to estimate the parameters
describing this semi-Markov process. For now, we assume
that we know the number of agents, and that their behavior
can be approximated as being roughly homogeneous; i.e.
the motion of all agents are described by the same A and
D. In addition, we assume that the inter-vertex transition
times are normally distributed, but bounded within a fixed
range. Given the observations O, and the number of agents
in the environment N , the problem is to estimate the
network connectivity parameters A and D, subsequently
referred to as θ. Finally, we assume that the probability
of actually taking any existing edge in the environment is
non-negligible.

a) How hard is this problem?: In principle, one
might consider solving for the topology of the network
by guessing the topology and then verifying that it was



consistent with the observed behavior. However, exhaus-
tively evaluating every possible topology of a network with
even a moderate number of nodes is intractable. A network
of n nodes may have up to n2 directed connections (in-
cluding self-connected nodes). This gives us 2n2

possible
topologies. If we could evaluate 1 billion topologies per
second, inferring the network transition probabilities using
brute-force methods for even a 19-node graph would take
substantially longer than the age of the universe as there are
more than one googol (10100) different instances to verify.

B. Monte Carlo Expectation Maximization

We approach the connectivity problem outlined above
by attempting to simultaneously converge towards both the
correct observation data correspondences and the correct
network parameters through the use of the EM algorithm
[19].

We iterate over the following two steps:
1) The E-Step: which calculates the expected log likeli-

hood of the complete data given the current param-
eter guess:

Q
(

θ, θ(i−1)
)

= E
[

log p(O,Z|θ)|O, θ(i−1)
]

where O is the vector of binary observations col-
lected by each sensor and Z represents the hidden
variable that determines the data correspondence be-
tween the observations and agents moving through-
out the system.

2) The M-Step: which then updates our current param-
eter guess with a value that maximizes the expected
log likelihood:

θ(i) = argmax
θ

Q
(

θ, θ(i−1)
)

However, we employ the technique of MCEM to cal-
culate the E-Step because of the intractability of sum-
ming over the high dimensional data correspondences.
MCEM differs from traditional EM by executing the E-
Step through a Monte-Carlo estimation process [22].

We approximate Q
(

θ, θ(i−1)
)

by drawing M samples of
an ownership vector L(m) = {lmi } which uniquely assigns
the agent i to the observation oi in sample m. This is
accomplished through a MCMC sampling technique which
we will explain in the next section. We end up with

θ(i) = argmax
θ

[

1

M

M
∑

m=1

log p(L(m), O|θ)

]

where L(m) is drawn using the previously estimated
θ(i−1).

At every iteration we obtain M samples of the ownership
vector L, which are then used to re-estimate the connec-
tivity parameter θ (the M-Step). This process is continued

until we obtain a final estimate of θ. The pseudo code for
the algorithm is shown in Algorithm 1.

At every iteration of the algorithm the likelihood of the
ownership vector increases and the process is terminated
when subsequent iterations result in very small changes to
θ.

Algorithm 1 MCEM Inference Algorithm
LOOP:

Draw sample L until p(L,O|θ) stops increasing
IF p(L,O|θ) > CurrentLH

CurrentLH = p(L,O|θ)
Draw M samples L(k)

Update θ = given L(1) . . . L(M)

ELSE
TERMINATE

ENDIF

C. Sampling through Markov Chain Monte Carlo
We use Markov Chain Monte Carlo sampling to assign

each of the observations to one of the agents, thereby
breaking the multi-agent problem into multiple versions of
a single-agent problem. The single agent case where N = 1
is relatively straightforward. In that case, the observations
O specify a single trajectory through the graph, which can
be used to obtain a maximum likelihood estimate for θ.
Therefore, we look for a data association that breaks O

into multiple single agent trajectories. We express this data
association as an ownership vector L that assigns each of
the observation to a particular agent.

