
CSC2512
Algorithms for Solving
Propositional Theories

Fahiem Bacchus, University of Toronto 2

CSC2512: Propositional Reasoning
Lecture 1

Instructor: Fahiem Bacchus
– Office D.L. Pratt, Room 398B
– Office Hours: Friday 3pm to 4pm
– fbacchus@cs.toronto.edu (please put CSC2512 in the subject)
– www.cs.toronto.edu/~fbacchus

Meetings:
– Tuesdays 2:00pm to 4:00pm. AB 114

– Course Website: www.cs.toronto.edu/~fbacchus/csc2512/

mailto:fbacchus@cs.toronto.edu

Fahiem Bacchus, University of Toronto 3

CSC2512: Propositional Reasoning

Evaluation:
– 25% Assignments (two).
– 25% Class participation. Paper summaries, discussion, etc.
– 50% Project

• You can work individually or in teams of 2-3. The project will involve
applying ideas from the course to solve some problem from your own area
of research, or some further exploration of a topic in the course.

Fahiem Bacchus, University of Toronto 4

CSC2512: Propositional Reasoning
Overview:
• We will study various problems in propositional reasoning.
• These problems are complete for various complexity classes.
• The aim is to develop effective algorithms for solving these

problems.
– By effective we mean effective on a range of useful practical problems.

• Why?
– If we can build effective solvers for a complete problem then any other

problem within that problem class then then be solved by the “simple”
device of encoding.

Fahiem Bacchus, University of Toronto 5

CSC2512: Propositional Reasoning

Practical
Problem A
that lies in NP

Encoding to SAT Well engineered
SAT Solver

Solution to SAT
problem

Decoding

Solution to A
without

having to
build a
special
purpose
solver!

Fahiem Bacchus, University of Toronto 6

CSC2512: Propositional Reasoning
• Can this approach be successful?
• Evidence with modern SAT solvers indicate that in fact this

approach can sometimes offer significant performance
improvements over developing problem specific software.

• In this course we will look at various complete problems and
solvers for these problems.

• The most natural complete problems are propositional
reasoning problems. (Logic plays a fundamental role of logic
in computer science).

• Propositional reasoning problems include the NP complete
SAT problem and other problems that go beyond NP

Fahiem Bacchus, University of Toronto 7

CSC2512: Propositional Reasoning
Prerequisites:
• The course should be assessable to any CS or ECE

graduate student.
– Familiarity with programming, data structures and algorithms
– Basics of propositional logic.

Fahiem Bacchus, University of Toronto 8

CSC2512: Propositional Reasoning
Types of Complete Problems we will examine (we will cover
as many of these as we have time to):

• Satisfiability.
– SAT, which is testing satisfiability over propositional theories
– Many problems in scheduling, test generation, verification, etc. can be naturally

encoded in SAT
• SMT

– SAT problems with additional formulas over decidable first-order theories.

• MAXSAT
– Optimization version of SAT. Compute for FPNP the class of functions

computable by a polynomial number of calls to an NP oracle. Also hard to
approximate---APX complete (so does not admit a polytime approximation
scheme).

– Many important practical optimization problems can be encoded in MAXSAT.

Fahiem Bacchus, University of Toronto 9

CSC2512: Propositional Reasoning
Types of Complete Problems we will examine:

• QBF (Quantified Boolean Formulas)
– PSPACE complete.
– Offers compact encodings for many problems whose SAT encoding

would be too large.
• #SAT

– Count the number of satisfying models.
– Probabilistic reasoning over discrete probability spaces can be reduced to

#SAT.

Fahiem Bacchus, University of Toronto 10

CSC2512: Propositional Reasoning
Style of Course

• I will present lectures to provide needed background and then
we will read some research papers to cover more recent
topics.

• We will discuss these papers together. Your participation in
these discussions will constitute the course participation
component of your mark.

