
Symbolic Optimization with SMT Solvers

Yi Li
University of Toronto
liyi@cs.toronto.edu

Aws Albarghouthi
University of Toronto
aws@cs.toronto.edu

Zachary Kincaid
University of Toronto

zkincaid@cs.toronto.edu

Arie Gurfinkel
Software Engineering Institute, CMU

arie@cmu.edu

Marsha Chechik
University of Toronto

chechik@cs.toronto.edu

Abstract
The rise in efficiency of Satisfiability Modulo Theories (SMT)
solvers has created numerous uses for them in software verification,
program synthesis, functional programming, refinement types, etc.
In all of these applications, SMT solvers are used for generating
satisfying assignments (e.g., a witness for a bug) or proving un-
satisfiability/validity (e.g., proving that a subtyping relation holds).
We are often interested in finding not just an arbitrary satisfying
assignment, but one that optimizes (minimizes/maximizes) certain
criteria. For example, we might be interested in detecting program
executions that maximize energy usage (performance bugs), or syn-
thesizing short programs that do not make expensive API calls. Un-
fortunately, none of the available SMT solvers offer such optimiza-
tion capabilities.

In this paper, we present SYMBA, an efficient SMT-based op-
timization algorithm for objective functions in the theory of linear
real arithmetic (LRA). Given a formula ϕ and an objective function
t, SYMBA finds a satisfying assignment of ϕ that maximizes the
value of t. SYMBA utilizes efficient SMT solvers as black boxes.
As a result, it is easy to implement and it directly benefits from
future advances in SMT solvers. Moreover, SYMBA can optimize
a set of objective functions, reusing information between them to
speed up the analysis. We have implemented SYMBA and evaluated
it on a large number of optimization benchmarks drawn from pro-
gram analysis tasks. Our results indicate the power and efficiency of
SYMBA in comparison with competing approaches, and highlight
the importance of its multi-objective-function feature.

Categories and Subject Descriptors G.1.6 [Optimization]: Con-
strained optimization; F.3.1 [Specifying and Verifying and Rea-
soning about Programs]: Invariants

Keywords optimization; satisfiability modulo theories; invariant
generation; symbolic abstraction; program analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright c© 2014 ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535857

1. Introduction
Over the past decade or so, we have witnessed an incredible im-
provement in the performance of Satisfiability Modulo Theories
(SMT) solvers [8] and the range of logical theories they support.
These advances made SMT solvers (e.g., Z3 [21], MathSAT [?],
CVC [?], etc.) household names in the programming languages
and verification communities, creating an explosion in the range of
applications in which they are deployed, and paving the way for
innovations that would not have been possible otherwise.

To mention a few, in verification, SMT solvers have been used
for device driver verification [5, 34], checking complex verifica-
tion conditions [22, 38, 48], and improving precision of invariant
generation [33, 45]; in testing and bug finding, they have been in-
strumental in making symbolic execution [15, 26], fuzzing [28],
and bounded model checking techniques [18, 24] practical; in pro-
gram synthesis, they have been used to search for programs satisfy-
ing a given specification [30, 58]; in functional programming, they
have been used to support strong typing guarantees with refinement
types [12, 52].

In all of the aforementioned applications, SMT solvers are used
for (1) generating satisfying assignments (e.g., a witness for a bug)
or (2) proving unsatisfiability/validity (e.g., proving that a subtyp-
ing relation holds). To the best of our knowledge, none of the avail-
able SMT solvers support finding optimal satisfying assignments,
i.e., satisfying assignments that minimize (or maximize) a given
objective function. In this paper, we present SYMBA, an efficient
SMT-based optimization algorithm for objective functions in the
theory of linear real arithmetic (LRA). Given a formula ϕ and an
objective function t, e.g., x + y, SYMBA computes the smallest
constant k such that ϕ ⇒ t 6 k 1. Specifically, SYMBA finds a
satisfying assignment of ϕ that exhibits the least upper bound k
(maximum value) of an objective function t. In what follows, we
start by arguing that such an algorithm has a wide array of appli-
cations in verification, bug finding, synthesis, and others. We then
highlight SYMBA’s salient features and describe its high-level op-
eration.

Applications of Optimization We start by describing potential
applications of SYMBA in the following domains:

• Numerical invariant generation: Numerical abstract domains,
e.g., intervals [19] and octagons [41], are often used to generate
numerical program invariants. The main ingredient in such an
analysis is the abstract transformer: an operator that takes a set
of initial states and an instruction (or a basic block), and com-

1 Note that k is∞ if t is unbounded in ϕ, and −∞ if ϕ is unsatisfiable

putes a set of reachable states, often using convex optimization
techniques. Since SYMBA can optimize over arbitrary LRA for-
mulas (non-convex optimization), it can precisely compute ab-
stract transformers over loop-free program fragments (encoded
as formulas), without losing precision due to join or multiple
applications of the transformer. This problem is known in the
literature as symbolic abstraction and has been studied for a
number of domains [44, 45, 51, 60, 61]. By designing optimiza-
tion algorithms that exploit the power of SMT solvers, we en-
able efficient implementations of precise abstract transformers
for a variety of numerical domains [54]. We discuss this appli-
cation in more detail in Sec. 4, where we generate our bench-
mark suite from symbolic abstraction queries made by a pro-
gram analysis tool [3].
A similar approach can be used for solving systems of Horn-like
clauses in LRA [29, 31], which capture a large number of se-
quential and concurrent program verification tasks. Since Horn
clauses are represented symbolically in SMT-LIB [13], apply-
ing traditional numerical abstract domains for solving them is
not a straightforward endeavour, but SYMBA can be easily used
to build a fixpoint solver for such clauses.
• Counterexample generation: In symbolic execution and bounded

