
DRAT-trim: Efficient Checking and Trimming

Using Expressive Clausal Proofs�

Nathan Wetzler, Marijn J.H. Heule, and Warren A. Hunt, Jr.

The University of Texas at Austin

Abstract. The DRAT-trim tool is a satisfiability proof checker based
on the new DRAT proof format. Unlike its predecessor, DRUP-trim, all
presently known SAT solving and preprocessing techniques can be vali-
dated using DRAT-trim. Checking time of a proof is comparable to the
running time of the proof-producing solver. Memory usage is also simi-
lar to solving memory consumption, which overcomes a major hurdle of
resolution-based proof checkers. The DRAT-trim tool can emit trimmed
formulas, optimized proofs, and new TraceCheck+ dependency graphs.
We describe the output that is produced, what optimizations have been
made to check RAT clauses, and potential applications of the tool.

1 Introduction

The DRAT-trim satisfiability (SAT) proof checker and trimming utility is de-
signed to validate proofs of unsatisfiability. DRAT-trim uses the new DRAT
proof format which combines the previous DRUP and RAT formats [9,10] and
allows all presently known SAT techniques to be expressed. The tool maintains
the efficiency of its predecessor, DRUP-trim, while integrating stronger forms of
clause redundancy.

SAT solvers, as well as SMT and QBF solvers, have documented bugs [6,7].
Jävisalo et. al. [12] described a subtle error in the blocked clause addition [14]
routine of Lingeling [5], one of the best SAT solvers available. Despite this bug,
Lingeling was claimed to be “experimentally correct” on millions of satisfiability
benchmarks and was used by industry for over a year and half before the bug
was discovered. The process inspired a proof system [12] designed to detect this
and similar errors.

The DRAT-trim proof checker is based on this proof system and addresses the
main limitation of contemporary proof checkers: they cannot validate blocked
clause addition and other techniques such as extended resolution [19], extended
learning [1], and bounded variable addition [15]. DRAT proofs are easy to emit,
require relatively little space on disk, and can be used to check all known solving
and preprocessing techniques. DRAT-trim validates unsatisfiability results in
a time comparable with solving time and uses far less physical memory than
previous checkers.

� The authors are supported by DARPA contract number N66001-10-2-4087 and by
the National Science Foundation under Grant No. CCF-1153558.

C. Sinz and U. Egly (Eds.): SAT 2014, LNCS 8561, pp. 422–429, 2014.
c© Springer International Publishing Switzerland 2014

DRAT-trim: Efficient Checking and Trimming 423

Proof checking is just one function of the DRAT-trim tool; trimmed formu-
las, optimized proofs, and TraceCheck+ dependency graphs can also be emitted.
These extra results have a variety of applications. Trimmed formulas and de-
pendency graphs can be used as input to MUS extraction tools, similar to the
relationship of a preprocessor to a solver. Reduced proofs can speed up proof
playback, a feature that may be leveraged by a mechanically-verified proof check-
ing tool [21]. DRAT-trim is the first tool to emit these additional results for
proofs generated by techniques such as blocked clause addition and extended
resolution.

In the remainder of this tool paper, some of the technical details associated
with producing proofs in the DRAT format are described in Section 2. The input
formats are detailed in Section 3. Output formats and applications of the tool
are presented in Section 4, and implementation details are discussed in Section 5.
Finally, conclusions are drawn in Section 6.

2 Redundancy Properties

DRAT-trim is designed to accept proofs in a specific format, which will be de-
scribed in the next section. The proof checking algorithms are based on clause
redundancy properties presented in earlier work [9,10] and are briefly explained
below. This brief paper does not contain preliminaries on CNF formulas, reso-
lution, and unit propagation. Readers who are not familiar with these concepts
are referred to our earlier work [11] which uses the same notation as this sys-
tem description. This material is presented for completeness as the definition of
the main clause redundancy property has changed slightly from earlier publica-
tions [10].

