
CSC2420 - Fall 2010 - Lecture 5

Lecturer: Prof. Allan Borodin
Scribe: Gokul Sridharan

13-October-2010

In the previous lecture we developed an LP formulation for the f -frequency weighted set cover
problem and further noted that the weighted vertex cover problem is a case of 2-frequency covering
problem. We also considered a greedy algorithm for the set cover problem and claimed that it has
an approximation ratio of Hd. This claim is proved in this class using the dual fitting analysis.

1 Weighted Set Cover Problem

In this section we formally state the set cover problem and its dual. We then discuss the primal-dual
method in this setting.

Let U be the set of all elements {e1, e2, . . . , em}. Assume a collection of sets C = {S1, S2, . . .
, Sn}. Let the weight associated with each set be wi = w(Si) for all i and let d = max |Si|. We
would like to find a sub-collection C ′ ⊆ C such that

⋃

i:Si∈C′ Si = U , while minimizing
∑

i:Si∈C′ wi.
Let xi denote the decision to include/not include the set Si in C ′. After relaxing the integer
constraint on xi, the primal problem in such s setting can be written as

Minimize
n

∑

i=1

wixi (1)

Subject to
∑

j:ei∈Sj

xj ≥ 1 for i = 1, 2, . . . , n (2)

Xj ≥ 0 for all j. (3)

Note that an explicit constraint restricting xis to less than 1 is not necessary as it is inherently
captured in equation (2). The dual to the above problem, with y1, y2, . . . ym representing the dual
variables is given by

Maximize
m

∑

i=1

yi (4)

Subject to
∑

i:ei∈Sj

yi ≤ wj ∀Sj. (5)

1

While the dual variables do not always have an intuitive meaning, in this problem it is useful
to think of yi’s as the price paid to cover the element ei. The constraint in equation (5) above
essentially states that we wouldn’t want to pay anything more than wj.

Having formally stated the primal and the dual problem, we now introduce the primal-dual
method to solve the optimization problem.

1.1 The Primal Dual Method

The primal-dual method to solve the above problem can be broken down to the following steps

1. Start with an infeasible primal solution and a feasible dual solution. In this case, we set all
Xis to 0 and all yis to 0.

2. Increase some unfrozen yi until some constraint j gets tight. Freeze all yi’s involved in the
constraint.

3. Set the primal variable xj to 1, i.e., include Sj in the cover. (If multiple constraints get tight,
do the same for all such constraints.)

4. Repeat step 2 until all primal constraints are met, i.e., all ei’s are covered.

At the end of this procedure, we will have

1. A set of yi’s that are dual feasible.

2. A set of xi’s that are primal feasible and integral.

3. Primal slackness is satisfied, i.e., xj 6= 0 ⇒ jth dual variable is tight.

4. f -approx dual slackness is satisfied, i.e., yi 6= 0 ⇒ ∑

j:ei∈Sj
Xj ≤ f ∀i.

This algorithm is conceptually simple and unlike LP rounding does not need the “heavy machinery”
of solving an LP.

1.2 Dual Fitting Analysis for Greedy Algorithm

We now analyze the greedy algorithm that was used to solve the set cover problem in the previous
lecture.

The basic algorithm can be informally stated as: while there exists some ek that is not covered,
pick Sj so as to minimize wj/|Ŝj|. Here |Ŝj| represents the number of elements in Sj that are yet

to be covered. Let the price paid to cover the ith element be zi = wj/|Ŝj|, where ei gets covered

when Sj is included to the collection C ′ and |Ŝj| is the number of uncovered elements in Sj when
it is included to the collection. Now, if we were to set the dual variable yi to the value zi/Hd, we
claim that this is a feasible solution to the dual problem. This implies that the solution obtained
at the end of the greedy algorithm obtains

The proof of the above claim is as follows. Let the set S = {e1, e2, . . . , el} with l ≤ d. Assume
that the elements in S are listed according to the order in which they have been covered. In case
more two or more element have been covered in the same iteration, the tie is broken arbitrarily.
We need to show that

∑l
i=1 yi ≤ w(S).

