
CSC2512
Advanced Propositional

Reasoning

Fahiem Bacchus, University of Toronto, 2

CSC2512: Other Work: Proof extraction
• For any clause c, if we unit propagate –c, in the formula

F and obtain an empty clause (a conflict) then it must
be the case that F ⊧ c by the soundness of UP.

• However, we can have F ⊧ c but UP(-c) does not
generate a conflict. UP is not a complete rule of
inference.

• Nevertheless, it is “complete” along a sequence of
resolution steps.

Fahiem Bacchus, University of Toronto, 3

CSC2512: Other Work: Proof extraction
• Given a resolution proof as a sequence of clauses

where cn is not an input clause.
c1, c2, …, cn

• we can observe that if we negate cn and unit
propagate the literals in the formula c1, c2, …, cn-1 we
will obtain a conflict (one of these clauses will be
falsified)

If cn = (A, B) as a result of resolving (A,x) and (B,-x)
UP falsifies one of these clauses (depending on if
it propagates x or –x first).

Fahiem Bacchus, University of Toronto, 4

CSC2512: Other Work: Proof extraction
• This gives rise to the RUP (reverse unit propagation)

technique for extracting proofs from a clause learning SAT
solver.

• Output to a log all learnt clauses in the sequence they are
learnt.

• Verify each learnt clause ci in the order they it was learnt by
negating ci and unit propagating through the set of clauses
U {c1, …, ci-1}

• If we obtain a conflict we know that ci is a logical
consequence of the input formula and the previously
verified learnt clauses.

Fahiem Bacchus, University of Toronto, 5

CSC2512: Other Work: Proof extraction
• Eventually we can verify a unit clause (x) whose partner (-x)

has previously been verified thus showing that the proof is
sound.

• This procedure verifies the UNSAT result (just like the satisfying
assignment can be used to verify the SAT result).

• Furthermore, we can instrument the UP checking process so
that we only keep the learnt clauses and input clauses that
are eventually needed to verify the final empty clause.

• Note that this works even when we have lost track of the
resolution steps involved in computing a learnt clause.

• This set of clauses responsible for UNSAT can be output.

Fahiem Bacchus, University of Toronto, 6

CSC2512: Other Work: Proof extraction
• Note also that the final sequence of learnt clauses are

not a traditional resolution proof. This sequence is called
a “clausal” proof, and it can be much shorter than a
resolution proof.

• Unit Prop is needed to verify a clausal proof, whereas a
much simple algorithm can verify a resolution proof.

• A clausal proof can be expanded into a resolution
proof by tracking the clauses the unit prop steps need
to derive a contradiction.

Paper: Trimming while Checking Clausal Proofs Marijn J.H.
Heule, Warren A. Hunt, Jr., and Nathan Wetzler

Fahiem Bacchus, University of Toronto, 7

CSC2512: Other work: Assumptions
Assumptions. A useful technique is solving subject some
set of literals called assumptions:
• A = {l1, l2, …, lk}
• We start the SAT solver and force it to pick a next

unassigned literal in A as a decision until there are no
more unassigned literals in A.

• If a literal of A is forced to TRUE we skip over it for the
next decision.

• If a literal of A is forced to FALSE we stop: Say l1, l2 …, li
are the decisions already made, and lj is forced to
FALSE: then we have the following clause

(¬l1, ¬l2, …, ¬li,¬lj)

Fahiem Bacchus, University of Toronto, 8

CSC2512: Other work: Assumptions
• If we assign all literals in A we then continue the normal

SAT solving process with freedom to pick the decision
variables as we want.

• If this results in UNSAT, some clause (perhaps empty)
falsified by the A decisions will be learnt.

• In any event, if the formula becomes UNSAT under A,
we obtain a clause falsified by A (the clause specifies
that some subset of A is impossible).

Fahiem Bacchus, University of Toronto, 9

CSC2512: Other work: Assumptions
• Assumptions are very useful for incremental SAT solving

where we want to SAT solver a sequence of related
formulas F1, F2, …, Fn

• If F1 ⊆ F2 ⊆ ⋯ ⊆ Fn then we can use one instance of the
SAT solver. Solve F1 then add the additional clauses of F2
and solve again, add the additional clauses of F2 …
• The advantage if this is that the SAT solver gets to

reuse all of its learnt clauses.
• But if we must remove clauses between SAT solver

invocations we have a problem: some of the learnt
clauses might no longer be valid.

