
CSC2512
Advanced Propositional

Reasoning

Fahiem Bacchus, University of Toronto, 2

CSC2512: Modern CDCL Sat Solvers

CDCL = Conflict Driven Clause Learning

Input formula F in CNF. Determine whether or not F is
satisfiable using DPLL with key modifications.

Fahiem Bacchus, University of Toronto, 3

CSC2512: Modern Sat Solvers
DP—Variable Elimination. In each iteration we eliminate a variable v by replace the set of
clauses C with C – X –Y + R—remove all clauses with the eliminated variable (X the clauses
containing v and Y the clauses containing –v) and add R (all resolvants between clauses in X
and Y).

If min(|X|,|Y|) = k, R can contain O(k2) clauses, and the these clauses can be longer than
any clause in X or Y.

So DP can take exponential space (and time).

DPLL on the other time requires only linear space (although exponential time). We only need
to keep track of a single path in its depth-first search (n copies of the program stack, one for
each recursive call, when we have n variables).

Generally speaking space is more constraining than time on modern machines.

CDCL solvers lie somewhere in the middle. They use more space than DPLL, but generally less
than DP.

Fahiem Bacchus, University of Toronto, 4

CSC2512: Modern Sat Solvers

Modern DPLL based CDCL SAT Solvers (Conflict driven clause
learning)
1. Clause Database: Each clause is stored as an array/vector of

literals.
– Typically we encode the literals as numbers, e.g., x = 0, -x =1, y = 2, -

y = 3. So a clause [x, -y] would be stored as the vector [0, 3]. Under
such a scheme negated variables are odd, positive ones are even.

2. Watch Literals: We distinguish two literals of each clause as
being the watch literals. Each of these literals is said to watch
the clause. (Input unit clauses don’t have two literals so they
are placed directly on the trail). Typically the literals at index
0 and index 1 are used for watches.

3. Literal Watch Lists: For each literal we store a list of watched
clauses—these are the clauses that the literal serves as a
watch for.

Fahiem Bacchus, University of Toronto, 5

CSC2512: Sat Solvers

Main Data structures:
4. Trail: an array/vector storing the current partial truth

assignment being explored. We grow the trail as we
descend the search tree, shrink it as we backtrack.
– Each element on the trail is a pair

(literal, clause index/pointer).
– Implemented as an array treated as a stack where there is a

top pointer (trail_top) indicating the last entry in the stack.
Removing items is done by decreasing trail_top. New items are
added to the array at index trail_top.

5. UP Stack. The trail also doubles as a UP Stack. We need
two stack pointers, trail_top that points to next empty
slot on the trail, and up_stack_top that points to the
next literal that needs to be Unit Propagated. We can
tell if the UP Stack is empty by testing to see if
up_stack_top == trail_top

Fahiem Bacchus, University of Toronto, 6

CSC2512: Sat Solvers

Detecting Units the Old Way

For each literal keep a list of clauses it appears in.

Keep a count of the false literals in the clause.

If x is made false, increment the count for every clause it is in. If
that count is equal to the clause length -1 the clause has
become unit.

Examine the clause to find the literal it implies

Requires work for every clause x appears in
Requires work to restore the counts on backtrack.

Fahiem Bacchus, University of Toronto, 7

CSC2512: Sat Solvers

Detecting Units the new way with watch literals

UP—processes a clause only when one of its watches
become false. Then either:
• The other watch is true and we don’t need to do

anything (the clause is already satisfied)
• the false watch is replaced by a new unset literal.
• If no replacement can be found, we set the other watch

to be true.
• The other watch is already false we know that all literals

in the clause are false, and we have a conflict (a
falsified clause)

Fahiem Bacchus, University of Toronto, 8

CSC2512: Sat Solvers

Unit Propagation:
While up_stack_top != trail_top (more literals to UP)

1. x = Trail[up_stack_top]; up_stack_top += 1 //nxt var to UP
2. For each clause C watched by -x //-x is now false

a. y = C’s other watch.
b. If y is TRUE continue
c. If there exists z = a non-false literal in c with z ≠ x and z ≠ y

then move C from x’s watched clause list to z’s watched clause
list.

d. Else //all lits in C are false except possibly for y.
1. If y is FALSE return C as a conflict clause
2. Else set y to TRUE and put (y, c) on the trail

Fahiem Bacchus, University of Toronto, 9

CSC2512: Sat Solvers

So to update with a newly false literal we need only check a
fraction of the clauses the literal appears in (only those it
watches).