2

Say ei was covered in the kth iteration. If ei was covered by S, the cost would be at most
w(S)/(k − i + 1). Since the greedy algorithm chooses the most cost effective set in each iteration,
the price zi paid by ei is at most w(S)/(k − i + 1). Hence when we sum the price paid by each
element in S, we have:

l
∑

i=1

yi =
1

Hd

l
∑

i=1

zi (6)

≤ 1

Hd

w(S)
(

1

l
+

1

l − 1
+ . . . +

1

l

)

(7)

=
Hl

Hd

w(S) (8)

≤ w(S) (9)

This proves that the Hd-approx. dual slackness condition is satisfied and validates the claim made
earlier.

2 Weighted Set Packing Problem

Consider a collection of sets C = {S1, S2, . . . , Sn}. Let U = {e1, e2, . . . , em} and wi = w(Si).
We would like to find a disjoint sub-collection C ′ such that for Si, Sj ∈ C ′ ⇒ Si

⋂

Sj = φ. We
would like to choose C ′ so as to maximize

∑

i:Si∈C′ wi. When the size of the sets Si is restricted,
i.e., |Si| ≤ k we call this the k-set packing problem.

The graph theoretic interpretation of the above problem is as follows. Let graph G = (V,E)
with V = S1, S2, . . . Sn and E = {(Si, Sj)|Si

⋂

Sj = φ}. In any graph G = (V,E), a set of vertices
V’ is said to be an independent set if vi, vj ∈ V ′ ⇒ (vi, vj) /∈ E. The weighted maximum indep-
dendent set (WMIS) problem is to find an independent set of maximum weight. The unweighted
case is called the maximum independent set (MIS) problem. In arbitrary graphs MIS is hard to
approximate within a factor of n1−ǫ for any ǫ > 0 (assuming ZPP6= NP), while it trivial to get an
approximation factor of n.

Given an MIS problem, interpreting it as a set packing problem is also quite straightforward.
The set of elements U = e1, e2, . . . , em consist of the edges of the graph G = (V,E) and the
collection of sets Si for 1 ≤ i ≤ |V |(= n) is given by the adjacency list of the vertices. Note that
in this case, m ≤ n2.

It is easy to see that a natural greedy algorithm obtains an approximation ratio of min(n,m)
in the case of the weighted set packing problem.

We now take a closer look at the k-set packing problem and the graphs induced by it. In
the graph induced by the set packing problem, the neighborhood of a set Si is given by N(Si) =
{Sj|(Si, Sj) ∈ E} and since every set contains at most k elements, the neighborhood is vertex
covered by at most k cliques. Such graphs are called locally-V CCk (vertex clique cover) graphs.
These are not the same as V CCk graphs where the entire graph that can be vertex covered by
at most k cliques. Locally-V CCk graphs belong to a much broader class of graphs called k + 1
clawfree graphs or locally-ISk (independent set) graphs. A graph is said to be k + 1 clawfree if for
any vertex v in the graph, N(v) has at most k independent vertices.

3

Such graphs occur in various other scenarios as well. Intersection graphs of unit discs can
be shown to be 6-clawfree (i.e. locally-IS5). Intersection graphs of axis parallel unit squares are
locally-IS4 graphs.

Greedy algorithms are relatively efficient on clawfree graphs. In fact, the natural greedy Algo-
rithm is a k-approximation algorithm for WMIS problem on any (k + 1) clawfree (i.e. locally ISk)
graph. The proof is as follows.