Fahiem Bacchus, University of Toronto 11

CSC2512: Propositional Logic
Syntax of propositional Logic:
• Set of Boolean variables (True/False propositional variables)

• Set of logical connectives, typically including

– Negation ¬

– Conjunction (AND) ∧
– Disjunction (OR) ∨

• Sometimes,

– Exclusive-or ⊕
– Implication →

– Not And (NAND), Not Or (NOR)

– Etc.

Fahiem Bacchus, University of Toronto 12

CSC2512: Propositional Logic
Syntax of propositional Logic:
• p when p is a Boolean variable
• ¬f when f is a formula
• f1∧f2 when f1 and f2 are formulas
• f1∨f2 when f1 and f2 are formulas

Fahiem Bacchus, University of Toronto 13

CSC2512: Propositional Logic
Semantics of propositional logic.

Truth Assignments (Models)
1. Truth assignment p: map each propositional variable to

True/False (0,1)
pi à {0, 1}

2. Extend to formulas:
p(¬f) = 1 if p(f) = 0

= 0 if p(f) = 1

p(f1 Ù f2) = 1 if both p(f1) = 1 and p(f2) = 1
= 0 otherwise

p(f1 Ú f2) = 1 if p(f1) = 1 or p(f2) = 1
= 0 otherwise

Fahiem Bacchus, University of Toronto 14

CSC2512: Propositional Logic
Satisfiability: Given a formula F is there a truth assignment
p such that p(F) = 1?

With n propositional variables we have 2n possible truth
assignments. Computationally hard in general to find a
satisfying assignment from this large number of truth
assignments.

Abbreviations: f1 à f2 = ¬f1 Ú f2
f1 º f2 = (f1 à f2) Ù (f2 à f1)
f1 Å f2 = (f1 Ù ¬f2) Ù (¬f1 Ù f2)
f1 Å f2 Å f3 Å f4 Å f5 ≡ ((((f1 Å f2)Å f3)Å f4)Å f5)

ODD number of the fi are true.

Fahiem Bacchus, University of Toronto 15

CSC2512: Propositional Logic
Propositional Formula F

F is satisfiable if there exists a truth assignment p such that
p(F) = 1. Unsatisfiable otherwise.

Sometimes written p ⊧	F

F is valid (a tautology) if for all truth assignments p we have
p ⊧	F

F is unsatisfiable if and only if ¬F is valid.

f is a logical consequence of F if for all truth assignment p
such that p ⊧	F we have that p ⊧	f

Fahiem Bacchus, University of Toronto 16

CSC2512: CNF
Modern SAT solvers work with F expressed in Conjunctive

Normal Form (CNF)

CNF: a conjunction of clauses, each of which is a disjunction of

literals, each of which is either a propositional variable or the

negation of a propositional variable.

(p1 Ú ¬p2 Ú p3) Ù (p2 Ú ¬p5) Ù (p2 Ú ¬p6) Ù (p4 Ú p5) Ù (¬p3)

We typically write this in abbreviated form:

(p1 , ¬p2, p3)(p2, ¬p5)(p2, ¬p6)(p4, p5)(¬p3)

Fahiem Bacchus, University of Toronto 17

CSC2512: CNF
1. A clause with clashing literals in it is true under any truth

assignment. Such clauses are called tautological. Such
clauses can be removed from the CNF

2. Duplicate literals are irrelevant (the disjunction of two 0 or two
1 is still 0 or 1).

3. We say that a clause c is subsumed by another clause c’ if c’
is a subset of c when viewed as being a set of literals.
• All clauses must be satisfied
• Any truth assignment that satisfies c’ must also satisfy c
• c can be removed from the CNF without changing the set of models that make

it true. (a preprocessing reduction)

Fahiem Bacchus, University of Toronto 18

CSC2512: CNF
Notes:
4. Each clause serves to eliminate some set of truth

assignments (i.e., these truth assignments cannot be models
of the CNF.
– E.g., (a, b, ¬c) eliminates all truth assignments p such that

p(a) = 0, p(b) = 0, and p(c) = 1
– Shorter clauses eliminate more truth assignments

5. No truth assignment satisfies the empty clause ‘()’
– must satisfy at least one of the literals in the clause and there are

none.
6. Validity is easy to detect

Only the CNF containing no clauses is valid.
7. Satisfiability is hard to detect (as hard as an arbitrary

propositional formula).