No work needs to be done on backtrack—if the watches are
valid, they will remain valid on backtrack.

Fahiem Bacchus, University of Toronto, 10

CSC2512: Sat Solvers

Decision Levels.
The solver operates by (a) making decisions—choosing
which literal to set to true, then (b) running UP until the UP
stack is empty or a conflict is detected.

The literal set by decision + all of the literals forced by UP
after setting the decision literal constitute a section of the
trail called a decision level.

When the solver backtracks it always unsets a full decision
level—a decision literal and all of the literals UP’ed by it. It
might unset multiple decision levels, but never a subset of
a decision level.

Fahiem Bacchus, University of Toronto, 11

CSC2512: Sat Solvers

Root no decisions made

x forced by input unit clause (x)

¬y forced by clause becoming unit (¬y, ¬x)

r

Sequence of literals forced by unit propagation

t No more literals forced by unit propagation. Now SAT solver makes
a decision (setting another literal)

¬k
Sequence of literals forced by unit propagation

forced by clause (¬y, ¬x, r)

forced by clause (¬t, ¬r, ¬k)

Fahiem Bacchus, University of Toronto, 12

CSC2512: Sat Solvers

Unit Propagation:
The solver maintains the invariant that after each decision
level is added or removed from the trail every clause has
1. two unassigned watches
2. at least one true watch, or
3. or is a conflict (all literals, and both watches are false).
(One False one unassigned watch not possible).

The invariant is true as the start of the search: every clause
has two unassigned watches.
Note that at level 0, no decisions have been made, but we
might have unit clauses in F. The invariant holds before
these units are propagated, and after UP is finished.

Fahiem Bacchus, University of Toronto, 13

CSC2512: Sat Solvers
Add a decision level D to the trail, insert newly decided on
literal, and run UP to completion). For each clause either
1. Both watches remain unassigned at level D
2. at least one of the watches was true before D
3. A watch is made false at level D so it is

1. replaced by an unset watch
2. the other watch is made true
3. Both watches have become false and the clause is detected to

be a conflict and we backtrack from level D
(Note this means that the conflict could not occurred above
level D, else we would have backtracked from that prior level
and never gotten to level D)

Invariant still holds.

Fahiem Bacchus, University of Toronto, 14

CSC2512: Sat Solvers
Backtrack from a decision level D to the trail. Either
1. The clause has two unassigned watches at level D so they

remain unassigned.
2. The clause has two false watches at level D. Then both must

have been made false at level D so on backtrack both will be
unset.

3. The clause has a true watch set above level D, and it remains
set on backtrack

4. The clause has a true watch set at level D. If the other watch
is false it must have been set at level D and both will be unset
on backtrack.

Invariant is preserved and more importantly, no clause needs to
be examined on backtrack! Only need to unassign the literals
removed from the trail by backtracking.

