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It is well known that biological motion conveys a wealth of socially meaningful information. From even a
brief exposure, biological motion cues enable the recognition of familiar people, and the inference of
attributes such as gender, age, mental state, actions and intentions. In this paper we show that from
the output of a video-based 3D human tracking algorithm we can infer physical attributes (e.g., gender
and weight) and aspects of mental state (e.g., happiness or sadness). In particular, with 3D articulated
tracking we avoid the need for view-based models, specific camera viewpoints, and constrained domains.
The task is useful for man–machine communication, and it provides a natural benchmark for evaluating
the performance of 3D pose tracking methods (vs. conventional Euclidean joint error metrics). We show
results on a large corpus of motion capture data and on the output of a simple 3D pose tracker applied to
videos of people walking.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The fidelity with which one needs to estimate 3D human pose
varies from task to task. One might be able to classify some ges-
tures based on relatively coarse pose estimates, but the communi-
cation of many biological and socially relevant attributes, such as
gender, age, mental state and personality traits, necessitates the
recovery of more subtle cues. It is generally thought that current
human pose tracking techniques are insufficient for this task. As
a consequence, most previous work on action recognition, gesture
analysis, and the extraction of biometrics, has focused on 2D image
properties, or holistic spatio-temporal representations. On the con-
trary, we posit that it is possible to infer subtle human attributes
from video-based 3D articulated pose estimates. Further, we advo-
cate the use of tasks like the inference of human attributes as a nat-
ural, meaningful way to assess the performance of 3D pose
tracking techniques.

In this paper we consider the inference of gender, age, weight
and mood from video-based pose estimates of walking people.
One key problem is the lack of suitable training data comprising la-
beled image sequences with 3D pose estimates. To deal with this
issue, our models are bootstrapped from a substantial corpus of
human motion capture (mocap) data, and then adapted using a
simple form of transfer learning. In particular, the adaptation
ll rights reserved.

by J.K. Aggarwal.

), lsigal@disneyresearch.com
to.edu (D.J. Fleet).
accounts for differences between the distributions of features de-
rived from mocap and those obtained from 3D pose sequences ob-
tained from video-based tracking.

In addition to inferring gender, age and weight, we also consider
the information conveyed by human motion about properties of
mental state. Toward this end we exploit perceived attributes data
that were gathered from human perception experiments. This al-
lows us to consider differences between ground truth and per-
ceived attributes, and it also allows us to consider attributes like
mood, for which we have no ground truth data. For properties of
emotional or mental state, at present, human perception is our pri-
mary source of training data.

By way of application, the inference of human attributes has
myriad potential uses, ranging from human–computer interaction
to surveillance to clinical diagnostics. For example, biometrics are
of interest in security, and retail stores are interested in shopper
demographics. The range of potential applications increases fur-
ther as one considers a wider range of attributes, including, for
example, the degree of clinical depression [23,28], or levels of
anxiety.

The goal of this paper is to demonstrate a simple proof-of-con-
cept model for attribute inference. We restrict our attention to
walking motions, a generic 3D pose tracker, the extraction of sim-
ple motion features, and a very basic set of attributes. Pose tracking
from two views is accomplished with an Annealed Particle Filter
[11,38] (APF), with a likelihood derived from background subtrac-
tion and 2D point tracks. We avoid the use of activity-specific prior
models (e.g., [24,39]) that are prone to over-fitting, thereby biasing
pose estimates and masking useful information. Following
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[32,37,43,47] our motion features are derived from a low-dimen-
sional representation of joint trajectories in a body-centric coordi-
nate frame. We then use a regularized form of logistic regression
for classification. The experimental results show that one can infer
attributes from video pose estimates (at 60–90% accuracy depend-
ing on the attribute). With a model based on the amplitudes of a
Fourier representation, we can achieve a hit rate of 90% in gender
classification from video-based tracking data, similar to what can
be acheived with mocap data. With improvements in 3D people
tracking techniques we should be able to improve inference for a
wide range of other attributes.
2. Background and related work

2.1. Perception of biological motion

Almost 40 years ago, Johansson [17] showed that a simple dis-
play with a small number of dots, moving as if attached to major
joints of the human body, elicits a compelling percept of a human
figure in motion. Not only can we detect people quickly and reli-
ably from such displays, we can also retrieve details about their
specific nature. Biological motion cues enable the recognition of
familiar people [9,45], and the inference of attributes such as gen-
der, age, mental state, actions and intentions, even for unfamiliar
people [5,27,43].

Humans reliably classify gender from point-light walkers with a
hit rate (correct classification rate) of 65–75%; frontal views are
classified somewhat better than sagittal views [27,34,43]. Studies
have focused on cues that mediate gender classification, such as
the shoulder–hip ratio [10] or the lateral sway of the upper body
that is more pronounced in men [27]. Interestingly, depriving
observers of dynamical information degrades gender classification
rates. When in conflict, information conveyed by dynamic features
dominates that of static anthropometrics [27,43]. By using Princi-
pal Component Analysis (PCA) and linear discriminants Troje [43]
modelled such aspects of human perception. Similar models have
even been shown to convey information about weight and mood
and the degree of depression in clinical populations [23].
2.2. Biometrics

In image-based biometrics there has been a sustained focus of
research on recognition and the inference of gender, age and
expression from facial images (e.g., [13,29,26]). There is also inter-
esting work on the estimation of gender from hand shape [1]. Hu-
man motion complements these sources of information since the
face or hands may easily be hidden from view, or poorly resolved
in images.

Gait analysis is closely related to our task here. There is a grow-
ing literature on gait recognition, and on gender discrimination
from gait (see [7] for a good overview), and substantial benchmark
data sets exist for gait recognition ([36]). However, such data sets
are not well suited for 3D model-based pose tracking as they lack
camera calibration and resolution is often poor. Indeed, most ap-
proaches to gait recognition rely mainly on background subtrac-
tion and properties of 2D silhouettes. Very few approaches
exploit articulated models, either in 2D or 3D (although see
[47,52]).