Fahiem Bacchus, University of Toronto 19

CSC2512: DNF
Disjunctive Normal Form, the dual of CNF.

DNF: a disjunction of terms, each of which is a conjunction of
literals, each of which is either a propositional variable or the
negation of a propositional variable.

(p1 Ù ¬p2 Ù p3) Ú (p2 Ù ¬p5) Ú (p2 Ù ¬p6) Ú (p4 Ù p5) Ú (¬p3)

An often used abbreviated form:

[p1 , ¬p2, p3] [p2, ¬p5] [p2, ¬p6] [p4, p5] [¬p3]

Fahiem Bacchus, University of Toronto 20

CSC2512: DNF
1. A term with clashing literals in it is false under any truth

assignment. Such terms are unsatisfiable and can be
removed from the DNF

2. Duplicate literals are irrelevant (the conjunction of two 0s or
two 1s is still 0 or 1).

3. A term t is subsumed by another term t’ if t’ is a subset of t
when viewed as being a set of literals. t’ expressed a weaker
condition and thus in a disjunction we don’t need the stronger
condition t.
– If we satisfy t we also satisfy t’
– Only one of t or t’ need be satisfied when satisfying the DNF
– So we can remove t: any truth assignment satisfying t also satisfies t’

so we loose nothing by only requiring t’ to be satisfied.

Fahiem Bacchus, University of Toronto 21

CSC2512: DNF
4. Each term serves to include some set of truth assignments

(i.e., these truth assignments must be models of the DNF.
– E.g., [a, b, ¬c] includes all truth assignments p such that

p(a) = 1, p(b) =1, and p(c) = 0
5. By convention an empty term is valid (satisfied by all truth

assignments)
All literals in the term can be made true as there are none.

6. Satisfiability is easy to detect. Any DNF containing at least
one term is SAT.
The empty DNF (no terms) is unsatisfiable.

7. Validity is hard to detect (as hard as an arbitrary propositional
formula).

Fahiem Bacchus, University of Toronto 22

CSC2512: CNF

CNF
a b c F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1
1 1 0 0
1 1 1

(a)

(-a, c)
Determining if there is a one anywhere (satisfiable) for F
becomes combinatorial as each clause makes a
different set of truth assignments unsatisfying.

Fahiem Bacchus, University of Toronto 23

CSC2512: DNF

DNF
a b c F
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1
1 1 0 1
1 1 1

[a]

[-a, c]
Determining if there is a zero (not valid) anywhere for F
becomes combinatorial as each term makes a different
set of truth assignments satisfying

Fahiem Bacchus, University of Toronto 24

CSC2512: Formula Transformations
Negation Formal Form

NNF: negations only apply to propositional variables (push all
negations in using DeMorgan’s laws

¬(f1 Ù f2) = (¬f1 Ú ¬f2)
¬(f1 Ú f2) = (¬f1 Ù ¬f2)

Transformation to NNF preserves satisfiability.
If NNF(F) is F converted to negation normal form then

F is satisfiable if and only if NNF(F) is satisfiable
More strongly NNF preserves models

p ⊧	F if and only if p ⊧	NNF(F)

Fahiem Bacchus, University of Toronto 25

CSC2512: Satisfiability
Converting to CNF.

If we have an arbitrary propositional formula f how do we
convert it to a CNF so that a SAT solver can be used?

• Could multiply out the formula to obtain a conjunction of
disjunctions.

(a Ù b) Ú (c Ù d)
(a Ú (c Ù d)) Ù (b Ú (c Ù d))
(a Ú c) Ù (a Ú d) Ù (b Ú c) Ù (b Ú d))

• This leads to an CNF that can be exponentially larger than F
(but perhaps useful in limited contexts?)