Fahiem Bacchus, University of Toronto, 15

CSC2512: Sat Solvers
Sat(F)

1. Build Clause Database and literal watch lists, add units to trail
2. Dlevel = 0

3. while (TRUE)

4. conflict = UP()

5. if (conflict)

6. if Dlevel == 0 return UNSAT

7. newClause = LearnClause(conflict)

8. addToClauseDataBase(newClause)

9. backtrack(assertionLevel(newClause)) //undo decision levels

10. assign(assertedLiteral(newClause), newClause) //put on trail

11. else if all literals assigned, return SAT (true lits are satisfying assignment)

12. else

13. x = PickNextLiteral()
14. Dlevel = Dlevel+1

15. assign(x, NIL) //Literals made true by decision have no clause reason

Fahiem Bacchus, University of Toronto, 16

CSC2512: Clause Learning (Trail)
● X

∎ A
∎ ¬B
∎ C

● ¬Y
∎ D
∎ ¬E
∎ F

● Z
∎ H
∎ I
∎ ¬J
∎ ¬K
(K,¬I,¬H, ¬F,E, ¬D,B)

● X,Y,Z: Decision Variables.
∎ A,¬B,C,D,¬E,F,H,I,¬J,¬K: forced by unit

propagation
• (K,¬I,¬H, ¬F,E, ¬D,B): Conflict Clause

Fahiem Bacchus, University of Toronto, 17

CSC2512: Clause Learning (Trail)
● X

∎ A ç …
∎ ¬B ç …
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

• Each forced literal was forced
by some clause becoming
unit.

Fahiem Bacchus, University of Toronto, 18

CSC2512: Clause Learning (Trail)
● X

∎ A ç …
∎ ¬B ç …
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

Each clause reason contains
1.One true literal on the path

(the literal it forced)
2. Literals falsified higher up on

the path.

Fahiem Bacchus, University of Toronto, 19

CSC2512: Clause Learning (Trail)
● X

∎ A ç …
∎ ¬B ç (¬B, ¬A)
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

• We can resolve away any
sequence of forced literals in
the conflict clause.

• Such resolutions always yield
a new falsified clause.

1. (K,¬I,¬H,¬F,E, ¬D,B), (D,B,Y) è
(K,¬I,¬H,¬F,E,B,Y), (¬B, ¬A) à
(K,¬I,¬H,¬F,E,¬A,Y)

2. (K,¬I,¬H,¬F,E, ¬D,B), (¬K,¬I,¬H,E,B) è
(¬I,¬H,¬F,E, ¬D,B)

3. (K,¬I,¬H,¬F,E, ¬D,B), (H,B,E,¬Z) è
(K,¬I,¬F,E,¬D,B,¬Z)

4. …

Fahiem Bacchus, University of Toronto, 20

CSC2512: Clause Learning (Trail)

• Any forced literal x in any conflict clause can be
resolved with the reason clause for –x to generate a
new conflict clause.

• If we continued this process until all forced literals are
resolved away we would end up with a clause
containing decision literals only (All-decision clause).

• But empirically the all-decision clause tends not be very
effective.
– Too specific to this particular part of the search to be

useful later on.

Fahiem Bacchus, University of Toronto, 21

CSC2512: 1-UIP clauses

• The standard clause learned is a 1-UIP clause
• LearnClause learns a 1-UIP clause

• This continually involves resolves the trail deepest literal
in the conflict clause until there is only one literal left in
the clause that is at the deepest level.
• Since every resolution step replaces a literal by

literals falsified higher up the trail, we must eventually
achieve this condition

• The sole remaining literal at the deepest level is
called the asserted literal.

Fahiem Bacchus, University of Toronto, 22

CSC2512: 1-UIP clauses

• A 1-UIP clause is sometimes called an empowering
clause. It allows UP to force a literal that it wasn’t able
to before.

Fahiem Bacchus, University of Toronto, 23

CSC2512: 1-UIP Clause (Trail)
● X

∎ A ç …
∎ ¬B ç (¬B, ¬A)
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

1. (K,¬I,¬H, ¬F,E, ¬D,B), (¬K,¬I,¬H,E,B)
è (¬I,¬H, ¬F,E, ¬D,B)

2. (¬I,¬H, ¬F,E, ¬D,B), (I,¬H,¬D,¬X)
è (¬H, ¬F,E, ¬D,B,¬X)

Fahiem Bacchus, University of Toronto, 24

CSC2512: 1-UIP clauses
• The 1-UIP clause forces its asserted literal at a prior

decision level (if we had the clause before we would
have forced the asserted literal before).