Definition 1 (Asymmetric Literal Addition (ALA) [11]). Let C be a
clause occurring in a CNF formula F ∪{C}. The clause ALA(F,C) is the unique
clause obtained by applying the following extension rule until fixpoint:

C := C ∪ {l̄} if ∃ l1, . . . , lk ∈ C, (l1 ∨ . . . ∨ lk ∨ l) ∈ F

A clause C has property AT (Asymmetric Tautology) with respect to CNF
formula F if ALA(F,C) is a tautology. The property AT is also known as Re-
verse Unit Propagation (RUP) [20]. A clause C has property RAT (Resolution
Asymmetric Tautology) with respect to CNF formula F if there exists a literal
l ∈ C such that for all D ∈ F with l̄ ∈ D, it holds that (D\{l̄})∪C has property
AT with respect to F . Due to the monotonicity of asymmetric literal addition,
a clause C with property AT with respect to formula F , has property RAT with
respect to F . If a clause C /∈ F has property RAT with respect to F , then F
and F ∪ {C} are satisfiability equivalent [10].

Example 1. Consider the CNF formula F = (ā∨ b)∧ (a∨ c)∧ (b∨ c̄). The clause
(a) has property RAT with respect to F , because (a ∨ b) has property AT with
respect to F . Therefore, (a) can added to F , while preserving unsatisfiability.
The clause (b) has property AT (and hence property RAT) with respect to F .

424 N. Wetzler, M.J.H. Heule, and W.A. Hunt, Jr.

3 Input

DRAT-trim requires two input files: a formula and a proof. Formulas must
be in DIMACS CNF format—the conventional input format for SAT solvers.
Proofs must be expressed in the new DRAT (Deletion Resolution Asymmetric
Tautology) notation, which is a generalization of the DRUP (Deletion Reverse
Unit Propagation) format [9]. The DRAT format has the advantage that all
presently-known techniques are expressible in this notation [10].

A mathematical proof of a theorem can be constructed from smaller the-
orems, or lemmas. We use this terminology to describe clausal proofs. Thus,
clausal proofs are sequences of “lemma” additions and “lemma” or input clause
deletions. More specifically, each line of the proof file is either a lemma (a se-
quence of literals terminated by 0) or a deletion instruction (with a “d ” prefix).
Proof files terminate with the empty clause: a line containing only a zero. Let
F be a CNF formula and P be a DRAT proof for F . The number of lines in a
proof P is denoted by |P |. For each i ∈ {0, . . . , |P |}, a CNF formula is defined
F i
P below. Li refers to the lemma on line i of P .

F i
P :=

⎧
⎨

⎩

F if i = 0

F i−1
P \ {Li} if the prefix of Li is “d ”

F i−1
P ∪ {Li} otherwise

Lemma addition steps are validated using both RUP and RAT checks. The
RUP check for lemma Li in proof P for CNF formula F succeeds if Li has the
property AT with respect to F i−1

P . Let li denote the first literal in lemma Li.
The RAT check for lemma Li in proof P for CNF formula F succeeds if and
only if Li has the property RAT on literal li with respect to F i−1

P .
Note that the DRUP and DRAT formats are syntactically the same, but

DRAT-trim checks each line of the proof for a stronger form of clause redundancy,
RAT, when the RUP check has failed. Furthermore, a tool that emits DRUP
proofs is compatible with DRAT-trim. Fig. 1 shows an example DIMACS CNF
file by Rivest [17] and a DRAT proof file.

Emitting a DRAT proof from a conflict-driven clause-learning (CDCL) [16]
solver and preprocessors is relatively easy. CDCL solvers maintain a database
containing the original clauses and lemmas. Creating a DRAT proof is typically
as simple as printing each modification to the database to a file. Several state-of-
the-art SAT solvers support emitting DRUP proofs, the format used for the SAT
Competition 2013 [3]. For example, Glucose 3.0 [2] supports emitting proofs in
the DRAT format with “-certified” and “-certified-output=” options.

4 Output and Applications

The default output of the DRAT-trim tool is a message indicating the validity
of a proof with respect to an input formula. This information can be very use-
ful while developing SAT solvers, especially since the DRAT format supports
checking all existing techniques used in state-of-the-art SAT solvers [10].