model checking, program executions are encoded succinctly as
a formula. An SMT solver is then used to find a satisfying as-
signment of this formula that acts as a witness of an erroneous
execution. By augmenting the encoding with arithmetic cost
functions, we can use SYMBA to find counterexamples that
maximize or minimize certain criteria. For example, we might
be interested in finding performance bugs, e.g., execution traces
with the highest energy or memory consumption. By assigning
costs to program instructions and API calls, we can detect such
executions using an optimizing SMT solver.
• Program synthesis: Program synthesis involves generating

a program that satisfies a given specification. For example,
in [30, 36], non-trivial bit-manipulating program snippets are
synthesized from specifications by using SMT solvers to search
through all possible combinations of bit-level operations (in-
structions). Similar to the counterexample generation described
above, the goal is often to synthesize the shortest programs, or
ones with the smallest cost. For example, when the synthesized
snippet is part of a performance-critical code (e.g., as in su-
peroptimization [40]), the size of the synthesized snippet and
the operations it performs are crucial. By augmenting formu-
las given to the SMT solver with costs, we can instruct it to
synthesize programs that minimize a given criterion.
• Constraint programming: In recent work [37], Köksal et al.

proposed incorporating an SMT solver into an extension of
Scala, allowing constraint manipulation as part of the language.
One of the important constructs in their language is min/max,
which returns the minimum/maximum satisfying assignment
of a constraint w.r.t to an objective function, and enables ele-
gant implementations of algorithms for problems like knapsack.
Due to the unavailability of off-the-shelf solvers with an opti-
mization feature, the authors use a simple binary search opti-
mization algorithm restricted to bounded discrete domains. The
authors of [37] also comment on the state-of-the-art of SMT
solvers by saying: “...we found that a number of features, if
natively supported by solvers, could directly bring benefits to
constraint programming. These include 1) support for enumer-
ation of theory models and 2) solving constraints while mini-
mizing/maximizing a given term.” SYMBA is thus an answer to
point 2 for LRA terms (objective functions).

• Interpolant generation: Craig interpolation has proved to be a
powerful technique for software verification based on predicate
abstraction [35]. Interpolants are generated from unsatisfiabil-
ity proofs. For linear real arithmetic, this can be performed by
constructing a system of constraints whose solution is a proof of
unsatisfiability (and an interpolant) [53]. As recently shown [2],
the simplicity of the proof can be crucial to discovering the
predicates required for a safe inductive invariant. Finding sim-
ple proofs boils down to finding an optimal solution of the sys-
tem of constraints. Using SYMBA, this can be automated, with-
out the need for the heuristics employed in [2].

Symbolic Optimization with SYMBA Given a formula ϕ and a
set of objective functions (objectives for short) T = {t1, . . . , tn},
SYMBA computes the strongest formula

optT (ϕ) ≡ t1 6 k1 ∧ . . . ∧ tn 6 kn,

such that ϕ ⇒ optT (ϕ), where ki ∈ R ∪ {∞,−∞}. We call
optT (ϕ) the optimal solution of T w.r.t. ϕ. In other words, SYMBA
computes the least upper bound (maximum value) ki of each ob-
jective ti w.r.t. the satisfying assignments of ϕ.2

Note that we are optimizing a set of objective functions, as op-
posed to a single function as in traditional optimization problems.
This allows SYMBA to reuse information computed for one objec-
tive in order to speed up the optimization of other objectives. This
feature allows incremental implementations of SYMBA, where we
can continuously ask for optimizing different objectives without
losing previously computed information (in a style similar to the
push/pop interface implemented by most SMT solvers). The in-
cremental interface is useful, for example, when computing an ab-
stract transformer for the intervals domain, where we need to find
the maximum and minimum values of each live variable.

SYMBA maintains both an under- and an over-approximation
of the optimal solution optT (ϕ). It works by sampling points
(models) in ϕ in a systematic manner, using an SMT solver, and
adding the points to the under-approximation in order to extend
it. The process continues until the under-approximation is equal to
the optimal solution. The key insight underlying SYMBA is how
to carry out the sampling process in an infinite space of satisfying
assignments, while ensuring convergence to least upper bounds and
discovery of unbounded objectives.

SYMBA also maintains an over-approximation of optT (ϕ)
(when it terminates, the two approximations are equivalent). Main-
taining an over-approximation allows us to halt SYMBA at any
point and still compute an over-approximation of the optimal solu-
tion (e.g., an over-approximation of the best abstract transformer).
This makes SYMBA resilient to SMT solver failures and resource
(e.g., time) depletion.

Another important feature of SYMBA is that it treats the under-
lying SMT solver as a black-box, using it to generate models and
check validity. This makes SYMBA easy to implement, allowing
us to take advantage of the existing highly-optimized SMT solvers
without having to dive into their intricate implementations, and di-
rectly benefiting from future advances in SMT solving.

Our implementation of SYMBA uses the Z3 SMT solver. We
have performed a thorough evaluation of SYMBA on a large set of
realistic benchmarks drawn from program analysis tasks. We have
also compared SYMBA against [56], which is, to the best of our
knowledge, the only other proposed SMT-based optimization tech-
nique. The technique of [56] optimizes a single objective function,
and is built into the MATHSAT SMT solver. For a fairer compari-

2 Note that our goal is to find an optimal value for each objective indepen-
dently (using a different satisfying assignment of ϕ), as opposed to a pareto-
optimal satisfying assignment, i.e., a single assignment that optimizes all
objective functions and cannot be improved upon.

son against SYMBA, we have also implemented a multi-objective-
function extension of the approach in [56] in the Z3 SMT solver
(using its available source code [1]) and experimented with various
configurations. Our results demonstrate the efficiency and robust-
ness of SYMBA against competing approaches, and highlight the
effectiveness of its multi-objective-function feature and our pro-
posed implementation optimizations.