• We backtrack so as to fix the trail to account for the
new 1-UIP clause.

• The asserted literal is forced as soon as all other literals
in the clause became false. The assertionLevel is the
second deepest decision level in the clause (the
asserted literal is at the deepest level)

• So we backtrack to that level (not undoing the decision
or anything forced at that level), add the asserted
literal to the trail, with the 1-UIP clause as its reason,
then apply UP again.

Fahiem Bacchus, University of Toronto, 25

CSC2512: 1-UIP Clause (Trail)
● X

∎ A ç …
∎ ¬B ç (¬B, ¬A)
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)
(¬H, ¬F,E, ¬D,B,¬X)

● X
∎ A ç …
∎ ¬B ç …
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬Eç …
∎ F ç …
∎ ¬H ç (¬H,¬F,E, ¬D,B,¬X)

More unit
propagation

1-UIP clause

Fahiem Bacchus, University of Toronto, 26

CSC2512: 1-UIP clauses
• On backtrack the newly asserted literal can generate

another conflict after UP, this will result in learning a new
clause and backtrack further.

• Also note that we are jumping back across
incompletely tested decisions.
• We backtracked over Z, but we don’t know if ¬Z might not

have lead to a solution.
• All we know is that the trail is now patched to account for the

newly learnt clause
• Search is no longer “exhaustive” like DPLL

• Empirical evidence is not clear, but (a) it is cheap to
backtrack, (b) going back far enough to fix the trail
makes the implementation more efficient, (c) allows the
search to explore a different area of the space.

Fahiem Bacchus, University of Toronto, 27

CSC2512: 1-UIP clauses
• What happens if the 1-UIP clause is unit?

• Where do we backtrack to?

Fahiem Bacchus, University of Toronto, 28

CSC2512: Sat Solvers
Sat(F)

1. Build Clause Database and literal watch lists, add units to trail
2. Dlevel = 0

3. while (TRUE)

4. conflict = UP()

5. if (conflict)

6. if Dlevel == 0 return UNSAT

7. newClause = LearnClause(conflict)

8. addToClauseDataBase(newClause)

9. backtrack(assertionLevel(newClause)) //undo decision levels

10. assign(assertedLiteral(newClause), newClause) //put on trail

11. else if all literals assigned, return SAT (true lits are satisfying assignment)

12. else

13. x = PickNextLiteral()
14. Dlevel = Dlevel+1

15. assign(x, NIL) //Literals made true by decision have no clause reason

Fahiem Bacchus, University of Toronto, 29

CSC2512: Clause Learning
LearnClause(conflict)

//Starting with a clause that is falsified by the trail learn a new clause
//(also falsified by the trail) by resolution steps.

1. newClause = conflict

2. while(number of lits at decision level Dlevel > 1)

3. (l, cls) = pop(Trail)

4. if ¬l Î newClause //why can’t l be in newClause?

5. newClause = resolve(cls, newClause) //number of lits at Dlevel may change

6. Return(newClause)

assign(lit,cls_reason)

1. push(lit,cls) on Trail //UP-stack top not updated, so will be UP’ed

2. lit = True

3. var(lit).dlevel = Dlevel //record Dlevel of assignment with lit’s variable

Fahiem Bacchus, University of Toronto,
30

CSC2512: Clause Learning
assertionLevel(clause)

//Clause must be falsified by trail
1. return(second highest Dlevel of any variable in clause)

assertedLiteral(clause)

//Clause must have only one literal with maximum Dlevel

1. return(literal with maximum Dlevel in clause)

backtrack(newDlevel)

//Remove all lits from trail that are at decision levels greater than newDlevel

1. while Dlevel > newDlevel

2. (l, cls) = pop(Trail)

3. l = UNASSIGNED

4. if cls = NIL //decision lit

5. Dlevel = Dlevel -1

Fahiem Bacchus, University of Toronto, 31

CSC2512: VSIDS Heuristic
• Heuristic for selecting next decision literal (variable)
• Variable State Independent Decaying Sum
• Scientific analysis is scant and intuitions vary: but VSIDS

is thought to encourage resolutions involving most
recently learnt clauses.
• A counter for each variable. Increment the counter of all

variables in the original conflict clause (the clause that was
found to be empty by Unit Prop), and the variables in each
reason clause resolved with the conflict to generate the 1-UIP
clause. (Each such variable has its counter incremented only
once. Periodically divide all counts by 2.