• Multiplying out preserves models

Fahiem Bacchus, University of Toronto 26

CSC2512: Satisfiability
Converting to CNF in time poly in the size (length) of f.

We introduce new variables (Tseitin 1970)

First convert to NNF (negation normal form)

Fahiem Bacchus, University of Toronto 27

CSC2512: Satisfiability

ToCNF(f)
if f is a literal

return (f, {})
if f = f1 Ù f2

(g1,{F1}) = ToCNF(f1)
(g2,{F2}) = ToCNF(f2)
Let g be a new propositional variable
return (g,{F1} U {F2} U {(-g, g1), (-g, g2), (-g1, -g2, g)})

if f = f1 Ú f2
(g1,{F1}) = ToCNF(f1)
(g2,{F2}) = ToCNF(f2)
Let g be a new propositional variable
Return(g,{F1} U {F2} U {(-g, g1, g2), (-g1, g), (-g2, g)})

Fahiem Bacchus, University of Toronto 28

CSC2512: Satisfiability
Notes:
1. The top level returns (g, F)

– F is a set of clauses that capture the condition that g (a propositional
variable) is equivalent to the original formula f

– To test the satisfiability of f we add the unit clause (g) to F and test
whether or not the CNF {g U F} is satisfiable.

– How can we test validity?
2. All newly introduced variables are forced (must have a

single value) under any assignment to the original variables.
3. F is always satisfiable and has 2n satisfying models (where

the original formula f has n variables).
4. F ∧ (g) has the same number of models as f
5. F ∧ (¬g) has the same number of models as ¬f
6. So ToCNF does not preserve satisfiability unless we also

add the unit clause (g)

Fahiem Bacchus, University of Toronto 29

CSC2512: Satisfiability
Example
(a Ù b) Ú (c Ù d)

ToCNF((a Ù b) Ú (c Ù d))
ToCNF((a Ù b))

= (g1,{(-g1, a), (-g1, b), (-a, -b, g1)})
ToCNF((c Ù d))

= (g2, {(-g2, c), (-g2, d), (-c, -d, g2)})
= (g, {(-g1, a), (-g1, b), (-a, -b, g1),

(-g2, c), (-g2, d), (-c, -d, g2),
(-g, g1, g2), (-g1, g), (-g2, g)})

a = 1, b = 1, c = 1, d = 1 è g1 = 1 & g2 = 1 & g = 1
a = 1, b = 0, c = 1, d = 0 è g1 = 0 & g2 = 0 è g = 0

Fahiem Bacchus, University of Toronto 30

CSC2512: Satisfiability
There are other translations to CNF.

A Structure-preserving Clause Form Translation
David A. Plaisted Steven Greenbaum

If we only want to test satisfiability, we don’t need to encode
gi ≣ fi for every subformula fi.

Plaisted & Greenbaum keep track of the “polarity” of the subformula fi.
Dependent on the polarity they show that encoding gi → fi or gi ← fi is
sufficient to test satisfiability.

This results in fewer clauses.

Some preprocessing techniques automatically convert the longer
Tseitin encoding to the shorter Plaisted Greenbaum encoding.

Fahiem Bacchus, University of Toronto 31

CSC2512: Satisfiability
Encodings: CNF is for most application not a natural language
for expressing a problem. Various domains have different
“standard” languages.

• Automated Planning: STRIPS or ADL actions specified with
first-order variables

• Hardware: Circuits
• Software: Various specification languages (logics with

extensions).

Specialized techniques have also been developed to encode
problems expressed in these languages in CNF. The encoding
can have a tremendous impact on how easy it is to solve the
CNF.

Fahiem Bacchus, University of Toronto 32

CSC2512: Satisfiability
Reasoning with CNF
CNF is used in modern SAT solvers mainly because there is a

very simple reasoning rule that can be efficiently implemented.

Definition: Resolution
From two clauses (A, x) and (B, -x) (where A and B are sets of

literals), the resolvant is the new clause:

R[c,c’] = (A,B) with all duplicate literals removed.