Contributions We summarize our contributions as follows:

• SYMBA: a novel SMT-based optimization algorithm for objec-
tive functions in linear real arithmetic, with wide-ranging appli-
cations in program analysis, synthesis, etc. SYMBA utilizes effi-
cient SMT solvers as black boxes. Thus, it is easy to implement
and it directly benefits from future advances in SMT solving.
Moreover, SYMBA can optimize a set of objective functions,
reusing information between them to speed up the optimization
task.
• An extensive evaluation of SYMBA against other proposed tech-

niques in the literature on a large set of program analysis bench-
marks. Our results indicate the power and efficiency of SYMBA
in comparison with competing approaches, and highlight the
importance of its multi-objective-function feature.
• An implementation of SYMBA, multiple implementations of the

approach in [56], and a large set of optimization benchmarks
drawn from program analysis tasks. Our source code, binaries,
and benchmarks are available at:

http://bitbucket.org/arieg/ufo

Organization In Sec. 2, we demonstrate the operation of SYMBA
on simple examples. In Sec. 3, we formalize SYMBA and prove
its correctness. In Sec. 4, we describe our implementation and
experimental evaluation. In Sec. 5 and 6, we compare SYMBA to
related work and conclude the paper, respectively.

2. SYMBA by Example
In this section, we illustrate the operation of SYMBA on two for-
mulas, a 2-dimensional and a 3-dimensional one.

2.1 A 2-dimensional Example
Consider the LRA formula

ϕ ≡ 1 6 y 6 3 ∧ (1 6 x 6 3 ∨ x > 4)

containing the real variables x and y and represented pictorially
by the black boxes in Fig. 1. Suppose that our set of objectives is
T = {y, x+y}. That is, we would like to find the least upper bound
for y and x + y in ϕ. (Note that if we want to find the minimum
value for y, we can simply add −y as an objective to T .) In this
example, the optimal solution is

optT (ϕ) ≡ y 6 3 ∧ x+ y 6∞,

since x + y is unbounded in ϕ. Formulas of the form t 6 ∞ are
treated as true, and t 6 −∞ as false.

Initially, the under-approximation of optT (ϕ) is

U ≡ y 6 −∞∧ x+ y 6 −∞ ≡ false,

and the over-approximation is

O ≡ y 6∞∧ x+ y 6∞ ≡ true.

SYMBA maintains the invariant U ⇒ optT (ϕ) ⇒ O (note that U
is an under approximation of optT (ϕ), not necessarily ϕ, and sim-
ilarly with O). SYMBA alternates between two main operations:
GLOBALPUSH, which is used to grow the under-approximation

by sampling points (models) of ϕ that lie outside the under-
approximation; and UNBOUNDED, which is used to detect un-
bounded objectives. In this example, 3 is the upper bound for y,
and x+ y is unbounded.

First GLOBALPUSH SYMBA starts with a GLOBALPUSH by
querying an SMT solver for a model of ϕ that is not a model of
U (i.e., lies outside the under-approximation). Suppose the solver
returns the point p1 = (2, 2). The under-approximation U is the
strongest formula of the form t1 6 k1∧ . . .∧tn 6 kn that contains
the set of points found by the solver (i.e., a convex hull expressed
in terms of the objectives). So, the under-approximation is updated
to U ≡ y 6 2 ∧ x + y 6 4 (since the maximum values of y and
x + y seen so far are 2 and 4, respectively). This is shown as the
shaded region U1 in Fig. 1.

UNBOUNDED (p1, y) SYMBA now tries to prove that y is un-
bounded. First, we categorize points into boundary classes as fol-
lows: Let E(ϕ) = {l = k | l 6 k ∈ ϕ}, i.e., E(ϕ) is the set of
all atomic formulas appearing in ϕ with the inequalities replaced
by equalities. In our example, E(ϕ) = {x = 1, x = 3, x = 4, y =
1, y = 3}. Informally, E(ϕ) represents the set of edges (bound-
aries) appearing in Fig. 1. The boundary class [p] of a point p is
{e ∈ E(ϕ) | p |= e}, i.e., the set of equalities in E(ϕ) satisfied by
p. For p1, [p1] = ∅, since p1 does not lie on any of the boundaries.
The intuition underlying UNBOUNDED is finding a ray r from a
point p in ϕ such that a given objective t is increasing along r, and
r never hits any boundaries of ϕ (i.e., completely contained in ϕ).

UNBOUNDED queries the SMT solver for a point p′ s.t. [p′] =
[p1] and y(p1) < y(p′), where y(p′) is the valuation of y at
point p′. The point p′ = (2, 2.5) satisfies this condition. Then
UNBOUNDED queries for a point p′′ s.t. [p′] ⊂ [p′′] and y(p′) 6
y(p′′). If no such p′′ exists, then we know that y is unbounded.
Intuitively, we are asking whether we can keep increasing the value
of y from p′ without touching a point p′′ on one of the boundaries
in E(ϕ). In this case, such a p′′ exists, so it is added to the under-
approximation as p2 = (3, 3) in Fig. 1. Note that p2 exhibits the
upper bound of y; SYMBA detects that and strengthens the over-
approximation O to y 6 3. After witnessing the point p2, U is
updated to become y 6 3∧x+y 6 6 (see region U2 in the figure).

