
CSC2512
Algorithms for Solving
Propositional Theories

Fahiem Bacchus, University of Toronto, 2

CSC2512: Satisfiability
Proof Systems.
• A proof system for a language L is a polynomial time

algorithm PC s.t.
– For all inputs F

F Î L iff there exists a string P s.t. PC accepts input (F,P)

• EXAMPLE
• L is the set of unsatisfiable CNF formulas. F is a sample

CNF, and we want to test if F Î L, i.e., if F is unsatifiable.
• P is a proof that F is UNSAT, this proof is valid if there is a

proof-checking algorithm (verifier) PC that runs in time
polynomial in the size of P and F

• The string P is a proof, e.g., a resolution refutation. But other
proof systems exist that verify other type of proofs.

Fahiem Bacchus, University of Toronto, 3

CSC2512: Satisfiability
Proof Systems.

• The complexity of a proof system, PC for a language L is a
function

• The smallest proof of any F that is accepted by the proof
system. f(n) is how the maximum smallest proof grows as the
length of F grows.

f (n) = max
F∈L,|F|=n

min
P:s.t.PCaccepts(F,P)

| P |

Fahiem Bacchus, University of Toronto, 4

CSC2512: Satisfiability
Proof Systems.

• Given two proof systems PC1 and PC2 we say that PC1 p-
simulates PC2 if there is a polynomially computable function f
such that for any proof P2 of PC2 (i.e., a proof accepted by
PC2) f(P2) is a proof of PC1.

• In other words any proof of PC2 can be converted to a proof
of PC1 with at most a polynomial increase in size (if the size
increased non-polynomially, f could not be computed in
polynomial time).

Fahiem Bacchus, University of Toronto, 5

CSC2512: Satisfiability
Resolution Proof system
• Resolution is a proof system. Given an unsatisfiable CNF F a

proof P of F is a sequence of clauses as defined before.
• The proof system (or checker) can check that every step of P

is a valid step that is:
– Each clause in the sequence P is either a clause of F or is the result

of a legal resolution step involving two previous clauses.
– Clearly this check can be done in time polynomial in the length of P.

• However, the complexity of resolution is 2O(n). That is,
formulas exist of length n that require exponentially long
proofs P.
– The check is still polynomial in the length of P (but takes exponential

time since P has exponential length)

Fahiem Bacchus, University of Toronto, 6

CSC2512: Satisfiability
Resolution “Refinements”
• A number of special cases of resolution have been defined

and studied empirically and theoretically.

• These special cases are called refinements, although they are
actually restrictions of the general case not improvements.

• Each refinement forms a new proof system:

For a refinement the proof checker will accept only resolution
proofs of a certain structure.

Fahiem Bacchus, University of Toronto, 7

CSC2512: Satisfiability
Resolution DAGS

Represent Resolution proofs as DAGs:
1. Arcs go from two clauses to the resolvant clause.
2. There is only one sink node which is the empty clause ()
3. Each clause of the input formula F has in-degree 0 (these

are source nodes)
4. Every other clause has in-degree 2 (the two clauses that

produced it via a resolution step
5. The arc pointing (A,B) from the two clauses (A,x) and (B,-x)

are labeled with the literals x and –x. (Represents the literal
that was removed during the resolution step).

Fahiem Bacchus, University of Toronto, 8

CSC2512: Satisfiability
Resolution “Refinements”
1. Negative Resolution

A resolution step R[(A,x), (-x, B)] = (A,B) is negative
whenever B contains only negative literals (negated
variables). Negative Resolution requires that all resolution
steps be negative.

2. Semantic Resolution
Given a truth assignment p to the variables of F a p–
refutation of F is a resolution refutation such that when two
clauses are resolved at least one of them must be falsified
by p. A refutation of F is called semantic if it is a p–
refutation for some truth assignment .
– Negative resolutions are semantic for the truth assignment p that

assigns every variable TRUE.

Fahiem Bacchus, University of Toronto, 9

CSC2512: Satisfiability
Resolution “Refinements”

3. Linear Resolution
Each refutation must have a linear underlying DAG:
– The proof consists of a sequence of clauses c1, c2, …, cm = (), such

that either ci is a clause of F or ci is derived from ci-1 and cj for
some j < i-1. That is, each resolved clause must use the previous
clause in the sequence.