Like gait recognition, gender classification from gait is usually
formulated in terms of 2D silhouettes, often from sagittal views
where the shape of the upper body, rather than motion, is the pri-
mary cue (e.g., [22,25]). When multiple views are available some
form of voting is often used to merge 2D cues [15]. The use of artic-
ulated models for gender discrimination has been limited to 2D
partial-body models. Yoo et al. [51] used a set of 19 features,
including 2D joint angles, dynamics of hip angles, the correlation
between left and right leg angles, and the center coordinates of
the hip–knee cyclogram, with linear and RBF SVMs, and a 3-layer
feed-forward neural net for gender classification. We replicated
their approach but when applied to our motion capture data we
could not achieve the level of performance they report. Sam-
angooei and Nixon [35] consider content-based video retrieval
based on infered physical attributes, including gender, age and
weight. However, they assume 2D sagittal views and a green
screen to simplify the extraction of silhouette-based gait
signatures.

With the use of 3D articulated tracking we avoid the need for
view-based models, known camera viewpoints, and constrained
domains (cf. [15,35,51]). The video sequences we use were col-
lected in an indoor environment with different (calibrated) camera
locations, most of which did not include proper sagittal or frontal
views.

2.3. Action recognition

Like biometrics, most work on action recognition has focused on
holistic space–time features, local interest points or space–time
shapes (e.g., [14,19,30]), in the image domain rather than with
3D pose in a body-centric or world frame of reference.

Holistic approaches focused on global space–time representa-
tions, with early methods relying on template-based encoding
(e.g., obtained by aggregating differences between subsequent sil-
houettes [6], computing average silhouette and contour images
[48], or derived from person-centered optical flow [12]) and
matching. Alternative methods relied on dense spatio-temporal
descriptors (e.g., non-negative matrix factorization of HOG descrip-
tors [42]) followed by classifiers. Recently the focus has shifted to
local spatio-temporal descriptors. Interest points are often de-
tected as salient regions in the 3D spatio-temporal volumes [14]
formed by stacking observed image frames. A number of interest
operators have been proposed [21,49]. Descriptors are then uti-
lized to summarize the spatio-temporal volume in the vicinity of
the interest point. Examples for such descriptors are patches of
normalized derivatives in space and time [30], speeded up robust
feature (SURF) [49] and histogram of oriented gradients (HOG) or
flow (HOF) [20].

It is widely believed that 3D pose estimation is sufficiently
noisy that estimator bias and variance will outweigh the benefits
of such compelling representations for action recognition and the
analysis of activities. Nevertheless, some recent methods have suc-
cessfully demonstrated that this may not be the case (e.g., [31,50]).
In these papers, 3D pose estimation is introduced as an intermedi-
ate latent representation used for action recognition. While these
papers focused on classifying grossly different motion patterns,
in this paper we tackle the more subtle problem of inferring mean-
ingful attributes from human locomotion.

2.4. 3D pose tracking

The primary benchmark for evaluating pose tracking tech-
niques, HUMANEVA [38], uses 3D Euclidean distance between esti-
mated and ground truth (mocap) joint positions. Errors in joint
positions and joint angles are easy to measure, but it is not clear
how they relate to task requirements. For instance, it is not clear
whether a 70 mm RMSE (Root Mean Squared Error) in pose esti-
mate will or will not be sufficient to determine gender or mood,
or for gesture recognition. Some trackers with errors of 70 mm
might preserve meaningful information while others may not. As
such, task-specific measures, like attribute inference, complement
conventional RMSE measures of tracking performance. In particu-
lar, attribute inference is relatively complex as it depends on subtle
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Fig. 1. Web attribute data: The top row shows histograms of average ratings from observers for four attributes. The bottom row histograms show ground truth distributions
of weight (kg) and age (years). The numbers of observers and walkers rated for each attribute are given in the table.
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variations in pose and motion. Furthermore, unlike many activity
recognition tasks, which depend on motion and scene context
(e.g., [20]), attribute inference is mainly a function of information
intrinsic to the agent or the perception of the agent’s motion. Hu-
man attributes are of clear social significance, and may be directly
relevant to applications. That said, an extensive comparison of dif-
ferent pose trackers based on attribute inference is beyond the
scope of this paper.
3. Human motion and attribute data

We learn models for different attributes from a combination of
partially labeled video and motion capture (mocap) data. The most
direct way to learn models for classifying or predicting different
attributes is to exploit labeled video-based pose tracking data.
However such data are not readily available. In our case we have
labeled video data for only 24 subjects, so over-fitting is problem-
atic with such a small training corpus. As an alternative, there exist
relatively large mocap corpora, comprising walking motions from
hundreds of people. Unfortunately, we found that models learned
from such mocap are suboptimal when applied to video-based
tracking data because many of the discriminative features in mo-
cap data are not reliably estimated during pose tracking. Our
straightforward solution is to train models from a combination of
mocap and tracking data, using a simple form of transfer learning.

3.1. Motion capture data: Dmocap

Our source mocap corpus comprises walking motions from 115
individuals. From 41 tracked physical markers we estimate 15 3D
‘‘virtual markers’’ located at major joints of the body, i.e., at shoul-
der joints, elbows, wrists, hip joints, knees, and ankles, and at the
centers of the pelvis, clavicles, and head. The capture volume was
about 5 m long. Each participant walked for several minutes within
the capture volume at their preferred speed, after which we began
to record up to four trials of walking. The data is labeled with
ground truth gender, age and weight [44] (see Fig. 1).

In addition to physical attributes we also consider perceived
attributes, i.e., what people perceive when viewing point-light dis-
plays of walking people. With this data one can begin to explore
biological cues that convey gender, age and weight as perceived
by humans. More importantly, this provides us with labels about
apparent mental state, such as mood (happiness or sadness).

