
Incremental Learning for Visual Tracking

Jongwoo Lim† David Ross‡ Ruei-Sung Lin† Ming-Hsuan Yang∗
† University of Illinois ‡ University of Toronto ∗ Honda Research Institute

jlim1@uiuc.edu dross@cs.toronto.edu rlin1@uiuc.edu myang@honda-ri.com

Abstract
Most existing tracking algorithms construct a representation of a target
object prior to the tracking task starts, and utilize invariant features to
handle appearance variation of the target caused by lighting, pose, and
view angle change. In this paper, we present an efficient and effec-
tive online algorithm that incrementally learns and adapts a low dimen-
sional eigenspace representation to reflect appearance changes of the tar-
get, thereby facilitating the tracking task. Furthermore, our incremental
method correctly updates the sample mean and the eigenbasis, whereas
existing incremental subspace update methods ignore the fact the sam-
ple mean varies over time, The tracking problem is formulated as a state
inference problem within a Markov Chain Monte Carlo framework and
a particle filter is incorporated for propagating sample distributions over
time. Numerous experiments demonstrate the effectiveness of the pro-
posed tracking algorithm in indoor and outdoor environments where the
target objects undergo large pose and lighting changes.

1 Introduction
The main challenges of visual tracking can be attributed to the difficulty in handling appear-
ance variability of a target object. Intrinsic appearance variabilities include pose variation
and shape deformation of a target object, whereas extrinsic illumination change, camera
motion, camera viewpoint, and occlusions inevitably cause large appearance variation. Due
to the nature of the tracking problem, it is imperative for a tracking algorithm to model such
appearance variation.

Here we developed a method that, during visual tracking, constantly and efficiently up-
dates a low dimensional eigenspace representation of the appearance of the target object.
The advantages of this adaptive subspace representation are several folds. The eigenspace
representation provides a compact notion of the “thing” being tracked rather than treating
the target as a set of independent pixels, i.e., “stuff” [1]. The use of an incremental method
continually updates the eigenspace to reflect the appearance change caused by intrinsic
and extrinsic factors, thereby facilitating the tracking process. To estimate the locations
of the target objects in consecutive frames, we used a sampling algorithm with likelihood
estimates, which is in direct contrast to other tracking methods that usually solve complex
optimization problems using gradient-descent approach.

The proposed method differs from our prior work [14] in several aspects. First, the pro-
posed algorithm does not require any training images of the target object before the tracking
task starts. That is, our tracker learns a low dimensional eigenspace representation on-line
and incrementally updates it as time progresses (We assume, like most tracking algorithms,
that the target region has been initialized in the first frame). Second, we extend our sam-
pling method to incorporate a particle filter so that the sample distributions are propagated
over time. Based on the eigenspace model with updates, an effective likelihood estimation
function is developed. Third, we extend the R-SVD algorithm [6] so that both the sample
mean and eigenbasis are correctly updated as new data arrive. Though there are numerous
subspace update algorithms in the literature, only the method by Hall et al. [8] is also able



to update the sample mean. However, their method is based on the addition of a single col-
umn (single observation) rather than blocks (a number of observations in our case) and thus
is less efficient than ours. While our formulation provides an exact solution, their algorithm
gives only approximate updates and thus it may suffer from numerical instability. Finally,
the proposed tracker is extended to use a robust error norm for likelihood estimation in the
presence of noisy data or partial occlusions, thereby rendering more accurate and robust
tracking results.

2 Previous Work and Motivation
Black et al. [4] proposed a tracking algorithm using a pre-trained view-based eigenbasis
representation and a robust error norm. Instead of relying on the popular brightness con-
stancy working principal, they advocated the use of subspace constancy assumption for
visual tracking. Although their algorithm demonstrated excellent empirical results, it re-
quires to build a set of view-based eigenbases before the tracking task starts. Furthermore,
their method assumes that certain factors, such as illumination conditions, do not change
significantly as the eigenbasis, once constructed, is not updated.

Hager and Belhumeur [7] presented a tracking algorithm to handle the geometry and illu-
mination variations of target objects. Their method extends a gradient-based optical flow
algorithm to incorporate research findings in [2] for object tracking under varying illumi-
nation conditions. Prior to the tracking task starts, a set of illumination basis needs to be
constructed at a fixed pose in order to account for appearance variation of the target due to
lighting changes. Consequently, it is not clear whether this method is effective if a target
object undergoes changes in illumination with arbitrary pose.