• Typically we require A and B not to contain conflicting literals

(i.e., v and –v for any variable v). If they do then (A, B) will be

a tautological clause. Under this requirement, along with the

restriction that there are no duplicate literals, the resolvant, if

defined, is unique.

Fahiem Bacchus, University of Toronto 33

CSC2512: Satisfiability
Resolution is sound: Any truth assignment that satisfies c and
c’ must satisfy R[c,c’] (if c and c’ are resolvable).

That is resolution generates logical consequences.

if p ⊧	c	∧	c’	then p ⊧	R[c,c’]

Fahiem Bacchus, University of Toronto 34

CSC2512: Satisfiability
Definition: Resolution Proof of a clause cn from a set of
clauses C

A sequence of clauses c1, c2, …, cn such that:

Each ci is either
1. A member of the set of input clauses C
2. or was derived by a resolution step from two prior clauses in the

sequence cj and ck (j, k < i)

The sequence can also be represented as a DAG (directed
acyclic graph).

Fahiem Bacchus, University of Toronto 35

CSC2512: Satisfiability
C = {(a, b) (-a, c) (-b, d) (-c, -d, e, f)}

There is a resolution proof of (a, b, e, f) from C:

(a, b), (-a, c), (c, b), (-b, d), (a, d), (-c, -d, e, f) (-c, a, e, f)
(b, a, e, f)

(a,b)
(-a,c)

(c,b)

(-b,d)

(a,d)

(-c, -d, e, f)

(-c, a, e, f)

(a, b, e, f)

Fahiem Bacchus, University of Toronto 36

CSC2512: Satisfiability
Definition: Resolution Refutation of a set of clauses C is a
resolution proof of the empty clause ‘()’ from C.

From soundness, any truth assignment satisfying C must satisfy
the empty clause, but no truth assignment satisfies the empty
clause è Proves that C is unsatisfiable

Fahiem Bacchus, University of Toronto 37

CSC2512: Satisfiability
Resolution is Refutation Complete:
If C is unsatisfiable there exists a resolution refutation of C.

Two computational difficulties
a) Finding a resolution refutation
b) Size of the refutation

Resolution is a relatively weak proof system. Well known
families of CNFs whose shortest resolution proofs grow
exponentially in size.
• Pigeon Hole Principle PHP first such problem shown to

require exponential sized resolution proofs
• Other proof systems are known to have short proofs of PHP

Fahiem Bacchus, University of Toronto 38

CSC2512: Satisfiability
Two computational difficulties
a) Finding a resolution refutation
b) Size of the refutation

Even if a short proof exists finding it might be hard
1. Notion of automatizability from proof theory.
2. For general resolution we can find a proof (given that one

exists) in time 2O(nlogn * logS) where n is the number of variables
and S is the size of the shortest proof.

3. Unfortunately not a very practical method but does indicate
that theoretically resolution proofs can be found in
exponential time—some proof systems are not automatizable.

Fahiem Bacchus, University of Toronto 39

CSC2512: Satisfiability
Davis Putnam (DP) [1960s] gave a procedure for determining satisfiability of
a CNF formula. The procedure employs resolution in a systematic way so that
if a resolution refutation is not found, none exists.

Ordered Resolution to test the set of clauses C:
1.Pick an ordering of the variables i[1], i[2], … i[n]
2.C0 = C
3.For j = 1 to n

1. Let p = i[j] (the j’th variable to be eliminated)
2. Let X = {all clauses of Cj-1 that contain p}

Y = {all clauses of Cj-1 that contain –p}
3. Apply resolution to all pairs of clauses from X and Y to obtain a set of

new clauses R.
4. Cj = Cj-1 – X – Y + R
5. If Cj contains {} return UNSAT

4.Return SAT

Fahiem Bacchus, University of Toronto, 40

CSC2512: Satisfiability
Example:
C0 = (a, -b), (-a, b), (-b, c), (a, c), (a, -c), (-b, -c)