Second GLOBALPUSH Suppose that SYMBA calls GLOBAL-
PUSH. The result is a point in ϕ but not in U . Let p3 = (5, 3)
be the point found by GLOBALPUSH. As a result, U is updated to
y 6 3 ∧ x+ y 6 8 (see region U3).

UNBOUNDED (p3, x+ y) SYMBA now applies UNBOUNDED to
check if x+y is unbounded. Suppose UNBOUNDED picks the point
p3. First, it finds a point p′ = (6, 3) which increases x + y and is
in the same boundary class as p3. Then, it tries to find a point p′′

that has a boundary class [p′] ⊂ [p′′] and has a greater (or equal)
valuation of x + y than p′. Since no such point p′′ exists, SYMBA
concludes that x + y is unbounded. Intuitively, SYMBA discovers
that it is possible to keep finding points along the boundary y = 3
that increase x+ y without encountering any other boundary, thus
concluding that x+y is unbounded. We formally specify and prove
the correctness of UNBOUNDED in Sec. 3.

The under-approximation U is now updated to become y 6 3
(region U4), by dropping the upper bound for x+ y. At this point,
U ≡ O, so SYMBA terminates with the optimal solution y 6 3.

2.2 A 3-dimensional Example
We now illustrate the operation of SYMBA on the formula

ϕ ≡ 0 6 x 6 3 ∧ 0 6 z 6 2 ∧ (2y 6 −x+ 4 ∨ 4y = 3x+ 3),

containing the variables x, y, and z and depicted in Fig. 2. Suppose,
for simplicity, that we would like to find the least upper bound only
for y, i.e., T = {y}.

http://bitbucket.org/arieg/ufo

y

x
1 2 3 4 5 6 7 8

1

2

3

p1

p2
p3

U1

U2 U3 U4

0

Figure 1. Illustration of SYMBA on a 2-D example.

0

2

3

p7

2(p4)

3

z

x

y

p1

p2

1

p3

p5

p6

Figure 2. Illustration of SYMBA on a 3-D example.

First GLOBALPUSH Similar to our previous example, SYMBA
starts with U ≡ false and O ≡ true and uses GLOBALPUSH to
find the initial point. Suppose the SMT solver returns the point
p1 = (1, 0, 1) denoting values of (x, y, z). Thus, U ≡ y 6 0.

UNBOUNDED (p1, y) To check if y is unbounded, SYMBA ap-
plies UNBOUNDED starting from p1. Since it cannot prove that y
is unbounded, it finds the point p2 = (0, 1, 1), where [p1] ⊂ [p2]
and y(p1) < y(p2), i.e., a point showing that increasing the value
of y from p1 can hit a boundary. After applying UNBOUNDED to
p2, SYMBA can get the point p3, and then point p4 (after apply-
ing UNBOUNDED to p3). As a result, U ≡ y 6 2. From point p4,
SYMBA cannot apply UNBOUNDED, since there does not exist a
point p′ where [p′] = [p4] that increases the value of y. Intuitively,
p4 represents a local maximum.

Second GLOBALPUSH To escape the local maximum, SYMBA
uses GLOBALPUSH to query the SMT solver for a point outside U .
In this case, it might find the point p5 = (1.8, 2.1, 1), and thus U
becomes y 6 2.1.

UNBOUNDED (p5, y) SYMBA continues trying to prove that y is
unbounded by performing UNBOUNDED from p5, leading to p6 and
then p7. SYMBA detects that p7 represents the maximum value of y
in ϕ and terminates with the optimal solution y 6 3.

We have illustrated the workings of SYMBA on two formu-
las representing non-convex shapes, and showed how it utilizes an
SMT solver to find least upper bounds and detect unboundedness of
arbitrary linear expressions (objective functions). In the following
sections, we describe SYMBA formally and discuss our implemen-
tation and experimental results.

3. SYMBA: The Symbolic Optimization
Algorithm

In this section, we provide definitions required for the rest of the
paper and formalize SYMBA as a set of inference rules.

3.1 Definitions
Formulas LetL be a topologically-closed (i.e., all atoms are non-
strict inequalities) subset of Quantifier Free Linear Real Arithmetic
(QF LRA), defined as follows:

ϕ ∈ L ::= true | false | P ∧ P ′ | P ∨ P ′
P, P ′ ∈ Atoms ::= c1x1 + · · ·+ cnxn 6 k, n ∈ N

xi ∈ Vars ::= {x1, . . . , xn},
where ci, k ∈ R.

We use JϕK to denote the set of all satisfying assignments
(models) of ϕ. A model p : Vars → R of ϕ, denoted p |=

ϕ, is a valuation of the variables of ϕ such that ϕ(p) ≡ true,
where ϕ(p) is ϕ with every occurrence of a variable x replaced
by p(x). Geometrically, p is a point in Rn, and in what follows,
we use the terms model and point to refer to p interchangeably. We
use Atoms(ϕ) to denote the set of all Atoms appearing in ϕ, and
Vars(ϕ) to denote the set of all Vars appearing in ϕ.

Optimal Solutions Letϕ be a formula inL. Let T = {t1, . . . , tn}
be a set of linear expressions, objective functions, where each
ti is of the form c1x1 + · · · + cmxm, where ci ∈ R and
Vars(ϕ) = {x1, . . . , xm}. The goal of SYMBA is to compute a
vector (k1, . . . , kn), where each ki ∈ R ∪ {∞,−∞}, such that
for each ti, ϕ ⇒ ti 6 ki and there does not exist k′i < ki where
ϕ ⇒ ti 6 k′i. We say that (k1, . . . , kn) is the optimal solution
of T w.r.t. ϕ, and denote it as optT (ϕ). We call each value ki the
optimal value (or the least upper bound) of ti in ϕ.