In [9] Isard and Blake developed the Condensation algorithm for contour tracking in which
multiple plausible interpretations are propagated over time. Though their probabilistic ap-
proach has demonstrated success in tracking contours in clutter, the representation scheme
is rather primitive, i.e., curves or splines, and is not updated as the appearance of a target
varies due to pose or illumination change.

Mixture models have been used to describe appearance change for motion estimation [3]
[10]. In Black et al. [3] four possible causes are identified in a mixture model for estimating
appearance change in consecutive frames, and thereby more reliable image motion can be
obtained. A more elaborate mixture model with an online EM algorithm was recently
proposed by Jepson et al. [10] in which they use three components and wavelet filters to
account for appearance changes during tracking. Their method is able to handle variations
in pose, illumination and expression. However, their WSL appearance model treats pixels
within the target region independently, and therefore does not have notion of the “thing”
being tracked. This may result in modeling background rather than the foreground, and fail
to track the target.

In contrast to the eigentracking algorithm [4], our algorithm does not require a training
phase but learns the eigenbases on-line during the object tracking process, and constantly
updates this representation as the appearance changes due to pose, view angle, and illumi-
nation variation. Further, our method uses a particle filter for motion parameter estimation
rather than the Gauss-Newton method which often gets stuck in local minima or is dis-
tracted by outliers [4]. Our appearance-based model provides a richer description than
simple curves or splines as used in [9], and has notion of the “thing” being tracked. In
addition, the learned representation can be utilized for other tasks such as object recog-
nition. In this work, an eigenspace representation is learned directly from pixel values
within a target object in the image space. Experiments show that good tracking results
can be obtained with this representation without resorting to wavelets as used in [10], and
better performance can potentially be achieved using wavelet filters. Note also that the
view-based eigenspace representation has demonstrated its ability to model appearance of
objects at different pose [13], and under different lighting conditions [2].



3 Incremental Learning for Tracking
We present the details of the proposed incremental learning algorithm for object tracking
in this section.

3.1 Incremental Update of Eigenbasis and Mean

The appearance of a target object may change drastically due to intrinsic and extrinsic
factors as discussed earlier. Therefore it is important to develop an efficient algorithm to
update the eigenspace as the tracking task progresses. Numerous algorithms have been
developed to update eigenbasis from a time-varying covariance matrix as more data arrive
[6] [8] [11] [5]. However, most methods assume zero mean in updating the eigenbasis
except the method by Hall et al. [8] in which they consider the change of the mean when
updating eigenbasis as each new datum arrives. Their update algorithm only handles one
datum per update and gives approximate results, while our formulation handles multiple
data at the same time and renders exact solutions.

We extend the work of the classic R-SVD method [6] in which we update the eigenbasis
while taking the shift of the sample mean into account. To the best of our knowledge, this
formulation with mean update is new in the literature.

Given a d × n data matrix A = {I1, . . . , In} where each column Ii is an observation (a d-
dimensional image vector in this paper), we can compute the singular value decomposition
(SVD) of A, i.e., A = UΣV �. When a d×m matrix E of new observations is available, the
R-SVD algorithm efficiently computes the SVD of the matrix A

′
= (A|E) = U

′
Σ

′
V

′�
based on the SVD of A as follows:

1. Apply QR decomposition to and get orthonormal basis Ẽ of E, and U
′
= (U |Ẽ).

2. Let V
′
=

(
V 0
0 Im

)
where Im is an m × m identity matrix. It follows then,

Σ
′
= U

′�A
′
V

′
=

(
U�

Ẽ�

)
(A|E)

(
V 0
0 Im

)
=

(
U�AV U�E
Ẽ�AV Ẽ�E

)
=

(
Σ U�E
0 Ẽ�E

)
.

3. Compute the SVD of Σ
′
= Ũ Σ̃Ṽ � and the SVD of A

′
is

A
′
= U

′
(Ũ Σ̃Ṽ �)V

′� = (U
′
Ũ)Σ̃(Ṽ �V

′�).

Exploiting the properties of orthonormal bases and block structures, the R-SVD algorithm
computes the new eigenbasis efficiently. The computational complexity analysis and more
details are described in [6].