In a simple web-based experiment, observers were asked to rate
walkers using attributes of their choice.1 Each observer was asked
1 http://www.biomotionlab.ca/Demos/BMLrating.html.
to enter an attribute description and two phrases to indicate what
ratings of 1 and 6 represent, then they proceeded to rate up to 100
walkers (in random order) on a scale of 1–6. From ratings of over
4000 observers, each of whom rated at least 20 walkers, we selected
sessions for which the named attribute was one of ‘‘gender’’, ‘‘age’’ or
‘‘weight’’. As the labels were determined by the observers, an addi-
tional pre-processing had to take place in order to group together
similar labels. For ‘‘gender’’ we accepted ‘‘male–female’’ or ‘‘mascu-
line–feminine’’, for ‘‘age’’ we accepted ‘‘young’’ and ‘‘old’’ (or ‘‘el-
derly’’), and for ‘‘weight’’, ‘‘light’’ and ‘‘heavy’’. We accepted any of
‘‘mood’’, ‘‘emotion’’, ‘‘happy’’, or ‘‘happiness’’ for the mood attribute,
and ratings 1 and 6 had to include the words ‘‘happy’’ and ‘‘sad’’. The
resulting numbers of subjects and trials are given in Fig. 1. For each
of the 100 walkers displayed, we computed the average rating, over
all observers. Fig. 1 shows the distributions. Although data from
experiments like this are noisier than those collected under more
controlled conditions, they do reveal consistent perceptual
interpretations.
3.2. Video pose tracking data: Dvideo

In a different lab facility and a different subject pool we col-
lected video and mocap data from 24 subjects. Here we obtained
synchronized binocular video (30 Hz) and mocap (120 Hz) for each
subject. We tracked 2–3 sequences for each of the 24 subjects (12
male, 12 female) walking, with different camera configurations.
The camera viewpoints vary from sequence to sequence, but in al-
most all cases two cameras were within 30 degrees of one frontal
and one sagittal view. Each tracking sequence was approximately
one to two gait cycles in length (between 40 and 100 view frames).

To obtain 3D pose data from the video data, we used a modified
version of an Annealed Particle Filter (APF) for online human pose
tracking [11,38]. The likelihood model for the tracker was derived
from a probabilistic background model with shadow suppression,
and heavy-tailed observation model for 2D point tracks [16] (see
Fig. 2 (top)). The point tracking was performed only for body parts
that were either always visible throughout the entire sequence, or
were occluded only for short periods (e.g., for less than 10 frames).
The likelihood for the point tracks was formulated as a truncated
Gaussian for robustness, and the same likelihood was used for all
subjects. The background model comprised the mean color (RGB)
and the mean intensity gradient as functions of image position,
To simplify the estimation of the covariance matrix we assume that
the 5D covariance matrix was identical for all pixels, and could
therefore be estimated from pixel measurements over the entire
image. Shadow suppression was also performed to allow a more
precise localization of the feet.

http://www.biomotionlab.ca/Demos/BMLrating.html


Fig. 2. Video pose tracking: The APF tracker uses a background model and 2D tracked points from two views (top row). 3D motions estimated for three subjects are shown in
the bottom three rows, having average error in 3D joint locations of 63.7 (mm), 59.9 (mm), and 82.3 (mm) respectively. Notice the differences in camera orientations and
background clutter.

2 In our experiments, using the 3rd and 4th harmonics did not change our results
significantly. In some cases, performance actually decreased due to noise (e.g., age
inference based on tracking data).
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We used a 15-part body model comprising truncated cylinders,
with 34 joint angles plus global pose [38] (40 DOF in total). The
prior motion model was a smooth first-order Markov model, with
weak joint limits and inter-penetration constraints. The simple
prior motion model is weak by comparison to activity-specific
models used by most state-of-the-art people tracking methods
(e.g., see [46,41,2,40]). This was motivated by our desire to avoid
biasing the pose estimates towards a particular population. All
experiments used the same APF parameterization (200 particles/
layer, 5 layers). This required roughly 2 min/frame in our MATLAB
implementation. We use an adopted version of the publicly avail-
able APF implementation of [38]. We believe it is possible to esti-
mate partial anthropometrics on-line while tracking [4], but for
simplicity we assumed known anthropometrics.

The tracker performed well except when the legs were close to
one another. In such rare cases the leg identities were switched. In
these cases we did not filter the results in any way; indeed, we re-
port performance on all tracks obtained. We ran the tracker twice
on every test sequence. Sample tracking results for three subjects
are shown in Fig. 2; in terms of average Euclidean joint errors,
the results are comparable to state-of-the-art methods (e.g., see
[38]). The average Euclidean error in 3D joint locations over all of
the runs had a mean of 73 mm and a standard deviation of 19 mm.

3.3. Motion representation

Following [37,43] we represent each motion as a pose trajec-
tory, i.e., a vector comprising the 15 3D joint positions at each time
step. We begin by aligning all motions to walk in the same direc-
tion and with the same gait phase as a function of time. Then we
extract the model parameters that will be used for attribute
inference.

3.3.1. Motion alignment
Each walking motion is first aligned with the world coordinate

frame such that the X-axis coincides with the direction of locomo-
tion (perpendicular to the coronal plane), the Z-axis is aligned with
gravity, and the Y-axis is perpendicular to the sagittal plane. Next,
we remove slow trends in the forward and lateral directions (i.e., in
XY-plane), based on the motion of the ‘‘center-of-mass’’, i.e., the
average of all 15 joint markers. This alignment centers the moving
figure at the origin as though walking in place in the world ‘‘X’’
direction. With all such motions aligned in this way we then rep-
resent each joint tracjectory in terms of a sinusoidal Fourier basis.
This Fourier-based representation is also then phase-shifted so that
the different motions are aligned with respect to gait phase.

3.3.2. Fourier series
We exploit the periodic nature of locomotion by expressing

each motion as a Fourier series [32,43,44]. Two harmonics are
thought to be sufficient for walking [43]. In fact, when modeling
noisy tracking data, higher harmonics are too noisy.2 Thus, restrict-
ing ourselves to two harmonics acts as an efficient noise filtering. To
represent each pose trajectory, we encode the mean (DC) pose, along
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with the Fourier coefficients at the fundamental frequency and the
second harmonic. This yields a 226-D features vector for each mo-
tion (i.e., five real-valued Fourier coefficients for each of 15, 3D mark-
ers, and the fundamental frequency). This encoding is somewhat
robust to noise in the 3D pose trajectories as it presupposes that
the motion is periodic with only two harmonics. This is especially
useful when dealing with noisy video-based pose data.