Given such a vector V = (k1, . . . , kn), where n = |T |, we use
formT (V) to denote the formula

∧
i∈[1,n] ti 6 ki. Given a model

p of ϕ, we use pT to denote the vector (t1(p), . . . , t|T |(p)).
Given two vectors V1 and V2 of equal length, we use min(V1, V2)

and max(V1, V2) to denote the pointwise minimum and maxi-
mum of the two vectors, respectively. We say V1 6 V2 if each
element of V1 is less than or equal to its corresponding element
in V2, or if there exists a −∞ in V1. Intuitively, V1 6 V2 iff
formT (V1) ⇒ formT (V2). Therefore, we say that V2 is weaker
than V1 if V1 < V2 (or V1 is stronger than V2).

Combinations of Theories For clarity of presentation, we restrict
ourselves to applying SYMBA to formulas in L. It is important to
note, however, that SYMBA is applicable to quantifier-free formu-
las over any combination of theories T ∪ LRA6, where T is an
arbitrary combination of theories, and LRA6 is linear real arith-
metic restricted to non-strict inequalities. The only restriction we
require is that T and LRA6 have disjoint signatures. In other
words, atomic formulas should be over T or LRA6, exclusively.
For example, T can be the combination of the theories of bitvec-
tors and arrays (perhaps for modelling program executions). The
rest of our presentation can apply directly to SMT formulas over
T ∪ LRA6 without any modification.

3.2 SYMBA Formalized
We now formalize the symbolic optimization algorithm SYMBA as
a set of inference rules shown in Fig. 3.

Given a set of objectives T = {t1, . . . , tn} and a formula ϕ
in L, SYMBA computes optT (ϕ). The state of SYMBA is a tuple
〈M,U,O〉, where M is a set of models of ϕ; U is an under-
approximation of optT (ϕ) (i.e., U 6 optT (ϕ) is invariant); and
O is an over-approximation of optT (ϕ) (i.e., optT (ϕ) 6 O is

INIT
〈∅, (−∞, . . . ,−∞), (∞, . . . ,∞)〉

p |= ϕ ∧ ¬formT (U)
GLOBALPUSH

〈M,U,O〉 → 〈M ∪ {p},max(U, pT), O〉

U = (k1, . . . , kn) p2 |= ϕ [p2] = [p1] ti(p1) < ti(p2)
@p3 |= ϕ · ti(p2) 6 ti(p3) ∧ [p2] ⊂ [p3]

UNBOUNDED(p1 ∈M, ti ∈ T)
〈M,U,O〉 → 〈M,max(U, (k1, . . . , ki−1,∞, ki+1, . . . , kn)), O〉

p2, p3 |= ϕ ti(p1) < ti(p2) 6 ti(p3) [p1] = [p2] ⊂ [p3]
UNBOUNDED-FAIL(p1 ∈M, ti ∈ T)

〈M,U,O〉 → 〈M ∪ {p3},max(U, pT3), O〉

O = (k1, . . . , kn) m = max{ti(p′) | p′ ∈M} ϕ⇒ ti 6 m
BOUNDED(ti ∈ T)

〈M,U,O〉 → 〈M,U,min(O, (k1, . . . , ki−1,m, ki+1, . . . , kn))〉

Figure 3. Inference rules used by SYMBA.

invariant). Note that for clarity of presentation, we treated optT (ϕ),
U , and O as formulas in Sec. 2, whereas here we treat them as
vectors and use formT (V) to convert a vector V to the formula it
represents.

When SYMBA terminates, we know that U = O = optT (ϕ).
Initially, as defined by the rule INIT,M = ∅,U = (−∞, . . . ,−∞),
and O = (∞, . . . ,∞). The rules GLOBALPUSH, UNBOUNDED,
and UNBOUNDED-FAIL are used to weaken U until it is equal to
optT (ϕ), whereas BOUNDED strengthens O until it is equal to
optT (ϕ).

GLOBALPUSH finds a model of ϕ that is not captured by
formT (U) (i.e., lies outside the under-approximation) and adds
it to U to weaken it (using max). When the rule GLOBALPUSH no
longer applies, we know thatU = optT (ϕ). Note that applying this
rule alone does not guarantee that U eventually reaches optT (ϕ)
for two reasons:

1. Since we are dealing with real variables, GLOBALPUSH might
keep finding models that approach the upper bound of one of
the objectives asymptotically.

2. GLOBALPUSH cannot detect whether an objective is unbounded,
so it will keep finding models that increase the value of the un-
bounded objective indefinitely.

To that end, the rules UNBOUNDED and UNBOUNDED-FAIL are
used to detect unbounded objectives and help GLOBALPUSH avoid
asymptotic behavior. UNBOUNDED takes as parameters a model
p1 ∈ M and an objective ti ∈ T and attempts to prove that ti is
unbounded as follows: First, it tries to find a point p2 |= ϕ such that
[p1] = [p2] and t(p1) < t(p2). Then, it looks for a point p3 such
that p3 |= ϕ, [p2] ⊂ [p3] and t(p2) 6 t(p3). If no such p3 exists,
then t is unbounded in ϕ. Otherwise, UNBOUNDED-FAIL adds p3
to M . The intuition here is as follows: If we can find a model p2,
then we know that t can increase along the hyperplanes in E(ϕ). If
no point p3 exists, then we know that we can keep increasing t in-
definitely without encountering any of the boundaries in E(ϕ) that
are not in [p2], thus showing that t is unbounded. This is analogous
to the technique used by the simplex method for showing that a di-
mension is unbounded in a convex polyhedron. We further discuss
the intuition underlying UNBOUNDED and prove its correctness in
Sec. 3.3.