Fahiem Bacchus, University of Toronto, 10

CSC2512: Other work: Assumptions
• For clause removals we can use assumptions: if we will

later want to remove the clause C = (x1, x2, …, xn) we
can add a brand new variable (often called a
selection variable) to the clause: (x1, x2, …, xn, s)

• Then if we want to include C we assume ¬s. Any learnt
clauses were derived from resolving against C will now
also contain s (s appears nowhere else in the formula
so it can’t be resolved away)

• When we want to exclude C from the formula we can
assume s. C and all clauses learnt using C contain s so
all of these clauses will be satisfied by assuming s and
the solver will then solve the remaining clause.

CSC2512: Papers

• An Empirical Study of Branching Heuristics
through the Lens of Global Learning Rate
Jia Hui Liang, Hari Govind, Pascal Poupart,
Krzysztof Czarnecki, and Vijay Ganesh. IJCAI
2018

• DRAT-trim: Efficient Checking and Trimming
Using Expressive Clausal Proofs Nathan Wetzler,
Marijn J. H. Heule, Warren A. Hunt Jr. Sat 2014.

• Speeding Up Assumption-Based SAT, Randy
Hickey, Fahiem Bacchus. Sat 2019

Fahiem Bacchus, University of Toronto, 11

CSC2512: Clause Deletion

• A new clause is learned from every conflict.
• In practice the solver starts to slow down after it

accumulates too many clauses.
• So deleting some of these learned clauses has

proved to be effective.
• Earlier clauses were deleted whenever memory

was about to be exhausted. Clauses were
deleted by size (delete the largest ones first) or
by activity (delete those clauses that had not
recently been used in learning new clauses.

Fahiem Bacchus, University of Toronto, 12

CSC2512: Clause Deletion

• In 2009 Audemard and Simon developed a new idea for
selecting which clauses to delete called the LBD score.

• Once we learn a 1-UIP clause, minimize it, and use it to
backtrack asserting a new literal, we can count the
number of different decision levels in the clause. This is
called the clause’s LBD score.

• Audemard and Simon found that very aggressive clause
deletion, where frequently ½ of the learnt clauses
highest LBD score are deleted, gives a significant boost
in performance.

• Now however theoretical completeness is sacrificed
(although it can be regained by slowing increasing the
clause deletion trigger from 10,000 clauses to 20,000,
30,000, etc. (any increasing sequence will suffice).

Fahiem Bacchus, University of Toronto, 13

CSC2512: Papers

1. Predicting Learnt Clauses Quality in Modern SAT
Solvers, Gilles Audemard, Laurent Simon, IJCAI 2009.

2. Coverage-Based Clause Reduction Heuristics for CDCL Solvers,
Hidetomo Nabeshima and Katsumi Inoue, SAT 2017

Fahiem Bacchus, University of Toronto, 14

CSC2512: Preprocessing

• An additional essential part of modern
SAT solvers is preprocessing and
inprocessing.

• Preprocessing is the technique of
converting the input CNF F to a new
CNF F’ such that if F’ is UNSAT then so is
F, and furthermore if ! is a satisfying
model of F’ then ! can in poly-time be
converted into !’ a satisfying model for
F.

Fahiem Bacchus, University of Toronto, 15

CSC2512: Preprocessing

• A number of useful techniques for
preprocessing have been developed.
The most important of these is Bounded
Variable Elimination, Clause
subsumption, and self-subsuming
resolutions.

Fahiem Bacchus, University of Toronto, 16

CSC2512: Preprocessing

• Bounded Variable Elimination. This uses a single
step of the DP algorithm. We eliminate the
variable x from the formula by taking all clauses
A containing x and all clauses B containing ¬x
and generate all resolvant pairs:

R = {R[c1,c2] | c1 ∈A c2 ∈ B}
• All tautologies are removed from R.

Furthermore, clauses in R might be subsumed by
other clauses. So we reduce R by removing
these clauses.

• Bounded: we preform this step if
|R| < |A| + |B|

(i.e., we obtain fewer clauses)

Fahiem Bacchus, University of Toronto, 17

CSC2512: Preprocessing

• Implementing this efficiently requires
clever scheduling and data structure
techniques.

Fahiem Bacchus, University of Toronto, 18

CSC2512: Preprocessing

• Subsumption. Checking for subsumption can be speeded up
using Bloom Filters. We map each literal in F to a number in the
range [0,63]. Then for each clause c we construct a 64 bit map,
by setting all bits mapped to by literals in c.

• Now if c’ ⊆ c then the bit map of c’ must be a subset of c bit
map. That is, the and of these two bit maps must equal the bit
map of c’.