The estimation of the fundamental frequency, x 2 Rþ, must be
done with some care because the motions are often less than two
periods in length, and the video-based pose data are noisy. In par-
ticular, the simple approach of choosing the frequency that maxi-
mizes power in a discrete-time Fourier transform is not reliable.
Instead, we take the finite temporal support into account in a sim-
ple generative model.

For each of 15 joints we have motion along the three coordinate
axes, X, Y, and Z, producing 45 time series. For j 2 [1, 45], let f j(t)
denote the jth motion for t 2 [1, . . . , T]. We approximate each of
these motions using a DC term and two harmonics that are mea-
sured within a temporal window r(t) that is 1 for 1 6 t 6 T, and
zero otherwise; i.e.,

mjðt;x;ajÞ ¼ rðtÞ
X2

h¼�2

e�ixhtaj
h:

Here, the parameters of the model include x, the fundamental fre-
quency, and a vector of complex-valued Fourier coefficients
aj ¼ ðaj

�2; . . . aj
2Þ.

3 The least-squares fundamental frequency x⁄ is
then given by

x� ¼ arg min
x

X45

j¼1

min
aj

XT

t¼1

jf jðtÞ �mjðt; x; ajÞj2
 !

: ð1Þ

Fundamental frequencies estimated using (1) were more accurate
than simply choosing the frequency that maximized the discrete-
time power spectrum.
3.3.3. Subspace motion model
Let the Fourier-based representation of the N motions in our

data-set be fmigN
i¼1, where mi 2 R226. To further reduce the dimen-

sion of this motion feature vector, we applied PCA. Empirical re-
sults showed that more than 90% of the data variance is captured
in 16 dimensions. We find that, in practice, using more than 16
dimensions does not improve the accuracy of attribute prediction
in an appreciable way. We also considered a robust PCA variant,
but the motion capture data is sufficiently well behaved that this
also had no significant impact.

Let B � [b1, . . . , bK] denote the subspace basis, where K is typi-
cally 16 or below. Further, let cj denote the subspace coefficients
for mj; i.e., cj ¼ BTðmj � �mÞwhere �m is the sample mean of the mo-
tion data {mj}. Fig. 3 depicts the distribution of gender and weight
in the first two principal directions. Even though only two of the 16
dimensions of the latent representation are depicted, one can al-
ready see some degree of attribute separability in the distribution
of the data.

Of course there are other possible motion features. For example,
Yoo et al. [51] use features of an articulated model extracted from a
sagittal view of walking people, from which they achieve good gen-
der classification with SVMs. Based on their paper, our implemen-
tation of their features with several different classifiers produces
no better than 75% correct gender classification on our mocap cor-
pus, Dmocap, compared to hit rates of 80–90% obtained here (cf.
Fig. 8).
3 Since the motions fj are real-valued, there are only 5 degrees of freedom in the
Fourier coefficients aj

h .
4. Learning

As discussed above, learning is based on partially labeled video
and motion capture (mocap) data, combined with a simple form of
transfer learning. Dmocap provides a significant corpus of labeled
mocap, but the subspace motion features from Dmocap and Dvideo

have different distributions (e.g., see Fig. 4). First, the pose data
in Dvideo is based on a different joint parametrization. There are
fewer joint degrees of freedom in the model, at knees and elbows,
for example, to simplify parameter estimation and tracking. More
importantly, the 3D pose data from video tracking has a much low-
er signal to noise ratio. Tracking errors are the major noise source
in Dvideo, especially when parts of the body are occluded, or con-
fused with one another (e.g., the feet). Indeed, some features that
are highly discriminative in Dmocap will be uninformative in Dvideo.
Other features are indeed discriminative in Dvideo, but are distrib-
uted differently than in Dmocap.

For example, Fig. 4 depicts the subspace representation of Dvideo

data in the Dmocap subspace. This depictions clearly indicates that
the subspace features of both data-sets are capable of supporting
gender classification, but it is also clear that the two feature distri-
butions require different decision boundaries. As a consequence,
we cannot simply learn models from Dmocap and then blindly apply
them to data from a video-based pose tracker. Conversely, learning
models directly from our relatively small corpus of noisy video
data in Dvideo is prone to over-fitting.

To mitigate these problems we formulate the learning problem
as a form of transfer learning called domain adaptation (e.g., see
[33]). Intuitively, we learn source models from the mocap training
data. The source models are then adapted to the video-feature do-
main through the minimization of a loss function on the target
data that is biased toward the source model (e.g., [3,8]). The result-
ing models generalize better than those learned from the video-
based pose data directly, and they produce better results than
the direct application of models learned from Dmocap.

It is important to note that, prior to learning the initial models
from the source motion capture data, Dmocap, the pose data in Dmocap

were converted into the parameterization used by the tracker in
Dvideo. We make this conversion by simply dropping the degrees
of freedom from certain joints (e.g., for a knee we only take rotation
angle in a sagittal plane and drop the remaining two degrees of
freedom). Second, note that the PCA basis used for the latent rep-
resentation of the (converted) mocap data in Dmocap is also used
as the latent basis for the data in Dvideo.

4.1. Logistic classifier with transfer learning

In more detail, we use logistic regression for the inference of
binary attributes. A logistic model expresses the posterior proba-
bility of an attribute, g 2 {0, 1}, as a Sigmoidal function r(�) of dis-
tance from a planar decision boundary, defined by parameters
h � (w, b); i.e.,

pðg ¼ 1jc; hÞ ¼ 1
1þ expð�cT w� bÞ � rðc; w; bÞ: ð2Þ

where c is the vector of model subspace coefficients. The weights
that define the decision hyperplane are found by maximum likeli-
hood. For example, given IID source mocap data of subspace coeffi-
cients and gender g; D ¼ cs

j ; gs
j

n oNs

j¼1
, the data likelihood is

pðDÞ ¼
YNs

j¼1

pðg ¼ gjjcj; hÞ: ð3Þ

With some manipulations the negative log likelihood of the
source data becomes
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Lsðw; bÞ ¼ � log
YNs

j¼1

r cs
j ; w; b

� �gs
j 1� r cs

j ; w; b
� �� �1�gs

j
: ð4Þ

The parameters are found by minimizing the negative log likeli-
hood, i.e., hs ¼ ðws; bsÞ ¼ arg minLs.