[a] X = (a, -b), (a,c), (a, -c) Y = (-a, b),
R = (b, c), (b, -c)

C1 = (-b, c), (-b, -c), (b, c), (b, -c)

[b] X = (b,c) (b, -c) Y = (-b, c) (-b, -c)
R = (c) (-c)

C2 = (c) (-c)

[c] X = (c) Y = (-c)
R = ()

C3 = ()

Fahiem Bacchus, University of Toronto, 41

CSC2512: Satisfiability
Example:
C0 = (a, -b), (-a, b), (-b, c), (a, c), (a, -c),

[a] X = (a, -b), (a,c), (a, -c) Y = (-a, b),
R = (b, c), (b, -c)

C1 = (-b, c), (b, c), (b, -c)

[b] X = (b,c) (b, -c) Y = (-b, c)
R = (c)

C2 = (c)

[c] X = (c) Y = {}
R = {}

C3 = {}

Fahiem Bacchus, University of Toronto 42

CSC2512: Satisfiability
Correctness:
Ci is satisfiable if and only if Ci-1 is.

Note: Correctness is sufficient to see that the algorithm is
sound:

If this is true then when j = n either Cn is the empty set of
clauses or it contains the empty clause. (All variables have been
removed). Thus we can immediately determine if Cn is
satisfiable or not. Working back to the prior clause sets Ci, we
see that this determines whether or not the original clause set C0
is satisfiable.

Fahiem Bacchus, University of Toronto 43

CSC2512: Satisfiability
Correctness:
Let Cj = Cj-1 – X – Y + R we want to prove that Cj if and only if
Cj-1 is.

Proof: At stage j, say that Cj is SAT and let p be a satisfying
truth assignment.

Find all clauses of Cj-1 not satisfied by p (note, p does not assign
a value to p since Cj does not contain p)

Claim: all of these unsatisfied clauses contain p in only one
polarity. If this is true then we simply extend p to make that
polarity of p true, and thus satisfy all of the clauses of Cj-1.

Fahiem Bacchus, University of Toronto 44

CSC2512: Satisfiability

Say that this is not true, so there is c1=(p,A) and c2 = (-p, B)
unsatisfied by p. That is, no literal in A and no literal in B is made true
by p.

However, we have that (A,B) is in Cj, and satisfied by p, i.e., at least
one literal from either A or B is made true, thus one of c1 or c2 must be
satisfied by p--contradiction.

Hence, all clauses of Cj-1 not satisfied by p must contain p in the
same polarity and so Cj is satisfiable by p extended with the right
assignment to p.

• For (A,B) to be in Cj, c1 and c2 must be resolvable, i.e, not a tautology.
Why must this be the case?

• Why can we have a clause c unsatisfied by p that does not contain p in
either polarity?

Fahiem Bacchus, University of Toronto 45

CSC2512: Satisfiability
Correctness:
Let Cj = Cj-1 – X – Y + R

Proof:
In the other direction:

if Cj-1 is satisfiable so is Cj: Cj contains only the clauses of Cj-1

and resolvants of clauses of Cj-1.

Fahiem Bacchus, University of Toronto, 46

CSC2512: Satisfiability
Davis Putnam (DP)

Ordered Resolution to test the set of clauses C:
1. Pick an ordering of the variables i[1], i[2], … i[n]
2.C0 = C
3.For j = 1 to n

1. Let p = i[j] (the j’th variable)
2. Let X = {all clauses of Cj-1 that contain i[j]}

Y = {all clauses of Cj-1 that contain –i[j]}
3. Apply resolution to all pairs of clauses from X and Y to obtain a set of

new clauses R.
4. Cj = Cj-1 – X – Y + R //CORRECTNESS. New Cj is satisfiable

//if and only if old Cj-1 is.
5. If Cj contains {} return UNSAT //Cj is UNSAT

4. Return SAT //At this stage Cj = the empty set of clauses
// è a satisfiable set of clauses

Fahiem Bacchus, University of Toronto, 47

CSC2512: Satisfiability
DP produces resolution proofs.
• DP was developed prior to resolution, but every DP run that

yields the empty clause contains an resolution proof.