– E.g., Say we do the following mapping
x = 0, -x = 1, y = 2, -y = 3, z = 4, -z = 5.

then the bit map of the two clauses
c = (x,y,z) = [1, 0, 1, 0, 1, 0]
c’= (x,z) = [1, 0, 0, 0, 1, 0]

[1, 0, 1, 0, 1, 0] AND [1, 0, 0, 0, 1, 0] = [1, 0, 0, 0, 1, 0] = c’ bit map

Fahiem Bacchus, University of Toronto, 19

CSC2512: Preprocessing

• This test is fast, and if it fails then we know
that c is not subsumed by c’. If it succeeds
then we don’t actually know that c is
subsumed by c’. This is a one way test. So if
the test succeeds (i.e., the AND of the two
bit maps is equal to the bit map of c’ we
have to follow this with actually testing to
see c’ ⊆ c

– E.g. if in the variable mapping r = 4 then
c” = (x,r) = [1, 0, 0, 0, 1, 0] – same bit map as c’

Fahiem Bacchus, University of Toronto, 20

CSC2512: Preprocessing

• (A,x) (B,¬x) where B ⊆A. Clearly(B,¬x) is
not a subset of (A,x), so there is no
clause subsumption. However, consider
the resolvant: (A,B) == (A) (since B ⊆A).
The resolvant subsumes (A,x). So in this
case we can remove x from (A,x). This is
called a self-subsuming resolution.
– E.g.

(a, b, ¬c, x) and (b, ¬x)
è (a,b,¬c) and (b, ¬x)

Fahiem Bacchus, University of Toronto, 21

CSC2512: Papers

1. Effective Preproessing in SAT through Variable
and Clause Elimination, Niklas Een and Armin
Biere, SAT 2005.

Fahiem Bacchus, University of Toronto, 22

Fahiem Bacchus, University of Toronto, 23

CSC2512: MUSes and MCSes
• MUS computation.

• In many applications we want to know why something
is unsatisfiable. We can extract a minimal unsatisfiable
subset of the formula: a MUS.

• Note not a minimum unsatisfiable subset (which is a
much harder problem)

• Since the MUS typically much smaller than the input
formula F. It can provide much more specific
information about a cause of unsatisfiablity in F.

Fahiem Bacchus, University of Toronto, 24

CSC2512: MUSes and MCSes
• A MUS (Minimal Unsatisfiable Set) M is an UNSAT set of

clauses M such that for any clause c in M:
M \ {c} is SAT //M is set inclusion minimal

• If F is SAT then it contains no MUSes. If it is UNSAT it
contains at least one MUS and usually contains
many different MUSes.

• A correction set C of a CNF F is a subset of F such that:
F \ C is SAT

A correction set C is a minimal correction set (MCS) if
no proper subset of C is a correction set of F
• If F is SAT only the empty set is a MCS. But if F is

UNSAT, then any MCS cannot be empty and
generally, there are many MCSes.

Fahiem Bacchus, University of Toronto, 25

CSC2512: MUSes and MCSes
• MUS/MCS hitting set duality (Reiter AIJ 2087).

• Consider an UNSAT formula F, let AllMuses(F) be the
collection of all MUSes in F. Each M ∈ AllMuses(F) is a set
of clauses, a subset of F. That is AllMuses(F) is a
collection of sets.

• Similarly, let AllMCSes(F) be the collection of all MCSes
of F

Fahiem Bacchus, University of Toronto, 26

CSC2512: MUSes and MCSes
• Given a collection of sets K, HS is a hitting set of K iff for

every set S ∈ K we have that HS ⋂ S ≠ ∅
• HS has a non-empty intersection with every set in the

collection.
• A set HS is a minimal hitting set of K if it is a hitting set

and no proper subset of HS is a hitting set of K.

Fahiem Bacchus, University of Toronto, 27

CSC2512: MUSes and MCSes
• Reiter’s result:

A set C ⊆ F is an MCS of F iff it is a minimal hitting set of
AllMuses(F). And a set M ⊆ F is an MUS of F iff it is a minimal
hitting set of AllMCSes(F).

Also, a set C ⊆ F is an correction set (not necessarily
minimal) of F iff it is a hitting set of all unsatisfiable subsets
of F (not necessarily minimal). And a set M ⊆ F is
unsatisfiable (not necessarily minimal) iff it is a hitting set of
all correction sets (not necessarily minimal) of F.

Fahiem Bacchus, University of Toronto, 28

CSC2512: MUS extraction
• Given an UNSAT formula F, we want to compute one of

its MUSes (and we don’t care which one).
• We can do this with a sequence of calls to a SAT solver.