One problem with the R-SVD algorithm is that the eigenbasis U is computed from AA�
with the zero mean assumption. We modify the R-SVD algorithm and compute the eigen-
basis with mean update. The following derivation is based on scatter matrix, which is same
as covariance matrix except a scalar factor.

Proposition 1 Let Ip = {I1, I2, . . . , In}, Iq= {In+1, In+2, . . . , In+m}, and Ir = (Ip|Iq).
Denote the means and scatter matrices of Ip, Iq , Ir as Īp, Īq , Īr, and Sp, Sq , Sr respec-
tively, then Sr = Sp + Sq + nm

n+m (Īq − Īp)(Īq − Īp)�.

Proof: By definition, Īr = n
n+m Īp + m

n+m Īq, Īp − Īr = m
n+m(Īp − Īq); Īq − Īr =

n
n+m (Īq − Īp) and,

Sr =
∑n

i=1(Ii − Īr)(Ii − Īr)� +
∑n+m

i=n+1(Ii − Īr)(Ii − Īr)�

=
∑n

i=1(Ii − Īp + Īp − Īr)(Ii − Īp + Īp − Īr)�+∑n+m
i=m+1(Ii − Īq + Īq − Īr)(Ii − Īq + Īq − Īr)�

= Sp + n(Īp − Īr)(Īp − Īr)� + Sq + m(Īq − Īr)(Īq − Īr)�

= Sp + nm2

(n+m)2 (Īp − Īq)(Īp − Īq)� + Sq + n2m
(n+m)2 (Īp − Īq)(Īp − Īq)�

= Sp + Sq + nm
n+m (Īp − Īq)(Īp − Īq)� �



Let Îp = {I1 − Īp, . . . , In − Īp}, Îq = {In+1 − Īq, . . . , In+m − Īq}, and Îr = {I1 −
Īr, . . . , In+m − Īr}, and the SVD of Îr = UrΣrV

�
r . Let Ẽ =

(
Îq|

√
nm

n+m (Īp − Īq)
)

,

and use Proposition 1, Sr = (Îp|Ẽ)(Îp|Ẽ)�. Therefore, we compute SVD on (Îp|Ẽ) to
get Ur. This can be done efficiently by the R-SVD algorithm as described above.

In summary, given the mean Īp and the SVD of existing data Ip, i.e., UpΣpV
�
p and new

data Iq , we can compute the the mean Īr and the SVD of Ir, i.e., UrΣrV
�
r easily:

1. Compute Īr = n
n+m Īp + m

n+m Īq , and Ẽ =
(
Iq − Īr 1(1×m) |

√
nm

n+m (Īp − Īq)
)

.

2. Compute R-SVD with (UpΣpV
�
p ) and Ẽ to obtain (UrΣrV

�
r ).

In numerous vision problems, we can further exploit the low dimensional approximation of
image data and put larger weights on the recent observations, or equivalently downweight
the contributions of previous observations. For example as the appearance of a target object
gradually changes, we may want to put more weights on recent observations in updating
the eigenbasis since they are more likely to be similar to the current appearance of the
target. The forgetting factor f can be used under this premise as suggested in [11] , i.e.,
A

′
= (fA |E) = (U(fΣ)V �|E) where A and A

′
are original and weighted data matrices,

respectively.

3.2 Sequential Inference Model

The visual tracking problem is cast as an inference problem with a Markov model and
hidden state variable, where a state variable Xt describes the affine motion parameters
(and thereby the location) of the target at time t. Given a set of observed images I t =
{I1, . . . , It}. we aim to estimate the value of the hidden state variable X t. Using Bayes’
theorem, we have

p(Xt| It) ∝ p(It|Xt)
∫

p(Xt|Xt−1) p(Xt−1| It−1) dXt−1

The tracking process is governed by the observation model p(I t|Xt) where we estimate the
likelihood of Xt observing It, and the dynamical model between two states p(Xt|Xt−1).
The Condensation algorithm [9], based on factored sampling, approximates an arbitrary
distribution of observations with a stochastically generated set of weighted samples. We
use a variant of the Condensation algorithm to model the distribution over the object’s
location, as it evolves over time.