DRAT-trim: Efficient Checking and Trimming 425

CNF formula

p cnf 4 10
1 2 -3 0

-1 -2 3 0
-1 -2 -3 0
2 3 -4 0

-2 -3 4 0
-1 -3 -4 0
1 3 4 0

-1 2 4 0
1 -2 -4 0

-1 2 -4 0

DRAT proof

-1 0
d -1 2 4 0

2 0
0

Fig. 1. DRAT-trim accepts two files
as input: a formula in DIMACS CNF
format (left), and a proof in the new
DRAT format (right). Each line in the
proof is either a lemma or a dele-
tion step identified by the prefix “d”.
Spacing in both examples is to im-
prove readability. If the RUP check
fails, the DRAT-trim tool expects that
a lemma has RAT on its first literal,
as in the RAT format [10]. No check is
performed for clause deletion steps, al-
though the deleted clause needs to be
present.

Additionally, SAT competitions can benefit from having a fast proof checker
with an easy-to-produce input format. As mentioned in Section 1, SAT solvers
have been shown to be buggy, even during competitions. DRUP-trim, the prede-
cessor of DRAT-trim, was used to check the results of the unsatisfiability tracks
of the SAT Competition 2013 [3]. Some techniques, such as bounded variable
addition [15], cannot be validated using only RUP checks, and hence cannot be
checked by DRUP-trim. The new DRAT-trim tool now supports all these tech-
niques. Aside from checking the validity of proofs, DRAT-trim can optionally
produce three outputs: a trimmed formula, an optimized proof, and a dependency
graph in the new TraceCheck+ format. These output files are described below
and illustrated in Fig. 2.

Trimmed Formula. The trimmed formula produced by DRAT-trim is a subset
of the input formula in DIMACS format, and the remaining clauses appear in
the same order as the input file. However, the order of the literals in each clause
may have changed. Trimming a formula can be a useful preprocessing step in
extracting a Minimal Unsatisfiable Subset (MUS). Since DRAT-trim supports
validating techniques that are based on (generalizations of) extended resolution,
one can use these techniques to improve MUS extraction tools.

Optimized Proof. The optimized proof contains lemmas as well as deletion
information in the DRAT format. Lemmas appearing in the optimized proof will
be an ordered subset of the lemmas in the input proof. The first literal of each
lemma is the same as the first literal of that lemma in the input proof, however
the order of all other literals for the lemma may be permuted. The output proof is
called “optimized” because it contains extra deletion information that is obtained
during the backward checking process, described in Section 5. The optimized
proof file may be larger than the input proof in size (as in Fig. 2); however, the
additional deletion information helps reduce computation time because fewer
clauses are active during each check. A smaller proof is very useful for potentially
slower, mechanically-verified solvers. The optimized proof from one round of

426 N. Wetzler, M.J.H. Heule, and W.A. Hunt, Jr.

trimmed formula

p cnf 4 8
1 2 -3 0

-1 -2 3 0
2 3 -4 0

-2 -3 4 0
-1 -3 -4 0
1 3 4 0

-1 2 4 0
1 -2 -4 0

optimized DRAT proof

-1 0
d -1 -2 3 0
d -1 -3 -4 0
d -1 2 4 0

2 0
d 1 2 -3 0
d 2 3 -4 0

0

TraceCheck+ file

1 1 2 -3 0 0
2 -1 -2 3 0 0
4 2 3 -4 0 0
5 -2 -3 4 0 0
6 -1 -3 -4 0 0
7 1 3 4 0 0
8 -1 2 4 0 0
9 1 -2 -4 0 0

11 -1 0 2 6 8 0
12 2 0 1 4 7 11 0
13 0 5 7 9 11 12 0

Fig. 2. Three optional output files from DRAT-trim for the input formula and proof
from Fig. 1. A trimmed formula (left) is an ordered subset of the input formula. An
optimized proof (middle) is an ordered subset of the input proof with extra deletion in-
structions. A TraceCheck+ file (right) is a dependency graph that includes the formula
and proof. Each line begins with a clause identifier (bold), then contains the literals of
the original clause or lemma, and ends with a list of clause identifiers (bold).

checking is often much smaller than the original, but it is still far from minimal.
One can iteratively apply the checking process to further optimize a proof by
submitting the reduced output proof of one round of checking to the tool for
another round of checking and trimming.