In addition to the aforementioned rules, the rule BOUNDED de-
tects whether a model p ∈ M exhibits the least upper bound of
some objective t, and strengthens the over-approximation accord-
ingly. Note that the over-approximation is not required for the cor-
rectness of SYMBA, but its availability allows us to guarantee that

SYMBA maintains a sound approximation O of optT (ϕ) at every
point of its execution. This makes SYMBA resilient to SMT solver
failures and allows us to limit resource consumption when desired.
That is, by prematurely terminating SYMBA during its execution,
we can recover optimal values of some of the objective functions,
as maintained by the over-approximation.

Example We illustrate the applications of the rules on the 2-D
example from Sec. 2.1 and shown in Fig. 1. Assume that after the
initial call to GLOBALPUSH, M = {p1 = (2, 2)}, formT (U) ≡
y 6 2 ∧ x+ y 6 4, and formT (O) ≡ true.

Applying UNBOUNDED-FAIL to p1 ∈M and y ∈ T adds p2 =
(3, 3) to M . Next, BOUNDED is used to detect that p2 exhibits the
least upper bound of y, and updates O so that formT (O) ≡ y 6 3.

Assume that the second application of GLOBALPUSH adds
point p3 = (5, 3) toM . Applying UNBOUNDED(p3, x+y) detects
that x+ y is unbounded. At this point, formT (U) becomes y 6 3,
making GLOBALPUSH inapplicable. Therefore, ϕ ⇒ formT (U),
and U = O = optT (ϕ).

In what follows, we discuss and prove soundness of SYMBA,
and define terminating sequences of rule applications.

3.3 Soundness
We start by showing soundness of the UNBOUNDED rule.

A necessary and sufficient condition for proving that a given
objective t is unbounded within ϕ is the existence of a convex
polyhedron ϕc, e.g., a ray, such that t is unbounded in ϕc and
ϕc ⇒ ϕ. Our solution addresses two problems:

1. How to restrict the space from which ϕc is drawn while main-
taining completeness, i.e., ensuring that ϕc is found whenever t
is unbounded in ϕ.

2. How to check that ϕc ⇒ ϕ.

The idea we use here is to restrict ϕc to formulas of the form∧
E ∧ t > k,

where E ⊆ E(ϕ) and k ∈ R. This space of convex polyhedra
is sufficient for completeness. For instance, consider the example
from Fig. 1. To prove that the x+y direction is unbounded, we find
a point p3 = (5, 3) that lies on the boundary y = 3 ∈ E(ϕ) and ask
whether ϕc ≡ y = 3 ∧ x+ y > 8 is contained in ϕ. Furthermore,
we perform the containment check implicitly by checking whether
there is a point in ϕc, along any direction that increases x + y,
that intersects a boundary of ϕ. In our running example, such a
point does not exist (see Fig. 1). Thus, x + y is unbounded. For

another example, consider the point p1 = (2, 2). Since p1 does
not lie on any boundary, to check if x + y is unbounded we ask
whether ϕc ≡ x+ y > 4 is contained in ϕ (i.e., we check whether
increasing x + y in ϕc does not encounter boundaries in ϕ). This
is not the case, and the counterexample is the point p2, shown in
Fig. 1, that lies on the boundaries x = 3 and y = 3.

Thm. 1 formalizes this construction using boundary classes and
states its correctness for proving that an objective is unbounded in
ϕ.

Theorem 1 (Soundness of UNBOUNDED). Given a formula ϕ in
L and a linear expression t over the variables of ϕ, then @k ∈
R · ϕ ⇒ t 6 k (i.e., t is unbounded) if and only if there exist
p1, p2 |= ϕ such that

1. t(p1) < t(p2)
2. [p1] = [p2]
3. @p3 |= ϕ · t(p2) 6 t(p3) ∧ [p2] ⊂ [p3]

Proof. Proofs are available in the appendix.

In other words, if the UNBOUNDED rule was applied, then
ϕc ≡ [p2]∧ t > t(p2) is contained in ϕ. In the theorem, conditions
1 and 2 imply that t is unbounded within ϕc, and condition 3
implies that increasing t in ϕc does not encounter any boundaries
of ϕ, i.e., [p2] ∧ t > t(p2) is subsumed by ϕ. It follows from this
theorem that UNBOUNDED maintains the invariant U 6 optT (ϕ),
since the optimal solution cannot have a least upper bound for t if
it is unbounded (i.e., the least upper bound of t is∞).

Theorem 2 (Soundness of SYMBA). If GLOBALPUSH does not
apply, i.e., ϕ ∧ ¬formT (U)⇒ false , then U = optT (ϕ).

Proof. Follows trivially from the invariant U 6 optT (ϕ).

3.4 Termination
We now discuss sufficient conditions for ensuring termination of
SYMBA. For simplicity of presentation, we assume that T contains
a single objective t. We start by defining a fairness condition on the
scheduling of SYMBA’s rules that ensures termination.

A fair scheduling is an infinite sequence of actions a1, a2, . . .,
where ai ∈ {GLOBALPUSH,UNBOUNDED,UNBOUNDED-FAIL},
and the following conditions apply:

1. GLOBALPUSH appears infinitely often, and

2. if a point p is added to M along the execution sequence, then
both UNBOUNDED(p, t) and UNBOUNDED-FAIL(p, t) eventu-
ally appear.