Let Copt represent the optimal set of vertices and let Cgre represent the the set of vertices
obtained using the natural greedy algorithm. Let h be a mapping from Copt to Cgre. For ν ∈ Copt,
define h(ν) as follows:

h(ν) = arg max
v′∈Cgre:(v,v′)∈E

w(v′) (10)

We assume that the ties are broken lexicographically. Now, the number of elements v ∈ Copt

that can get mapped to the same v′ ∈ E is limited by the clawfree nature of the graph. In
particular, it cannot happen that k + 1 elements in Copt get mapped to the same element in Cgre

since this would either imply the existence of a k + 1 claw or that the k + 1 vertices in Copt are
not independent, both of which cannot be true. This proves that the natural greedy algorithm is
a k-approximation algorithm for the WMIS problem.

A variant on the natural greedy algorithm is to sort the sets according to the ratio w(S)/|S|.
This approach can also be shown to result in a k-approximation algorithm.

2.1 Another Greedy Algorithm for Weighted Set Packing Problem

For the set packing problem, the natural greedy algorithm has an approximation ratio of min(n,m)
which in practice is a very poor approximation ratio. In order to improve upon this ratio, we
consider a variant on the natural greedy algorithm. Consider a greedy algorithm where sets are

sorted according to the ratio w(S)/
√

|S|. This variant of the algorithm can be shown to have an

approximation ratio of min(n,
√

m). The proof is as follows.
Let ri = w(Si)/

√
Si. The sum of weights of the sets chosen in the case of the greedy algorithm

is given by

∑

i:Si∈Cgre

w(Si) ≥
√

∑

i:Si∈Cgre

(w(Si))
2 (11)

≥
√

∑

i:Si∈Cgre

r2
i |Si| (12)

The sum of weights of the optimal choice of sets is given by

∑

i:Si∈Copt

w(Si) ≤
√

(
∑

i:Si∈Copt

r2
i)

√

(
∑

i:Si∈Copt

|Si|) (13)

≤
√

(
∑

i:Si∈Copt

r2
i)
√

m, (14)

4

where the second inequality follows from the fact that all the sets in Copt are independent and that
there a total of m elements in U . It now suffices to show that

∑

i:Si∈Copt

r2
i ≤

∑

i:Si∈Cgre

r2
i |Si| (15)

Since |Si| ≥ 1, it suffices to show that

∑

i:Si∈Copt,Si /∈Cgre

r2
i ≤

∑

i:Si∈Cgre,Si /∈Copt

r2
i |Si| (16)

To prove this, we argue as follows. Suppose Si is a set in Copt but not in Cgre, it means that
when Si was considered for inclusion in the greedy algorithm, there was already another set Sj of
higher weight (rj ≥ ri) in Cgre such that Si

⋂

Sj 6= φ. While a number of sets such as Si can be
associated with the same set Sj, this number is limited by the number of elements in Sj (Note that
all sets in Copt are independent). Hence, if we denote the colection of sets in Copt\Cgre (Copt

⋂

Cc
gre)

that intersect with a set Sj in Cgre\Copt as Copt−Sj
, we have

∑

i:Si∈Copt−Sj

r2
i ≤ r2

j |Sj|, (17)

and the required inequality follows immediately.

3 Interval graphs and the greedy algorithm

Another class of problems where the greedy algorithm is optimal or gives good approximation
bounds are problems involving interval graphs. An interval graph is the intersection graph of a
collection of intervals on the real line. Every interval in the collection is represented as a vertex
and two vertices are joined by an edge if the intervals they represent overlap. While interval graphs
in general are not ISk for any k, unit interval graphs are easily seen to be be IS2 (assuming we do
not have duplicates of the same interval).

The natural greedy algorithm (sorting by non-increasing weight) does not obtain a constant
approximation for any constant. However, there is a greedy algorithm that can optimally solve
the unweighted MIS problem for interval graphs. In fact, this greedy algorithm can be extended
to an optimal algorithm for a much larger class of graphs called chordal graphs. Chordal graphs,
their properties and the reason why the greedy algorithm is optimal for such graphs are discussed
in the next lecture.

5