While such source models perform well on other test mocap
data, they do not produce good predictions when applied to 3D
pose data from video tracking. To adapt the model learned from
Dmocap to the target data Dvideo, following [8], we learn a logistic
model on the target training data with a Gaussian prior centered
at the source model. That is, we minimize a loss function that com-
prises the negative log likelihood of the video training data,

ct
j ; g

t
j

n oNt

j¼1
, and a quadratic regularizer:

Ltðw; bÞ ¼ � log
YNt

j¼1

r ct
j ; w; b

� �gt
j 1� r ct

j ; w; b
� �� �1�gt

j

þ kkw�wsk2
: ð5Þ
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Fig. 4. Video and mocap consistency – gender: video pose tracks and mocap from
10 subjects in Dvideo , along with Dmocap are shown in two subspace dimensions.
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tion in the Dmocap subspace. This motivates the need for transfer learning.
While this formulation assumes an isotropic prior, with vari-
ance 1/k, the loss function is easily generalized to an anisotropic
prior that allows some weights to drift more than others. The
covariance for an anisotropic prior might be set according to the
ratio of variances in the subspace projections of Dmocap and Dvideo

respectively. Nevertheless the experiments reported below are
based on an isotropic prior.

Minimization of Lt is accomplished with Newton iterations to
solve for critical points, i.e.,
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Leave-one-out validation is used to determine k. Also, note that we
do not regularize the bias offset since it is often convenient to allow
b to vary freely to account for any bias in the tracking data.

One can generalize the approach to model the ratings data by
replacing the ground truth g in (5) with the average rating (scaled
to (0, 1)). Treating the average rating as the expected value of g
over different observers, (5) can be interpreted as the expected
likelihood of the data. While the approach formulated here presup-
poses labeled target data, it is also possible to extend the technique
to the semi-supervised case where the target video data is not la-
beled (e.g., see [3]).

4.2. LS regressors with transfer learning

The same form of domain adaptation can also be applied to help
learn models for predicting real-valued attributes, such as age or
weight. For example, let ws

LS be the least-squares optimal weight
vector for a linear regressor that predicts an attribute, a, from the
subspace representation of the mocap data in Dmocap. This provides
the source model.

Using domain adaptation we can then formulate the target
model in terms of a least-squares predictor for weight from the vi-
deo-based pose tracking data in Dvideo. This is just another least-
squares optimization, but with a regularizer that biases the weight
vector toward the source model parameters, ws

LS. That is, the
adapted LS predictor for real-valued attribute a minimizes

Lcðw; bÞ ¼
XNt

j¼1

wT ct
j þ b� at

j

� �2
þ kkw�ws

LSk
2
: ð7Þ
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5. Attribute inference from Dmocap

We begin with the models learned from the labeled source mo-
cap data Dmocap. This includes classifiers for gender, and regressors
for predicting age and weight, and models for predicting perceived
human ratings. For gender classification, with a 16 dimensional
subspace representation, we obtain a correct classification rate of
90% (based on leave-one-our validation testing, see Fig. 8). For
weight regression, with a 16 dimensional subspace representation,
we obtain a RMSE of 5.4 kg (see Fig. 9).

Fig. 7 (left) shows how gender classification depends on the
subspace dimension of the motion representation. With fewer than
16 dimensions important information is lost. Classification perfor-
mance with more than 20 dimensions yields marginal gains; with a
16D subspace the correct classification rate for gender is over 90%.
Fig. 7 (middle) shows the behavior of a LS predictor for weight. The
weights of our 115 walking subjects ranged from 50 to 100 kg,
while the RMSE of predictions (leave-one-out testing with 16D fea-
tures) is 5.4 kg. Fig. 7 (right) shows that gender can be classified
with as little as one gait cycle (consistent with human perception
[18]).

As described above, gender classification is based on logistic
regression with a planar decision boundary:

wT cþ b ¼ wT Bmþ b ¼ 0; ð8Þ

where w and b are the weight vector and bias in (2), c are subspace
coefficients of the motion model, B is the subspace basis, and m is
the 226-vector in the joint-based Fourier series motion representa-
tion. Fig. 5 (left) depicts the weights wTB in the Fourier series repre-
sentation. The size and color of disk at each joint depicts the relative
magnitudes of the weights in the X, Y, and Z directions. From the fig-
ure one can see that gender classification relies heavily on body
shape, while the motion coefficients (1st, 2nd harmonics) play a
somewhat lesser role. Fig. 5 (right) shows how the weights decrease
from strongest to weakest; the most dominant features are those cor-
responding to lateral shape and motion (perpendicular to the sagittal
plane), consistent with studies of human perception [43].

Fig. 6 depicts the feature weights used in least-squares weight
prediction. In contrast to gender classification, weight prediction
relies more significantly on motion than the mean pose. This is
understandable since a person’s weight may not affect their skele-
tal structure, but may affect the way they walk since soft tissue
may restrict certain movements. It is also interesting to note that
most of the motion features have weights of similar magnitude
(see cf. Fig. 5 (right)). Similar results appear with the inference of
age.
Y

Mean

X

Z

1st Harm 2nd Harm

Fig. 5. Feature weights in gender classification: X/Y/Z dimensions are mapped respective
proportional to the weight of that joint (per different harmonics). Within each joint, a pi
corresponding bar chart lists all features sorted according to importance, where Dark gra
represents motion in the Y direction (normal to the sagittal plane).
5.1. Normalized models

When inferring attributes from video motion estimates, we may
not have access to full 3D pose. For example, with monocular
tracking one might be able to estimate 3D pose only up to the over-
all scale of the subject. Many 3D pose trackers simply assume the
subject is average height (e.g., [4]). In extreme cases a pose tracker
may have no anthropometric knowledge whatsoever. To explore
these cases we computed two further subspace representations
of the mocap corpus, Dmocap. In one model, all walkers were nor-
malized to be the same height. The fact that males are on average
taller than females is therefore lost. In the other model, the individ-
ual anthropometrics are removed so that motion is the only
remaining cue. The removal of the anthropometrics was accom-
plished by converting joint positions into joint angles, and then
using the mean anthropometrics from the subject pool to convert
back into joint positions to reconstruct the motions. This removes
both height differences as well as other information that might dis-
criminate gender, such as the distance between shoulders or hips.