• Pick the unassigned variable with highest count at each
decision

• Low overhead (counters updated only for variables in
conflict). Lits kept on heap ordered by counter.

Fahiem Bacchus, University of Toronto, 32

CSC2512: VSIDS Heuristic
• The variables appearing in recently used clauses (i.e.,

clauses used in resolution steps to generate new learnt
clauses) will, as we divide by 2, get higher VSIDS scores.

• Variables that at this point in the search are not being used
in resolution steps will get their VSIDS scores decayed.

• More recent work (Reading for next week)
An Empirical Study of Branching Heuristics through the Lens
of Global Learning Rate
Jia Hui Liang, Hari Govind, Pascal Poupart, Krzysztof Czarnecki,
and Vijay Ganesh.
In the Proceedings of the 20th International Conference on Theory
and Application of Satisfiability Testing (SAT 2017), Aug 28 – Sep
1, 2017, Melbourne, Australia

Fahiem Bacchus, University of Toronto, 33

CSC2512: Phase Saving/Restarts
Restarts
• Periodically restarting the solver (undoing all decisions) is useful.

• Various strategies have been investigated for when to restart.
• Note also that all newly learnt units act as a restart---search is

backtracked to decision level 0.
Phase Savings
• We decide to branch on a variable: what literal to try first?
• Phase saving: use the literal that was the most recent setting of the

variable on the trail.
Interaction: phase saving and restarts interact. The VSIDS scores are
unchanged after a restart, so a similar set of decisions will typically be
made after a restart. Similarly, phase savings tends to decide on the
same value of the decision variables as was used before. So with
phase savings restarts will tend to put is back into the same part of
the search space. But perhaps the small changes are important. This
runs counter to the original intuition behind restarts.

Fahiem Bacchus, University of Toronto, 34

CSC2512: Phase Saving/Restarts
Papers:

1. Randomization in Backtrack Search: Exploiting Heavy-
Tailed Profiles for Solving Hard Scheduling Problems.
Carla P. Gomes, Bart Selman, Ken McAloon, Carol
Tretkoff: AIPS 1998: 208-213

2. A Lightweight Component Caching Scheme for Satisfiability
Solvers Knot Pipatsrisawat and Adnan Darwiche.

Fahiem Bacchus, University of Toronto, 35

CSC2512: Resolution Power
• With these various features it can be show that CDCL

solvers (Conflict Driven Clause Learning) are no longer
limited to tree-resolution instead they can p-simulate
general resolution

• Remains an open question whether or not CDCL
without restarts is as powerful as general resolution.

Fahiem Bacchus, University of Toronto, 36

CSC2512: Clause Minimization
First a few observations:
1. A Conflict Clause is a clause that is falsified by the literals

made true on the trail.
2. A Reason clause is a clause associated with a unit implied

literal on the trail. If R is the reason clause for the literal x.
Then:
1. x is on the trail (i.e. has been made true).
2. The clause R contains x, and other literals ¬l1, ¬l2, ..., ¬lk: R

= (x, ¬l1, ¬l2, ..., ¬lk) where each ¬li has been made false
on the trail (li has been made true).

3. Each li is on the trail above x
3. The decision level of a variable x is the decision level at

which either x ¬x it is on the trail. (Unset variables do not
have decision levels). Remember that the decision levels
start at zero and each decision level consists of a decided
upon literal along with all the literals forced by unit
propagation until the next decision.