4. Regular Resolution
In the refutation DAG each path from the sink empty clause
node to a clause of F (source nodes) has the property that
no variable appears more than once as an arc-label.

Fahiem Bacchus, University of Toronto, 10

CSC2512: Satisfiability
Resolution “Refinements”

5. Ordered Resolution
In the DAG of each refutation the sequence of variables
labeling each path from the source node to a sink node
respects some total ordering of the variables.

6. Tree-Like Resolution
In the DAG of each refutation is a tree once we remove the
input clauses.

Each of these refinements of resolution is sound and
complete. Soundness is straightforward (each proof is still an
resolution proof). Completeness is typically done by showing
that any resolution proof can be converted to the refinement
form.

Fahiem Bacchus, University of Toronto, 11

CSC2512: Satisfiability
What Type?

()

¬X X

¬Y Y, ¬X

Z,¬X ¬Z,Y Q,¬Z,X ¬Q,X

Z

¬X

¬Y

¬Z

¬Z,X

Q

[(¬Y), (Z,¬X),(¬Z,Y),(Y,¬X),
(¬X),(Z),(Q,¬Z,X),(¬Q,X),
(¬Z,X),(X),()] (bolded == input clause)

X

Y Z
¬Z

¬Y

Y ¬Q

Tree-like, not ordered, regular, not linear (consider clause (z)),
semantic?

Fahiem Bacchus, University of Toronto, 12

CSC2512: Satisfiability
Known P-Simulation Results

Neg Sem Lin Order Reg Tree
Neg Yes No No No No Yes

Sem Yes Yes No No No Yes

Lin Yes Yes Yes Yes Yes Yes

Order No No No Yes No No

Reg No No No Yes Yes Yes

Tree No No No No No Yes

Cell (i,j) = does refinement of row i p-simulate refinement of column j
No means further that Refinement i requires on some formulas an exponentially
long proof while Refinement j has polynomial sized proofs for the formula.

Source: �The Complexity of Resolution Refinements� by Buresh-
Oppenheim and Pitassi

Fahiem Bacchus, University of Toronto, 13

CSC2512: Satisfiability
Known P-Simulation Results
• Some key results:
• Regular is a generalization of Tree and Ordered:

– Both Tree and Ordered proofs are regular proofs.
• Tree and ordered are very weak. They both require

exponential sized proofs for formulas that other systems
can prove with polynomial sized proofs.

• Regular also not that powerful

Fahiem Bacchus, University of Toronto, 14

CSC2512: Satisfiability

Q,Z,Y,P

¬X,Z X,Q,Y,P

H,P,YQ,¬H,X

X

H

Not Regular

¬X,YP,H,X

X

Q,Z,Y,P

¬X,Z
H,P,Y

Q,¬H,X

X

H

¬X,YP,H,X

X

Z,Q,¬H,

Regular

Fahiem Bacchus, University of Toronto, 15

CSC2512: Satisfiability

Tree Resolution
C4

C1C2 C3

C5 C4

C2 C3

C5

C1 C2

CSC2512: Satisfiability
DP produces ordered resolution proofs.
• Every DP run that yields the empty clause contains an

ordered proof.

[a] [b] [c]
(a,b,c)
(¬a,b,c)
(¬b, c)
(a,¬b,¬c)
(¬a,¬b,¬c)
(b,¬c)

(b,c)
(¬b, c)
(¬b,¬c)
(b,¬c)

(c)
(¬c)

()

Potentially many redundant clauses are generated, but
an ordered resolution is contained in these clauses.

Fahiem Bacchus, University of Toronto, 17

CSC2512: Satisfiability
DP is not very effective at determining SAT.
1. Let F be a formula that requires an exponentially sized

ordered refutation.

What will be the run time of DP on F?

2. Also DP has high space complexity—the updated sets of
clauses C become exponentially large.

Davis, Martin; Putnam, Hillary (1960). "A Computing Procedure
for Quantification Theory". Journal of the ACM 7 (3): 201–215.
doi:10.1145/321033.321034

http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=321034
http://en.wikipedia.org/wiki/Journal_of_the_ACM
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1145/321033.321034

Fahiem Bacchus, University of Toronto, 18

CSC2512: Satisfiability
DPLL is also not very effective at determining SAT.
1. Let F be a formula that requires an exponentially sized tree

refutation.