[a] [b] [c]
(a,b,c)
(¬a,b,c)
(¬b, c)
(a,¬b,¬c)
(¬a,¬b,¬c)
(b,¬c)

(b,c)
(¬b, c)
(¬b,¬c)
(b,¬c)

(c)
(¬c)

()

CSC2512: Satisfiability
DP produces resolution proofs.
• Every DP run that yields the empty clause contains an

proof.

[a] [b] [c]
(a,b,c)
(¬a,b,c)
(¬b, c)
(a,¬b,¬c)
(¬a,¬b,¬c)
(b,¬c)

(b,c)
(¬b, c)
(¬b,¬c)
(b,¬c)

(c)
(¬c)

()

Potentially many redundant clauses are generated, but
an ordered resolution is contained in these clauses.

Fahiem Bacchus, University of Toronto, 49

CSC2512: Satisfiability
Two years later Davis, Logemann and Loveland developed a
new procedure for testing SAT (also predating resolution).

This procedure required only linear space. The algorithm
became known as DPLL (although Putnam didn’t play a role).

DPLL was a backtracking search algorithm (backtracking
originated much earlier)

Davis, Martin; Logemann, George, and Loveland, Donald
(1962). "A Machine Program for Theorem Proving".
Communications of the ACM 5 (7): 394–397.
doi:10.1145/368273.368557.

http://portal.acm.org/citation.cfm?doid=368273.368557
http://en.wikipedia.org/wiki/Communications_of_the_ACM
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1145/368273.368557

Fahiem Bacchus, University of Toronto, 50

CSC2512: Satisfiability

DPLL(p, F) // Initially F is the input formula.
p is an empty set of literals (truth assignment)

If F is empty
return (SAT,p) (p is a satisfying assignment)

If F contains an empty clause
return UNSAT

else choose a variable v in F //Prefer a v appearing
//in a unit clause if one exists

F’ = F|v //Reduce F
(SAT?,p’) = DPLL(p + v, F’)

if SAT? == SAT return (SAT,p’)
F’ = F|-v

return DPLL(p + -v, F’)

Fahiem Bacchus, University of Toronto, 51

CSC2512: Satisfiability
Reduction:

F|l F reduced by literal l

Remove all clauses of F that contain l
Remove –l from all remaining clauses.

{(a, b, -d), (d, c, e), (g, h, e)}|-d
= {(c, e), (g, h, e)}

Note (F|a)|b = (F|b)|a, so we write F|a,b

Fahiem Bacchus, University of Toronto, 52

DPLL
Example:
F = (¬x, r), (¬y, r), (x, z), (y, z), (x, y), (¬x, ¬y), (¬z, ¬r)

(x,y) (¬x,r)

¬x

¬y y

(¬y,r)

¬r r

(x,z)

¬z z

(¬r,¬z)

x

¬r r

¬z

(¬r,¬z)

z

(y,z)

¬y y

(¬x,¬y)

Fahiem Bacchus, University of Toronto, 53

DPLL
From every execution of DPLL yielding UNSAT we can
extract a resolution refutation. Label each node with
resolvent of its two children

(x,y) (¬x,r)

¬x

¬y y

(¬y,r)

¬r r

(x,¬r)

(x,z)

¬z z

(¬r,¬z)

x

¬r r

¬z

(¬r,¬z)

z

(y,z)

¬y y

(¬x,¬y)

(x,¬y)

(x)

()

(¬x,z)

(¬x,¬r)

(¬x)

Fahiem Bacchus, University of Toronto, 54

DPLL
The resultant resolution DAG is a tree.

(x,y) (¬x,r)

(¬y,r) (x,¬r)

(x,z)

¬z

(¬r,¬z)

(¬r,¬z)

(y,z) (¬x,¬y)

(x,¬y)

(x)

()

(¬x,z)

(¬x,¬r)

(¬x)