3.3 Dynamical and Observation Models

The motion of a target object between two consecutive frames can be approximated by
an affine image warping. In this work, we use the six parameters of affine transform
to model the state transition from Xt−1 to Xt of a target object being tracked. Let
Xt = (xt, yt, θt, st, αt, φt) where xt, yt, θt, st, αt, φt, denote x, y translation, rotation
angle, scale, aspect ratio, and skew direction at time t. Each parameter in X t is modeled
independently by a Gaussian distribution around its counterpart in X t−1. That is,

p(Xt|Xt−1) = N (Xt;Xt−1,Ψ)
where Ψ is a diagonal covariance matrix whose elements are the corresponding variances
of affine parameters, i.e., σ2

x, σ2
y , σ2

θ , σ2
s , σ2

α, σ2
φ.

Since our goal is to use a representation to model the “thing” that we are tracking, we
model the image observations using a probabilistic interpretation of principal component
analysis [16]. Given an image patch predicated by X t, we assume the observed image It

was generated from a subspace spanned by U centered at µ. The probability that a sample
being generated from the subspace is inversely proportional to the distance d from the
sample to the reference point (i.e., center) of the subspace, which can be decomposed into
the distance-to-subspace, dt, and the distance-within-subspace from the projected sample



to the subspace center, dw. This distance formulation, based on a orthonormal subspace
and its complement space, is similar to [12] in spirit.

The probability of a sample generated from a subspace, p dt(It|Xt), is governed by a Gaus-
sian distribution:

pdt(It |Xt) = N (It ; µ, UU�+ εI)
where I is an identity matrix, µ is the mean, and εI term corresponds to the additive Gaus-
sian noise in the observation process. It can be shown [15] that the negative exponential
distance from It to the subspace spanned by U , i.e., exp(−||(It − µ) − UU�(It − µ)||2),
is proportional to N (It; µ, UU�+ εI) as ε → 0.

Within a subspace, the likelihood of the projected sample can be modeled by the Maha-
lanobis distance from the mean as follows:

pdw(It |Xt) = N (It ; µ, UΣ−2U�)
where µ is the center of the subspace and Σ is the matrix of singular values corresponding
to the columns of U . Put together, the likelihood of a sample being generated from the
subspace is governed by

p(It|Xt) = pdt(It|Xt) pdw(It|Xt) = N (It; µ, UU� + εI) N (It; µ, UΣ−2U�) (1)

Given a drawn sample Xt and the corresponding image region I t, we aim to compute
p(It|Xt) using (1). To minimize the effects of noisy pixels, we utilize a robust error norm
[4], ρ(x, σ) = x2

σ2+x2 instead of the Euclidean norm d(x) = ||x||2, to ignore the “outlier”
pixels (i.e., the pixels that are not likely to appear inside the target region given the current
eigenspace). We use a method similar to that used in [4] in order to compute d t and dw.
This robust error norm is helpful especially when we use a rectangular region to enclose
the target (which inevitably contains some noisy background pixels).

4 Experiments
To test the performance of our proposed tracker, we collected a number of videos recorded
in indoor and outdoor environments where the targets change pose in different lighting con-
ditions. Each video consists of 320× 240 gray scale images and are recorded at 15 frames
per second unless specified otherwise. For the eigenspace representation, each target image
region is resized to 32 × 32 patch, and the number of eigenvectors used in all experiments
is set to 16 though fewer eigenvectors may also work well. Implemented in MATLAB
with MEX, our algorithm runs at 4 frames per second on a standard computer with 200
particles. We present some tracking results in this section and more tracking results as well
as videos can be found at http://vision.ucsd.edu/˜jwlim/ilt/.

4.1 Experimental Results

Figure 1 shows the tracking results using a challenging sequence recorded with a mov-
ing digital camera in which a person moves from a dark room toward a bright area while
changing his pose, moving underneath spot lights, changing facial expressions and taking
off glasses. All the eigenbases are constructed automatically from scratch and constantly
updated to model the appearance of the target object while undergoing appearance changes.
Even with the significant camera motion and low frame rate (which makes the motions be-
tween frames more significant, or equivalently to tracking fast moving objects), our tracker
stays stably on the target throughout the sequence.