The first row of results in Fig. 8 reports the correct classification
rate for gender, determined using leave-one-out validation. Com-
pared to a 90% hit rate for the 3D model, the height-normalized
model has a hit rate of 83%, while the performance of the anthro-
pometrically-normalized model drops to 82%.

The first row of Fig. 9 gives the RMSE of linear least-squares
weight and age predictors, again based on leave-one-out testing.
Within the training mocap corpus, Dmocap, weights vary between
45 and 110 kg, with a standard deviation of 12.5 kg. RMSE for the
3D model is 5.4 kg, increasing to 10.9 kg for the anthropometrical-
ly-normalized model. When comparing weight to age inference,
age varied between 13 and 43 years with a standard deviation of
6.6 years. Age is predicted with a RMSE of 6.9 years, larger than
the population standard deviation. Thus, while weight is predicted
with reasonable accuracy, it is clear that age is poorly predicted.
5.2. Incomplete and unreliable data

To infer attributes from video-based pose estimates, one might
wish to be able to cope with missing data, since parts of the body
may be occluded. It is therefore of interest to ask how performance
degrades when partial data is available. To that end, let m 2 R226 be
a complete measurement vector (i.e., the Fourier coefficients for
each joint). Let the observed measurements be m0 = Pm, where
the matrix P comprises only those rows of the identity matrix that
correspond to the observed joints. It then follows from the gener-
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ative subspace model, i.e., m ¼ Bcþ �m, that a LS pseudo-inverse
can be used to estimate the subspace coefficients c0 from m0, i.e.,

c0 ¼ ðBT PT PBÞ�1BT PTðm0 � P �mÞ; ð9Þ

where B is the basis matrix of principal directions, and c is the cor-
responding coefficient matrix.

The columns in Figs. 8 and 9 report model performance when
data from model joints of the upper body, or from the lower body,
are used. Also reported are results when one uses only 2D data
from frontal and sagittal views under orthographic projection. It
Gender (success rate)

Data
Model 3D

Model
Height
Norm.

Motion
Only

All Markers 0.90 0.83 0.82
Upper Body 0.88 0.79 0.77
Lower Body 0.75 0.77 0.76

Frontal 2D Pose 0.84 0.76 0.70
Sagittal 2D Pose 0.86 0.83 0.75

Fig. 8. Gender inference with Dmocap models: To assess performance, with and
without missing data, we build 3 models: Full 3D uses known anthropometrics and
kinematics; Height Normalized is learned from mocap that is height normalized;
and Motion Only uses only kinematic information (all walkers have the same limb
lengths), as explained in Section 5.1. The lack of anthropometrics degrades
performance, but the inference of gender is above chance in all models. We also
report how performance varies with different subsets of markers (e.g., upper/lower
body) or 2D projections. Again, despite degradation in performance, the models
continue to predict attributes well.
is clear that performance deteriorates when fewer measurements
are available.

5.3. Predicting human ratings

It is also interesting to consider how well one can predict as-
pects of mental (or emotional) state. To this end we consider the
prediction of perceived attributes. While physical attributes like
gender, age and weight have ground truth values, mood for in-
stance, has no physical ground truth per se. Rather, in our case,
the perceived mood is our only source of labeled data. Because
our perceptual rating data are noisy, we first quantize the human
ratings of each attribute to one bit; i.e., each walker is (perceived
to be) (1) male or female, (2) heavy or light, (3) young or old,
and (4) happy or sad. Then, the average attribute rating for a given
training subject (scaled to (0, 1)) is taken to be the corresponding
empirical probability of being male, heavy, old, and happy, respec-
tively. We use logistic regression to predict these probabilities,
with leave-one-out measures of performance given in Fig. 10.

It is striking that, in all cases, our classifiers are remarkably consis-
tent in predicting human ratings. In most cases they do as well or bet-
ter than classifiers that predict ground truth attributes (e.g., gender).
Human observers are purportedly using the available visual cues in a
consistent manner, even when it might be inconsistent with the
ground truth. And this overt information is captured in our subspace
representation. In particular, while true age is hard to predict, per-
ceived age is predicted well; it’s not how old you are, it’s how old you
look. While interesting, this also shows clearly that perceived attri-
butes may be biased, and thus should be interpreted with care.



Weight (RMSE kg) Age (RMSE yrs)

Data

Model 3D

Model

Height

Norm.

Motion

Only

3D

Model

Height

Norm.

Motion

Only

All Markers 5.44 9.78 10.86 6.89 6.84 6.63

Upper Body 5.91 10.19 11.14 6.92 6.74 6.46

Lower Body 6.37 9.52 12.49 7.44 7.46 7.57

Frontal 2D Pose 5.59 9.79 10.82 7.08 7.12 6.87

Sagittal 2D Pose 10.07 11.41 12.26 7.02 6.95 6.91

Fig. 9. Weight and age inference with Dmocap models: To assess performance, with and without missing data, we build three models (as explained in Fig. 8). Note that the full
3D model is always the best or close to the best result. We also report how performance varies with different subsets of markers (e.g., upper/lower body) or 2D projections.
Weight predictions are reasonably good, especially for the full 3D model, but age is predicted poorly in all cases when compared the population standard deviation of
6.6 years (Section 5.1).