Fahiem Bacchus, University of Toronto, 37

CSC2512: Clause Minimization
4. The decision levels of a Conflict Clause or a reason

clause are the set of different decision levels of its
variables.

5. A trail resolution is a resolution of a conflict clause and
a reason clause. For example a 1-UIP clause is
produced by a sequence of trail resolutions.

Fahiem Bacchus, University of Toronto, 38

CSC2512: Clause Minimization
Observation: Trail resolutions cannot reduce the number
of decision levels in a conflict clause.

Each reason clause (x, ¬l1, ¬l2, ..., ¬lk) must contain at
least one literal ¬l1 that is at the same decision level as x.

All the l1 are above x on the trail, so their decision levels
are less than or equal to x. If they all had a decision
level less than x, the reason clause would have
become unit at a previous decision level.

So if we resolve away ¬x from a conflict clause, we must
introduce at least one other literal in the clause at x’s
decision level.

Fahiem Bacchus, University of Toronto, 39

CSC2512: Clause Minimization
Observation: The minimum size clause that we can
produce by doing trail resolutions against a conflict
clause has size equal to the number of decision levels in
the clause.

Fahiem Bacchus, University of Toronto, 40

CSC2512: Clause Minimization
Clause minimization. Given a conflict clause (typically the
1-UIP clause) C = (¬l1, ¬l2, ..., ¬lk) where each ¬li has been
made false on the trail, we want to compute via a
sequence of trail resolutions a new clause C’ such that

C’ ⊂ C

Optimally we want to compute the smallest such C’

Fahiem Bacchus, University of Toronto, 41

CSC2512: Clause Minimization
● X

∎ A ç …
∎ ¬B ç (¬B, ¬X)
∎ C ç (C,B)

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç (¬E, ¬D)
∎ F ç (F,¬C, B,E)

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H,¬F,E,¬D,B)

1. (K,¬I,¬H,¬F,E, ¬D,B), (¬K,¬I,¬H,E,B)
è (¬I,¬H,¬F,E, ¬D,B)

2. (¬I,¬H,¬F,E, ¬D,B), (I,¬H,¬D,¬X)
è (¬H,¬F,E, ¬D,B,¬X) == 1-UIP clause

3. Further reduction steps
4. (¬H,¬F,E,¬D,B,¬X), (F,¬C,B,E) à

(¬H,¬C, E,¬D,B,¬X)
5. (¬H,¬C, E,¬D,B,¬X), (C,B) à

(¬H, E,¬D,B,¬X)
6. (¬H,E,¬D,B,¬X),(¬E,¬D) à

(¬H,¬D,B,¬X)
7. (¬H,¬D,B,¬X),(¬B,¬X) à

(¬H,¬D,¬X)

Fahiem Bacchus, University of Toronto, 42

CSC2512: Clause Minimization
The example shows that clause minimization can have a
tremendous effect on the size of the clause. How do we
do this:

Clause reduction: simple non recursive method.

Proc Reduce(C)
for literal x ∈ C {

if (x.ReasonClause \ {x}) ⊂ C
C = C \ {x}

}
return C

Fahiem Bacchus, University of Toronto, 43

CSC2512: Clause Minimization
Clause reduction: more sophisticated method.

Proc Reduce(C)
for literal x ∈ C {

if (lit_is_removable(x, C))
C = C \ {x}

}
return C

Proc lit_is_removable(x, C)
if (x.ReasonClause = NULL) return FALSE
if ((x.ReasonClause \ {¬x}) ⊂ C) return TRUE
if (for each lit ∈ (x.ReasonClause \ {¬x}) lit_is_removable(lit, C) return TRUE
…

In general, there is a recursive definition. x is removable from C if every literal in
x.ReasonClause (other than ¬x) is either in C or is removable from C. Clever techniques are
used to remember literals whose “lit_is_removable” status has already been determined, and
faster tests to determine ”lit_is_removable” in special cases.