The second sequence contains an animal doll moving in different pose, scale, and lighting
conditions as shown in Figure 2. Experimental results demonstrate that our tracker is able
to follow the target as it undergoes large pose change, cluttered background, and lighting
variation. Notice that the non-convex target object is localized with an enclosing rectan-
gular window, and thus it inevitably contains some background pixels in its appearance
representation. The robust error norm enables the tracker to ignore background pixels and
estimate the target location correctly. The results also show that our algorithm faithfully



Figure 1: A person moves from dark toward bright area with large lighting and pose changes. The
images in the second row shows the current sample mean, tracked region, reconstructed image, and
the reconstruction error respectively. The third and forth rows shows 10 largest eigenbases.

Figure 2: An animal doll moving with large pose, lighting variation in a cluttered background.

models the appearance of the target, as shown in eigenbases and reconstructed images, in
the presence of noisy background pixels.

We recorded a sequence to demonstrate that our tracker performs well in outdoor environ-
ment where lighting conditions change drastically. The video was acquired when a person
walking underneath a trellis covered by vines. As shown in Figure 3, the cast shadow
changes the appearance of the target face drastically. Furthermore, the combined pose and
lighting variation with low frame rate makes the tracking task extremely difficult. Nev-
ertheless, the results show that our tracker successfully follows the target accurately and
robustly. Due to heavy shadows and drastic lighting change, other tracking methods based
on gradient, contour, or color information are unlikely to perform well in this case.

4.2 Discussion

The success of our tracker can be attributed to several factors. It is well known that
the appearance of an object undergoing pose change can be modeled well by view-based



Figure 3: A person moves underneath a trellis with large illumination change and cast shadows
while changing his pose. More results can be found in the project web page.

representation [13]. Meanwhile at fixed pose, the appearance of an object in different
illumination conditions can be approximated well by a low dimensional subspace [2]. Our
empirical results show that these variations can be learned on-line without any prior training
phase, and also the changes caused by cast and attached shadows can still be approximated
by a linear subspace to some extent. We show a few failure cases at our the web site
mentioned earlier. Typically, the failure happens when there is a combination of fast pose
change and drastic illumination change.

In this paper, we do not directly address the partial occlusion problems. Empirical results
show that temporary and partial occlusions can be handled by our method through the
robust error norm and the constant update of the eigenspace. Nevertheless situations arise
where we may have prior knowledge of the objects being tracked, and can exploit such
information for better occlusion handling.

To demonstrate the potency of our modified R-SVD algorithm in faithfully modeling the
object appearance, we compare the reconstructed images using our method and a conven-
tional SVD algorithm. In Figure 4 first row contains a set of images tracked by our
tracker, and the second and fourth rows show the reconstructed images using 16 eigenvec-
tors obtained after 121 incremental updates of 605 frame (block size is set to 5), and the
top 16 eigenvectors obtained by conventional SVD algorithm using all 605 tracked images.
Note that we only maintained 16 eigenvectors during tracking, and discarded the remaining
eigenvectors at each update. The residue images are presented in the third and fifth rows,
and the average L2 reconstruction error per pixel is 5.73×10−2 and 5.65×10−2 for our
modified R-SVD method and the conventional SVD algorithm respectively. The figure and
average reconstruction error shows that our modified R-SVD method is able to effectively
model the object appearance without losing detailed information.

23 72 97 103 143 159 189 205 220 236 264 276 355 388 399 522 524 561 581 597

Figure 4: Reconstructed images and errors using our and the conventional SVD algorithms.



5 Conclusions and Future Work
We have presented an appearance-based tracker that incrementally learns a low dimensional
eigenspace representation for object tracking while the target undergoes pose, illumination
and appearance changes. Whereas most tracking algorithms operate on the premise that
the object appearance or ambient environment lighting condition does not change as time
progresses, our method adapts the model representation to reflect appearance variation of
the target, thereby facilitating the tracking task. In contrast to the existing incremental
subspace methods, our R-SVD method updates the mean and eigenbasis accurately and
efficiently, and thereby learns a good eigenspace representation to faithfully model the
appearance of the target being tracked. Our experiments demonstrate the effectiveness of
the proposed tracker in indoor and outdoor environments where the target objects undergo
large pose and lighting changes.

The current dynamical model in our sampling method is based on a Gaussian distribution,
but the dynamics could be learned from exemplars for more efficient parameter estimation.
Our algorithm can be extended to construct a set of eigenbases for modeling nonlinear
aspects of appearance variation more precisely and automatically. We aim to address these
issues in our future work.
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