Given some guess of the connectivity parameter θ, we
can obtain a likely data association L using the Metropolis
algorithm; a popular method of MCMC sampling [25]. We
implement the algorithm in the following manner. Given
our current state in the Markov Chain, specified by our
current observation assignment L, we propose a symmetric
transition to a new state by reassigning a randomly selected
observation to a new agent selected uniformly at random.
This new data association L′ is then accepted or rejected
based on the acceptance probability

α = min

(

1,
p(L′, Y |θ)

p(L, Y |θ)

)

However, the acceptance probability α can be expressed
in a simple form since the trajectories described by L′ differ
from those in L by only a few edge transitions (Figure 1).
Consider L as a collection of ordered non-intersecting sets
containing the observations assigned to each agent L =
(T1 ∪ T2 ∪ . . .∪ TN ), Tn = {wjk} where wjk refers to the
edge traversal between vertices j and k. The probability of
a single agent trajectory is then

p(T |θ) =
∏

w∈T

p(w|θ)



Fig. 1. An example of a proposed Markov Chain transition. The owner-
ship assigned to oc has been shifted from agent y to agent x. To evaluate
this transition, the probability of the edge traversals wac, wce, wbd must
be compared to the original traversals wae, wbc, wcd.

and a proposed change that reassigns the observation on

from agent y to agent x must remove an edge traversal w

from Ty and add it to Tx. Only the change in the trajectories
of these two agents need be considered, since all other
transitions remain unchanged. In the example shown in
Figure 1:

α = min

(

1,
p(T ′

x, T ′

y|θ)

p(Tx, Ty|θ)

)

= min

(

1,
p(wac, wce, wbd|θ)

p(wae, wbc, wcd|θ)

)

In between each complete sample of the ownership
vector L, each of the observations are tested for a potential
transition to an alternative agent assignment. This testing
is accomplished in random order and should provide a
large enough spacing between realizations of the Markov
Chain that we can assume some degree of independence in
between samples.

Although our method of proposing transitions is simple
and does not result in large jumps through the state space,
the acceptance test can be evaluated efficiently and we
can thus afford to test many proposals. The resulting
chain is ergodic and reversible and thus produces samples
representative of the true probability distribution.

IV. METHODS

The approach has been examined with a number of
experiments conducted in simulation. Our simulation tool
takes as input the number of agents in the environment and
a weighted graph where the edge weights are proportional
to mean transit times between the nodes. All connections
are considered two ways; i.e. each connection is made up
of two uni-directional edges. The output is a list of obser-
vations generated by randomly walking the agents through
the environment. Inter-node transit times are determined
based on a normal distribution with a standard deviation
equal to the square root of the mean transit time.1

A number of experiments were run using the simulator
on randomly generated planar, connected graphs (Figure
2). The graphs were produced by selecting a sub-graph of
the Delaunay triangulation of a set of randomly distributed
points.

For each experiment, the results were obtained by com-
paring the final estimated transition matrix A′ to the real
transition matrix A in the following two ways: First,
a graph of the inferred environment was obtained by
thresholding A′. The Hamming error was then calculated
by measuring the distance between the true and inferred
graphs normalized by the number of directed edges m in
the true graph:

Eh =

∑

aij∈A,a′

ij
∈A′

(

thr(aij) − thr(a′

ij)

)2

m

where thr(a) = daij − θe.2 Second, the absolute squared
error between the true and inferred transition matrices was
calculated:

Esqr =
∑

aij∈A,a′

ij
∈A′

(

aij − a′

ij

)2

V. RESULTS

The results show that problems involving a limited
number of agents were easy to solve given an adequate
number of observations (Figures 3, 4). For example, the
topology of 95 per cent of the generated 12 node graphs
was perfectly inferred with zero Hamming error for simu-
lations with 4 agents. Generally, the algorithm converged
quickly, finding most of the coarse structure in the first few
iterations, and making incrementally smaller changes until
convergence. Figure 5 shows as example of this process
with a moderately sized graph. Although the majority of
our investigation assumed no sensor error, tests confirmed
that our method is also robust to missing and spurious
observations (Figure 6).

1Negative transit times are rejected.
2A threshold value of θ = 0.1 was selected for our experiments.



(a) (b) (c) (d)

Fig. 2. Examples of randomly created 20 node, 80 directed edge graphs.