Condition 1 ensures that SYMBA does not get stuck in a lo-
cal maximum. Condition 2 ensures that we visit every local max-
imum by visiting every boundary class, thus guaranteeing that ei-
ther the least upper bound of t is found or it is proved unbounded.
Recall the 3-D example from Sec. 2, where T = {y}. Suppose
our execution only applies the GLOBALPUSH rule. Then U might
grow asymptotically towards the least upper bound of y, e.g., y 6
2, y 6 2.1, y 6 2.11, etc., never reaching y 6 3. Condition 2
forces computing models that lie on one or more of the boundaries
E(ϕ), thus avoiding this asymptotic behaviour. But applying UN-
BOUNDED and UNBOUNDED-FAIL alone without applying GLOB-
ALPUSH might get us stuck in local maxima. For example, on point
p4 in Fig. 2, UNBOUNDED(-FAIL) are inapplicable. Condition 1
ensures that we eventually find a model outside the current under-
approximation (see p5), thus escaping the local maximum.

A k-sequence for an objective t is a sequence of points p1, . . . , pk,
where ∀i > 1 · pi |= ϕ ∧ ([pi] ⊂ [pi+1]) ∧ t(pi) 6 t(pi+1), and

UNOUNDED-FAIL(pk, t) fails to apply. For example, in Fig. 2,
p1, p2, p3, p4 is a k-sequence.

Since [pi] for a k-sequence strictly grows in size and the largest
boundary class has size at most |Atoms(ϕ)|, a k-sequence is of
length at most k = |Atoms(ϕ)|. Lemma 1 states that the last model
pk of a k-sequence always exhibits the largest value of t in its
boundary class [pk].

Lemma 1. Let ϕ be a formula, and t be an objective bounded in
ϕ. Then, in every execution of SYMBA, the last element pk in every
k-sequence for t satisfies t(pk) = max{t(p) | p |= ϕ ∧ [pk]}.

Proof. According to the definition of a k-sequence, UNBOUNDED-
FAIL(pk, t) does not apply. Since t is bounded, premises of UN-
BOUNDED do not hold either. Combining premises of the two rules,
there does not exist p′k |= ϕ ∧ [pk] such that t(pk) < t(p′k). Thus,
t(pk) = max{t(p) | p |= ϕ ∧ [pk]}.

We are now ready to prove termination of any fair execution of
SYMBA. We assume that SYMBA terminates when GLOBALPUSH
is no longer applicable, i.e., ϕ⇒ formT (U).

Theorem 3. SYMBA terminates after a finite number of actions in
any fair execution.

Proof. We split the proof into two cases as follows:
Case 1: t is bounded within ϕ. Suppose SYMBA is non-

terminating. Then, in any fair scheduling, infinitely many GLOB-
ALPUSH creates infinitely many k-sequences. Following Lemma 1,
there are infinitely many models p in the execution sequence such
that p |= ϕ and t(p) = max{t(p′) | p′ |= ϕ ∧ [p]}. We denote
the set of such points by P . In any fair execution, GLOBALPUSH
must appear after p is added to M . Therefore, there exists a point
p′ ∈ P such that t(p) < t(p′). As a result, there is a sequence of
points p1, p2, . . . in P such t(p1) < t(p2) < t(p3) < · · · . Hence,
∀i, j · i 6= j ⇒ [pi] 6= [pj]. Since the number of boundary classes
is finite, SYMBA eventually finds the least upper bound of t and
terminates.

Case 2: t is unbounded. Using the same argument as above,
SYMBA eventually finds a point in an unbounded boundary class
(due to the finite number of boundary classes) such that the three
conditions in Thm. 1 hold. After that, GLOBALPUSH becomes
inapplicable.

4. Implementation and Evaluation
4.1 Implementation
We have implemented SYMBA in C++, using the Z3 SMT solver [21]
for satisfiability queries. Our implementation accepts a formula ϕ
and a set of objectives T written in the standard SMT-LIB2 [7]
format. It then computes the optimal solution optT (ϕ) and returns
the result. We have made available the executable and benchmarks
online.

Detecting Unbounded Objectives Our implementation of UN-
BOUNDED and UNBOUNDED-FAIL exploits the incremental
(PUSH/POP) interface that most SMT solvers supply. Moreover, in-
stead of implementing the BOUNDED rule explicitly, we show how
to update the over-approximation for free, as a side effect of apply-
ing the UNBOUNDED rules.

Fig. 4 shows the procedure UNBOUNDEDIMPL: our implemen-
tation of the UNBOUNDED rules. We assume that there is a global
SMT context in which the formula ϕ has been asserted. An active
boundary class c and a objective ti are passed in as parameters.
U [ti] andO[ti] refer to the i-th element of the vectors U andO, re-
spectively. SAT and UNSAT refer to the current state of the SMT
context, and GETMODEL() returns a model satisfying the current

1: function UNBOUNDIMPL(c ∈ P(E(ϕ)), ti ∈ T)
2: PUSH()
3: ASSERT(ti > U [ti])
4: if UNSAT then
5: O[ti]← U [ti]; POP(); return
6: ASSERT(

∧
c)

7: if UNSAT then
8: POP(); return
9: ASSERT(

∨
(E(ϕ) \ c)))

10: if SAT then . UNBOUNDED-FAIL
11: POP(); return GETMODEL()
12: else . UNBOUNDED
13: U [ti]←∞
14: POP(); return

Figure 4. Implementation of UNBOUNDED(-FAIL).

state of the context if one exists. PUSH() and POP() are used to store
and restore the state of the context, respectively.

We start by incrementally asserting the conditions of UN-
BOUNDED implicitly. Given c and ti, we know that there is a pre-
viously sampled point p1 |= c such that ti(p1) 6 U [ti]. First,
in lines 3-8, we check if there exists a model p2 |= ϕ such that
ti(p2) > ti(p1) and [p2] = [p1]. We do this in two stages. We first
check if there exists p2 such that ti(p2) > ti(p1). If not, we can
update the over-approximation O accordingly (line 5). Otherwise,
we check if there exists p′2 in the same boundary class as p1 (line 6).
If no such p′2 exists, then neither UNBOUNDED nor UNBOUNDED-
FAIL applies. Given that p′2 exists, we check for the existence of
p3 in a stronger boundary class (lines 9-13). If p3 exists, we apply
UNBOUNDED-FAIL; otherwise, we apply UNBOUNDED.