Gender Weight Age Mood
Full 3D 93 94 89 94
Height Normalized 92 94 89 95
Motion Only 93 94 87 94

Fig. 10. Inference of perceived attributes: We report the accuracy of predictions of
human ratings for gender, weight, age and mood, all from the source mocap data-
set Dmocap . Perceived attributes are quantized to one bit based on the average rating
for each subject, and the output of the logistic regressor is thresholded at 0.5. The
table shows the fraction of subjects for which the classifier matches the quantized
rating. It is also interesting to note that the people from whom ratings were
obtained had not absolute 3D data available to them since they viewed only 2D
projections (on a monitor) of the true 3D motion. So one might not expect 3D data
to provide much additional information over height normalized data.
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6. Attribute inference from Dvideo

Given the source models learned from Dmocap, we use domain
adaptation to learn models for the video-based motion data in
Dvideo, as explained in Section 4. Not only is this useful in generat-
ing models for the video pose tracking data, it is also useful in
building a classifier from the test mocap in Dvideo. The reason is that
the mocap and video-based pose data in Dvideo are parametrized
differently from that in Dmocap. The source pose data Dmocap allows
for variable joint locations, and three rotational DOFs for all joints.
To simplify state estimation during video tracking, the body
parameterization used in video tracking, as well as the mocap in
Dvideo, has fixed joint locations, the knees and elbows have only
one roational DOF, and the shoulders have fewer degrees of move-
ment. Hence, there are structural differences even between the
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Fig. 11. Domain adaptation (gender): (left) Gender classification from the mocap data in D

models (full 3D, height normalized, motion only). (right) Gender classification from the
using leave-one-out validation. The crosses (x) depict hit rates when trained on the video-
when the classifiers are trained solely on the source data Dmocap (with no domain adapt
mocap in Dmocap and that in Dvideo. Finally, as discussed above, it
is also clear that the 3D pose data based on video pose tracking
is also much noisier than the source pose data in Dmocap.

Fig. 11 (left) show the leave-one-out performance for gender
classification based on the mocap in Dvideo, with domain adaptation
from Dmocap. The curves show how performance depends on adap-
tation from the source model, as a function of k (see (5) in Sec-
tion 4). The highest hit rates occur with k between 103 and 104.
For comparison, the crosses (x) depict hit rates when there is no
domain adaptation (i.e., with ws = 0 in Eq. (5)). The circles (o) depict
hit rates when the classifiers are trained solely on the source data
Dmocap (with no domain adaptation) and then tested on the mocap
in Dvideo. Remember that, due to different parameterizations of
body, the mocap features in Dmocap and Dvideo are distributed
differently.

6.1. Target pose tracking data

Fig. 11 (right) shows leave-one-out performance for gender
classification from the video-based 3D pose tracking data (two tri-
als of the APF, for each of 2 walking sequences for each of 24 sub-
jects). As above, the curves show the dependence on the strength
of the prior from the source model. The crosses (x) depict the per-
formance rates when trained only on the pose track data, with no
domain adaptation. The circles (o) depict hit rates from classifiers
trained solely on the source mocap data Dmocap.

Fig. 12 reports numerical results for gender classification, from
both the mocap and the video-based data in Dvideo (cf. Fig. 11). As
above, we show results from three models: Cmocap is learned solely
from the source mocap Dmocap; Ctrack is learned solely from test
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v ideo for 24 test subjects, as a function of the strength of the prior k, for each of three
video-based pose tracking data. All results were generated using hit rates computed
based pose tracking data, without domain adaptation. The circles (o) depict hit rates
ation).



Fig. 12. Gender inference from Mocap and pose tracking data: The table gives
leave-one-out performance for gender classification from mocap and pose tracking
data in Dv ideo . There are 46 mocap sequences (�2 walks/subject), and 86 pose
trajectories from video tracking (�2 tracking trials per sequence). Results from
three models are reported: Cmocap is learned from the source mocap in Dmocap; Ctrack

is learned solely from Dv ideo data; CtrackTL is learned with Dvideo and domain
adaptation from Dmocap . pmin is the minimum success rate of a classifier that would
generate results as good or better than ours 9 out of 10 times.
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(mocap and video) data Dvideo; CtrackTL is learned from Dvideo with
domain adaptation from Dmocap. It is clear that transfer learning
CtrackTL yields either the best result, or close to best results in each
case. For the target mocap data, we find correct classification rates
for gender at 87% for the full 3D model, very close to results on the
source data. Results for the height-normalized model and the
anthropometric-normalized model are not quite as good, both with
hits rates of 68%.

To provide a measure of statistical significance, Fig. 12 also in-
cludes the value of pmin for each model. Let k be the number of cor-
rect classifications out of n trials, and p be the true probability of
correct classification. We assume that k conditioned on p, n is Bino-
mial, and that we have uniform prior over p. We then define pmin to
satisfy

Z 1

pmin

f ðpjk;nÞdp ¼ 0:9: ð10Þ

That is, pmin represents the lowest probability of correct classi-
fication such that in 9 out of 10 runs of our experiment we should
get results at least as good as those we obtained in the leave-one-
out scores. When pmin is bigger than 0.5 it confirms that our classi-
fier is almost certainly not performing at chance on this data.
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Fig. 13. Domain adaptation (weight): (right) RMSE of weight estimates from mocap, for 2
height normalized, motion only). (left) RMSE of weight estimates from video-based pose
depict hit rates when there is no domain adaptation. The circles (o) depict hit rates w
adaptation).
Fig. 13 (right) shows how predictions of weight from video-
based 3D pose data depends on domain adaptation. As above, the
crosses (x) and the circles (o) show that predictions are poor when
based solely on the data in Dmocap or in Dvideo. With domain adap-
tation, with k = 106, the RMSE decreases to approximately 12 kg.
In comparison to Fig. 13 (left),the mocap based prediction with
best RMSE of approximately 6 kg, it is evident that the 3D tracker
fails to capture some essential information that is needed for useful
weight prediction. Fig. 14 provides numerical results for weight
prediction. (cf. Fig. 13). As above, we show results from three mod-
els: Cmocap is learned solely from the source mocap Dmocap; Ctrack is
learned solely from test (mocap and video) data Dvideo; CtrackTL is
learned from Dvideo with domain adaptation from Dmocap.