In most cases the thresholding method presented in [10]
did not give results as accurate as our method. Figure 8
shows a comparison of an implementation of their method
with our MCEM approach. Although shown to be less
accurate in our simulations, this thresholding technique is
very fast and does not rely on knowing the number of
agents in the system.

A critical parameter is the number of agents moving in
the system relative to the number of vertices. Clearly, if
there is only one agent in the network the problem is trivial
since (ignoring detection errors) its event sequence can
simply be “traced out”. However, in the case of multiple
agents, the events generated by a given agent’s movements
in the network risk being incorrectly associated with those
of any other agents’. It is the relative density of the
correct pairings relative to the incorrect ones that makes
the problem more or less easy to solve.

Increasing either the number of agents present in the
environment or the size of the graph made the problem
more difficult to solve, albeit for rather different reasons.
While increasing the number of agents allowed a greater
number of probable trajectories, and was analogous to
decreasing the signal to noise ratio in the system, increasing
the graph size while holding the number of observations
steady reduced the expected number of observations per
edge in the graph. Experiments support the idea that the
accuracy of our approach for a particular number of agents
seems to depend on the ratio of observations to edges
(Figure 7).

In the extreme case, if there are some edges that have no
observations recorded along them at all, our approach will
not have enough information to infer the correct graph. At
the minimum, an observed agent must traverse each edge
at least once. Hence, we are effected by the edge cover
time of the graph which refers to the expected amount of
time it takes a random walk to visit every edge.

It is possible to determine a theoretical upper bound on
the edge cover time for connected, planar graphs. It is
known that a random walk on a connected planar graph
has an expected vertex cover time that is bounded by 6n2

where n is the number of vertices in the graph [26]. If
the graph has a maximum degree of k, then we have an
expected time of covering all the edges leading from the
maximum degree node of

E{Tc} = k

k
∑

j=1

1

j

= kHk

and since the ith harmonic number Hi is bounded above by
log(i)+1, we end up with an upper bound on the expected
edge cover time of 6n2(k log(k)+k). An alternative bound,
6(7n − 12)2 arrived at though Euler’s formula might be
tighter for large values of k.

As expected, our results indicate that the error rate
flattens out well before this bound. For example, using a
value of n − 1 for k on a 12 node graph suggests that the
edge cover time will be bounded by an observation to edge
ratio of over 600. In fact Figure 7 shows that Hamming
error approaches zero for a 12 node graph with 4 agents
after a observation to edge ratio of only one tenth of this
value.

VI. CONCLUSIONS AND FUTURE WORK

We have described a MCEM algorithm for learning con-
nectivity information of an environment embedded with a
sensor network and we have demonstrated the effectiveness
of this approach with a number of experiments based on
simulations. As well as developing and demonstrating a
useful technique with some practical applications, we have
provided additional evidence of the effectiveness of MCEM
based algorithms to find near optimal solutions in a high
dimensionality state space.

There are a number of areas in which we intend to
conduct further work. First, we would like to infer the
number of people (agents) moving in the system, since this
should broaden the practical applications of the approach.
The approach we describe appears to be robust to variations
in the number of people in the system so long as we over-
estimate this parameter in the modeling stage. It appears



(a) (b) (c) (d)

Fig. 5. Incremental Belief of the topology of a 12 node graph using the simulator with 8000 observations: a) initially b) after 1 iteration, c) after 2
iterations, d) after 3 iterations (the true graph). Dotted lines indicate incorrect transitions.
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Fig. 3. Histogram of Hamming error per edge using the simulator with
8000 observations on 100 randomly produced graphs: a) 12 nodes and 4
agents, b) 12 nodes and 10 agents, c) 20 nodes and 4 agents d) 20 nodes
and 10 agents

we can also explicitly model fluctuations in the number of
people using a source or sink node, but this is outside the
scope of this paper. Finally, we are in the process of testing
the algorithm on a real sensor network. An attempt to
illustrate the technique using hardware will bring up issues
such as tolerance to sensor noise, and the possible use and
incorporation into the algorithm of agents’ signatures.
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