Fahiem Bacchus, University of Toronto, 29

CSC2512: MUS extraction
• A critical clause of an UNSAT formula U, is a clause whose

removal makes U SAT.
• A MUS M is an UNSAT formula all of whose clauses are

critical.

• Divide F into two sets
• crits: a set of clauses that we know must be in the MUS

we are extracting (they are critical).
• unkn a set of clauses that might be in the MUS but we

don’t know yet.

• crits U unkn is the working formula—it is an unsat formula
that is a subset of F and thus it contains one of F’s MUSes

Fahiem Bacchus, University of Toronto, 30

CSC2512: MUS extraction
1. crits ⟵ ∅ unkn ⟵ F
2. while unkn ≠ ∅

1. c ⟵ choose c ∈ unkn
2. sat? = SatSolve(crits U unkn \ {c})
3. if sat?

1. crits = crits U {c}
4. unkn = unkn - \{c}

This simple algorithm iteratively tests the clauses of an
initial UNSAT formula (F) removing clauses not needed to
retain UNSAT, and keeping those clauses whose removal
makes the formula SAT.

Fahiem Bacchus, University of Toronto, 31

CSC2512: MUS extraction
This simple algorithm can be significantly improved.
1. When we find that removing c from unkn makes crits U

unkn (so c is critical for the MUS contained in crits U
unkn) we can use the satisfying truth assignment ! to
find other critical clauses.

2. When removing c from unkn keeps crits U unkn UNSAT
(c need not be in the MUS we are extracting), then we
can extract from the SAT solver a subset of the clauses
in crits U unkn sufficient to cause UNSAT using
assumptions

Fahiem Bacchus, University of Toronto, 32

CSC2512: MUS extraction
Model Rotation. Given that c is found to be critical, find other critical
clauses.

When is a clause c critical for the working formula crits U unkn.
There exists a truth assignment satisfying
(crits U unkn) \ {c}—removing c makes the working formula SAT

We have found a truth assignment ! satisfying
(crits U unkn) \ {c}

So we try to change one of the truth assignments in ! so that we
satisfy c and every other clause in (crits U unkn), except for one other
clause c’. So now we have a new truth assignment !’ that satisfies
(crits U unkn) \ {c’}

This shows that c’ is also critical for the current working formula and
we can move it into crits.

Fahiem Bacchus, University of Toronto, 33

CSC2512: MUS extraction
Assumptions. Instead of giving the SAT solver the CNF
(crits U unkn) we add a selector variable to each clause
of F.

The selector variables are brand new variables (one new
variable per clause). So every clause ci ∈ F is replaced
with the clause (ci ∨ bi) where bi is the new selector
variable for clause ci.

Then we call the SAT solver with all clauses in F and the
assumptions {¬b1,¬b2, …, ¬bm}. These assumptions force
the SAT solver to try to satisfy all of the clauses ci

Fahiem Bacchus, University of Toronto, 34

CSC2512: MUS extraction
Assumptions.
When we want to remove the clause ci from the working
formula, we stop assuming ¬bi. Now the SAT solver is free
to satisfy (ci ∨ bi) by simply making bi true.

If the working formula is UNSAT then the SAT solver will
return a subset of the assumptions {¬b1,¬b2, …, ¬bm} in a
conflict clause (bj1, bj2, …, bjk). This clause says that the
subset of clauses {cj1, cj2, …, cjk} is UNSAT (at least one of
them must be falsified by any truth assignment.

Now we can use this subset to further reduce the working
formula.

Fahiem Bacchus, University of Toronto, 35

CSC2512: MUS extraction
1. crits_A ⟵ ∅
2. unkn_A = {¬bi |ci ∈ F} //Two sets of assumptions
3. while unkn_A ≠ ∅

1. choose ¬bi ∈ unkn_A
2. (sat?, $, conflict) =

SatSolve(F, crits_A U unkn_A \ {¬bi})
3. if sat?

1. new_crits = Model_Rotate(ci, $)
2. crits_A = crits_A U {¬bi |ci ∈ new_crits}
3. unkn_A = unkn_A \ {¬bi |ci ∈ new_crits}

4. else
1. unkn_A = unkn_A ⋂ {¬bi | bi ∈ conflict}

Fahiem Bacchus, University of Toronto, 36

CSC2512: MUS extraction
However we can get even better improvements by
moving beyond the simple algorithm.

Paper:
Using Minimal Correction Sets to more Efficiently Compute
Minimal Unsatisfiable Sets, Fahiem Bacchus and George
Katsirelos (CAV 2015).