6.2. Amplitude-based model

Clearly the results in Figs. 12 and 11(right) reveal that the re-
sults on the video-tracking pose data are not as good as those for
the mocap data in Dmocap. The major problem stems from noise in
the pose tracking, much of which was manifested in the relative
phases of some of the joint motion. This rendered the phase-based
alignment of walking motions unreliable.

A simple but effective way of removing noise in the relative
phases of different joint trajectories is to use only the amplitudes
of the Fourier coefficients rather than their real and imaginary parts.
That is, rather than a 226 dimensional Fourier description, with
amplitude alone, the Fourier description has 136 dimensions (45
for the mean pose, 90 for the amplitudes of the first two harmonics,
and the fundamental frequency). We then apply dimensionality
reduction and learn the classifiers as above. The net result is a signif-
icant improvement in gender classification from the video-based
pose data. Fig. 15 shows result with domain adaptation applied to
a subspace representation of the amplitude coefficients. The corre-
sponding numerical results are reported in Fig. 16. Note that the
classification rates for both the video data and the mocap data are
improved. Indeed, the performance on the video-based approaches
the performance on the mocap data. Interestingly, prediction of
ground truth weight and age did not improve appreciably with an
amplitude-based motion represetation.

6.3. Inference of perceived attributes

Next we turn to consider how well we can infer perceived
attributes. To this end, Fig. 17 reports leave-one-out hit rates in
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hen the classifiers are trained solely on the source data Dmocap (with no domain



Fig. 14. Weight inference from mocap and pose tracking data: The tables reports
leave-one-out cross-validation performance on weight prediction from mocap and
pose tracking data in the Dv ideo data-set of 24 subjects. There are 46 mocap
sequences (�2 walks/subject), and 86 pose trajectories from video tracking (�2
tracking trials per sequence). Results from three models are reported: Cmocap is
learned from the source mocap corpus Dmocap; Ctrack is learned solely from Dv ideo

data; CtrackTL is learned with Dv ideo and domain adaptation from Dmocap .

Fig. 16. Gender inference from mocap and pose tracking data (amplitude repre-
sentation): The table reports leave-one-out hit rates for gender classification, as in
Fig. 12. However, instead of representing motions by real and imaginary Fourier
coefficients, an amplitude-only model was used. Again, as in Fig. 12, pmin is the
minimum success rate of a classifier that will generate our results in 9 out of 10
runs.

Fig. 17. Classification of perceived attributes with respect to mocap: The table
reports consistency of leave-one-out cross-validation performance on perceived
gender, weight, attractiveness, mood (happiness) and age between mocap and pose
tracking data in the target data-set Dvideo of 24 test subjects. We predict Dv ideo

mocap attribute values by using Dmocap models. We then use the predicted attribute
values as ground-truth targets to train CtrackTL binary classifiers (learned with Dv ideo

and domain adaptation from Dmocap).
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the prediction of four perceived attributes, namely gender, weight,
age and mood. Like the above experiment in Fig. 10 we quantize
perceptual ratings to one bit and use logistic regression for classi-
fication (e.g., happy vs. sad). For the purposes of this experiment
we also consider the perceptual data as the ground truth (indeed
for perceived mental state, e.g., mood, that is our only source of
data label) and look at the consistency of predictions between
the leave-one-out model trained with mocap and with video track-
ing results from Dvideo.

The consistency between the mocap and pose tracking is indeed
good, with consistent classification rates between 76% and 98%. It
is interesting to note that we can recover the mental state – mood
(happiness), with up to 93% accuracy, and age with up to 98%. The
high rates of consistency demonstrates how perceived attributes
are predicted better than ground truth.
7. Discussion

This paper demonstrates that one can infer significant physical
attributes (e.g., gender and weight) and aspects of mental state
(e.g., happiness) from the output of a video-based, 3D human pose
tracker. The models are used to infer binary attributes (gender) and
real-valued attributes (e.g., weight). We also consider the predic-
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Fig. 15. Amplitude-based model with domain adaptation (gender): (left) Gender classifi
prior k, for each of 3 models (full 3D, height normalized, motion only). (left) Gender clas
leave-one-out hit rates. Notice how by using the amplitude model, classification rate of v
depict hit rates when there is no domain adaptation. The circles (o) depict hit rates w
adaptation).
tion of perceived attributes based on human perceptual experi-
ments. This is useful when inferring attributes such as mood
where human perception is our source of ground truth. Learning
is accomplished using data sets comprising labeled mocap and vi-
deo-based 3D pose estimates. These sources of training data are
combined with a simple forms of domain adaptation. In addition,
we demonstrate that current state-of-the-art tracking methods
are capable of matching accurate mocap data in predicting at least
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certain attributes (e.g., gender) by using an appropriate model.
However, a more reliable video tracking is needed in order to cap-
ture a more subtle attributes such as weight and age, or at least a
one that captures the required information with high enough SNR
ratio.

We also demonstrate how predicting perceived attributes is
more accurate than predicting ground truth in gender, weight
and age. In other words, it does not matter how old you really
are, it is more important whether you move as an old or a young
person. In addition, we show that relying on Euclidean RMSE alone
is illusive and unreliable indicator for many real-life tasks of a 3D
pose tracker (Section 6.2). Instead we suggest using attribute infer-
ence as an additional quality indicator which can indicate whether
essential motion information is preserved.

In the future we hope to collect large data sets and explore
stronger tracking prior models trained from large collections of
mocap data. We also hope to be able to test the inference of attri-
butes with monocular pose tracking methods. One possible pose
tracking method is to estimate attributes as part of the tracking
process, in order to create a better generative model. By doing so,
both Euclidean tracking accuracy and attribute inference might im-
prove. While the results reported here are interesting in their own
right, this is one of the first papers to suggest that tasks like as
attribute inference provide a natural way to assess the fidelity with
which people trackers estimate 3D pose.
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