Dependency Graph. DRUP-trim, the predecessor to this tool, can produce a
resolution graph of a proof in the TraceCheck [18,13,4] format. DRAT-trim can
validate techniques that cannot be checked with resolution, and we designed a
new format that is backward-compatible with TraceCheck, allowing expression
of all presently-known solving techniques. Resolution graphs in the TraceCheck
format begin each line with a clause identifier, followed by the literals of the
clause, a zero, the identifiers of antecedents, finally, followed by another zero.
The new TraceCheck+ format uses this syntax as well. The formats only differ in
the expressing the reasons for a lemma’s redundancy. If the RUP check succeeds,
the reasons are the antecedents as in the TraceCheck format. If a RAT check is
needed, the reasons are the clauses required to let the RAT check succeed.

Dependency graphs have many potential uses. The dependency graph may be
supplied to a MUS extractor as input, avoiding the need to recompute clause
dependencies. Another use is for solver debugging: a dependency graph gives a
step-by-step account of why each clause can be added to a clause database.

5 Methodology and Optimizations

DRAT-trim uses backward checking [8] to track and limit dependencies between
clauses and lemmas; this means that lemmas are checked in reverse of the order
they occur in the original proof. As each lemma is checked, any clauses or lemmas

DRAT-trim: Efficient Checking and Trimming 427

that were crucial to the check are marked. Marked clauses are preferred over
unmarked clauses during unit propagation [9]. The process of marking not only
keeps the trimmed formula and optimized proof small, but also reduces the
number of lemmas that need to be validated, lowering the run time of the tool.

Clauses are marked by a conflict analysis routine that runs after unit propa-
gation derives a conflict. When a clause is marked, the timestamp and location
of the clause are stored as deletion information. The first time a clause is marked
(and is determined to be necessary to the proof) during backward checking is the
last time a clause is used during forward checking or optimized proof emission.
Therefore, as each clause is marked, optimized deletion information is stored.
During post-processing, marked lemmas are printed in order and deletion infor-
mation sharing the same timestamp is printed afterwards.

During a RAT check, DRAT-trim needs access to all clauses containing the
negation of the resolution literal. One could build a literal-to-clause lookup table
of the original formula and update it after each lemma addition and deletion
step. However, these updates can be expensive and the lookup table potentially
doubles the memory usage of the tool. Since most lemmas emitted by state-of-
the-art SAT solvers can be validated using the RUP check, such a lookup table
has been omitted. Instead, when a RUP check failed, the currently active formula
is scanned to find all clauses containing the complement of the resolution literal.

6 Performance and Conclusion

The DRAT-trim tool outperforms its RAT checker [10] and DRUP-trim [9] pre-
decessors. To illustrate the performance gain, consider the rbcl xits 09 unknown
benchmark, one of the harder benchmarks [10]. The solving time with Coproces-
sor and Glucose 3.0 is 95 seconds and the proof checking time with DRAT-trim
is 91 seconds, compared to 1096 seconds for a previous RAT proof checker. This
particular benchmark can only be solved with bounded variable addition, ne-
cessitating a RAT/DRAT proof. On the application suite of SAT Competition
2009, DRAT-trim is 2% faster than DRUP-trim on average, within a range of
85% faster to 13% slower. Thus, the addition of RAT checking in DRAT-trim
does not have a noticeable impact on DRUP proof checking.