What will be the run time of DPLL on F?

Fahiem Bacchus, University of Toronto, 19

CSC2512: Satisfiability
DP generates ordered resolution proofs
DPLL generates tree resolution proofs

1. Any ordered resolution proof can be generated by some run
of DP: just follow the same order of the variables

2. Any tree resolution proof can be generated by some run of
DPLL: just branch on the variables in the same order as a
pre-order traversal of the DAG (starting at the root) and mark
each leaf with the input clause contained in the tree
resolution.

Fahiem Bacchus, University of Toronto, 20

CSC2512: Satisfiability
Modern SAT solvers

1. Based on DPLL
2. More efficient implementation methods.
3. Additional inference allowing them to move beyond tree

resolution.

Fahiem Bacchus, University of Toronto, 21

CSC2512: Satisfiability

DPLL(p, F)
If F is empty

return (SAT,p) (p is a satisfying assignment)
If F contains an empty clause

return UNSAT
else choose a variable v in F //Want to pick variables

//In unit clauses. How

//Implemented?

F’ = F|v //How implemented? Copy , Modify/restore
(SAT?,p’) = DPLL(p + v, F’)

if SAT? == SAT return (SAT,p’)

F’ = F|-v

return DPLL(p + -v, F’)

Fahiem Bacchus, University of Toronto, 22

CSC2512: Satisfiability
Unit Preference vs. Unit Propagation

E.g. (a, b) (-b, a, d) (-d, -b, e) (-d, -e, c, g) (-a)

DPLL would choose a:

a = True yields an empty clause

a = False yields (b) (-b, d) (-d, -b, e) (-d, -e, c, g)

Now have to choose b: b = False yields an empty clause

b = True yields (d) (-d, e) (-d, -e, c, g)

Now have to choose d: d = False yields an empty clause

d = True yields (e) (-e, c, g)

…

Fahiem Bacchus, University of Toronto, 23

CSC2512: Satisfiability
Unit Preference vs. Unit Propagation

One Unit clause yields new unit clauses via reduction. DPLL
would choose a sequence of the variables exploring the path
that makes all units (and generated units) true (the other side
always yields a false clause). Each new unit requires a new
recursion of the algorithm.

Fahiem Bacchus, University of Toronto, 24

CSC2512: Satisfiability
On large industrial problems this chaining of units might yield
hundreds of new units. Need efficient way of doing it.

Don’t implement as a sequence of choices of unit variables.
Instead choose a literal l and then

1. forced_lits = {l}
2. While there exists a literal appearing in a unit clauses (l’) an

not in forced_lits:
1. forced_lits = forced_lits U {l’}
2. set l’ to true (i.e., satisfy the unit clause)

Each literal set to true can generate more more unit clauses. So
repeat until no more units.
This process is called Unit Propagation.

Fahiem Bacchus, University of Toronto, 25

CSC2512: Satisfiability

DPLL(p, F)

If F is empty
return (SAT,p) (p is a satisfying assignment)

If F contains an empty clause
return UNSAT

else choose a variable v in F

forced_lits = UP(F,v)

F’ = F|forced_lits

(SAT?,p’) = DPLL(p + forced_lits, F’)

if SAT? == SAT return (SAT,p’)

forced_lits = UP(F,-v)

F’ = F|forced_lits

return DPLL(p + forced_lits, F’)

Fahiem Bacchus, University of Toronto, 26

CSC2512: Satisfiability
Recursion, how do we compute F|l and then restore F so that we
can compute F|-l ?

Make a copy of F then reduce?
Large instances can require many Mbytes

Make changes then restore?
Unit propagation can force hundreds of variables
forcing extensive changes.

Fahiem Bacchus, University of Toronto, 27

CSC2512: Satisfiability
Modern technique:

Why do we need F|l ?

Only two reasons in the algorithm
Find units, and perform unit propagation.
Find empty clauses—but empty clauses must

first become unit.

Can do these two things without ever explicitly computing F|l?