DRAT-trim1 and its associated DRAT proof format can be used to validate
all contemporary SAT pre-processing and solving techniques with similar time
and memory consumption to solving. Resolution-based proof checkers are not
subsumed by this effort, but the performance of DRAT-trim appears better on
large, industrial-scale examples. Our tool can optionally emit trimmed formu-
las, optimized proofs, and dependency graphs, and we look forward to seeing
creative utilization of these resources by the SAT community. We believe that
all SAT solvers should emit proofs in the DRAT format so that their results
can be validated. Not only does this provide implementers with a convenient
way of debugging, but it gives users the confidence to find new applications for
satisfiability solvers.

1 DRAT-trim is available at http://cs.utexas.edu/~marijn/drat-trim/.

http://cs.utexas.edu/~marijn/drat-trim/.

428 N. Wetzler, M.J.H. Heule, and W.A. Hunt, Jr.

References

1. Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for
clause learning SAT solvers. In: Fox, M., Poole, D. (eds.) Proceedings of the 24th
AAAI Conference on Artificial Intelligence (AAAI). AAAI Press (2010)

2. Audemard, G., Simon, L.: Glucose’s home page (2014), http://www.labri.fr/

perso/lsimon/glucose/ (accessed: January 21, 2014)

3. Balint, A., Belov, A., Heule, M., Järvisalo, M.: SAT Competition 2013 (2013),
http://www.satcompetition.org/2013/ (accessed: January 21, 2014)

4. Biere, A.: PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and
Computation (JSAT) 4, 75–97 (2008)

5. Biere, A.: Lingeling, Plingeling, and Treengeling (2014), http://fmv.jku.at/

lingeling/ (accessed: January 27, 2014)

6. Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: Interna-
tional Workshop on Satisfiability Modulo Theories (SMT), pp. 1–5. ACM (2009)

7. Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT
and QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175,
pp. 44–57. Springer, Heidelberg (2010)

8. Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF for-
mulas. In: Design, Automation and Test in Europe Conference and Exhibition
(DATE), pp. 10886–10891. IEEE (2003)

9. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Trimming while checking clausal
proofs. In: Formal Methods in Computer-Aided Design (FMCAD), pp. 181–188.
IEEE (2013)

10. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Verifying refutations with extended
resolution. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898,
pp. 345–359. Springer, Heidelberg (2013)

11. Heule, M.J.H., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF
formulas. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp.
357–371. Springer, Heidelberg (2010)

12. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer,
Heidelberg (2012)

13. Jussila, T., Sinz, C., Biere, A.: Extended resolution proofs for symbolic SAT solving
with quantification. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121,
pp. 54–60. Springer, Heidelberg (2006)

14. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Math-
ematics 96-97, 149–176 (1999)

15. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of boolean formulas.
In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 102–117.
Springer, Heidelberg (2013)

16. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-Driven Clause Learning SAT
Solvers. In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Ap-
plications, ch. 4, vol. 185, pp. 131–153. IOS Press (February 2009)

17. Rivest, R.L.: Partial-match retrieval algorithms. SIAM J. Comput. 5(1), 19–50
(1976)

18. Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Grigoriev,
D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 600–611.
Springer, Heidelberg (2006)

http://www.labri.fr/perso/lsimon/glucose/
http://www.labri.fr/perso/lsimon/glucose/
http://www.satcompetition.org/2013/
http://fmv.jku.at/lingeling/
http://fmv.jku.at/lingeling/

DRAT-trim: Efficient Checking and Trimming 429

19. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In:
Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning 2, pp. 466–483.
Springer (1983)

20. Van Gelder, A.: Verifying RUP proofs of propositional unsatisfiability. In: Interna-
tional Symposium on Artificial Intelligence and Mathematics (ISAIM) (2008)

21. Wetzler, N., Heule, M.J.H., Hunt Jr., W.A.: Mechanical verification of SAT refu-
tations with extended resolution. In: Blazy, S., Paulin-Mohring, C., Pichardie, D.
(eds.) ITP 2013. LNCS, vol. 7998, pp. 229–244. Springer, Heidelberg (2013)

	DRAT-trim: Efficient Checking and TrimmingUsing Expressive Clausal Proofs
	1 Introduction
	2 Redundancy Properties
	3 Input
	4 Output and Applications
	5 Methodology and Optimizations
	6 Performance and Conclusion
	References