Scheduling Policy Our implementation is a scheduling of SYMBA’s
rules (Fig. 3) that satisfies the fairness conditions (in Sec. 3.4).

We start by applying the GLOBALPUSH rule to obtain an initial
point p. We generate a k-sequence starting at p (for each t ∈ T) by
applying UNBOUNDED(-FAIL) until either UNBOUNDED is appli-
cable (in which case the objective is unbounded) or UNBOUNDED-
FAIL is not applicable (in which case we apply GLOBALPUSH to
obtain a new initial point and start the process again). It is easy to
check that this is a fair sequence, and therefore this process always
terminates.

To evaluate variations of the scheduling policy described above,
we instrumented our implementation with a parameter balance ∈
(0, 100] which ensures that UNBOUNDEDIMPL does not take more
than balance% of the total execution time. Specifically, during
execution, if UNBOUNDEDIMPL has taken more than balance% of
the elapsed time, SYMBA switches to applying the GLOBALPUSH
rule until the time taken by UNBOUNDEDIMPL so far is less than
balance% of the elapsed time. Intuitively, when balance is 100, the
deterministic schedule described above is in effect.

Optimizations Another effective optimization is to limit E(ϕ)
to a “relevant” subset when applying the UNBOUNDED rule. In
our experiments, we noticed that the set E(ϕ) of equality con-
straints can be quite large, which burdens the SMT solver. Remov-
ing irrelevant equality constraints decreases the size of the SMT
queries. To find the set of “relevant” constraints, we define a re-
lation ∝: Atoms(ϕ) × Atoms(ϕ) as follows: P ∝ P ′ if and only
if

1. Vars(P) ∩ Vars(P ′) 6= ∅, or

2. ∃P ′′ ∈ Atoms(ϕ) · P ∝ P ′′ ∧ P ′′ ∝ P ′,
where Vars(P) is the set of variables appearing in P .

We then define the boundary class of p w.r.t. t as [p]t = {a ∈
E(ϕ) | p |= a ∧ t ∝ a}. Removing constraints that are not ∝-
related to t corresponds to carrying out our algorithm on the pro-

STATISTIC AVG. MAX. MIN. STD.
of Variables 882 19,170 40 1,647
of Objectives 56 386 20 15
of Nodes in DAG 7,278 127,987 1,121 10,619

Table 1. Aggregate statistics of our 1,065 benchmarks.

jection of ϕ onto a lower-dimensional space, where the projection
is guaranteed to have the same maximum value for t as ϕ; thus
correctness is not affected.

4.2 Experimental Evaluation
Our experimental evaluation is designed to compare SYMBA
against other symbolic optimization techniques, and to assess the
effectiveness of our different implementation heuristics.

We conducted two classes of experiments: (1) a comparison
with existing SMT-based optimization techniques [56]; and (2) an
evaluation of the effects of different implementation heuristics,
as well as information reuse among multiple objectives, on the
efficiency of SYMBA. We describe these in detail below.

Benchmarks As discussed in Sec. 1, one possible application
of optimization is computing abstract transformers for numerical
abstract domains. We have incorporated SYMBA into the UFO
program analysis and verification framework [3] and used it as
an abstract transformer (abstract post operator) for the family of
Template Constraint Matrix (TCM) domains [54]. A TCM domain
is parameterized by a set of templates T = {t1, . . . , tn}, which are
linear expressions over program variables. Given an abstract state
ϕpre describing a set of initial (pre) states and a loop-free program
fragment encoded as a formula ϕlf, the best (most precise) abstract
transformer for a TCM domain computes the strongest formula∧
ti 6 ki that is implied by ϕpre ∧ ϕlf. Thus, we can use SYMBA

to compute the best abstract transformer by simply computing
optT (ϕpre ∧ ϕlf). Note that the TCM domains subsume a number
of popular domains, including intervals, octagons, octahedra, etc.
For instance, by setting T to all live variables and their negation at
the destination program location, then we get an intervals domain,
since the result of SYMBA can be interpreted as the minimum
and maximum value of each program variable after executing the
program fragment denoted by ϕlf.

We generated our benchmarks from a set of C programs used
in the 2013 Software Verification Competition (SV-COMP) [10].
The programs cover a range of software, from Linux and Windows
device drivers to models of SSH and sequentialized concurrent
SystemC programs.3 We narrowed the set down to 604 C programs
that were not trivially discharged (proved correct or incorrect) by
UFO. We instrumented UFO to record abstract post queries in
SMT-LIB2 format, and collected 10K+ queries made by UFO on
these C programs.

Each abstract post query is represented by a formula encoding a
set of initial states and a program fragment between two cutpoints
(as in large block encoding [11, 32]). For the set of objectives, we
used all variables (as well as their negation) that are in scope at the
destination cutpoint (i.e., an intervals domain). From the generated
queries, we selected the hardest 1,065 benchmarks for evaluation
(which took SYMBA more than 0.5s to process). Table 1 shows
the average, maximum, minimum, and standard deviation, of the
number of variables, objective functions, and nodes in the DAG
representation of the formulas in our benchmarks. We conducted
all of our experiments on a machine running Linux with an Intel i5
3.1GHz processor and 4GB of RAM.

3 We drew 2,000+ programs from the following SV-COMP cat-
egories: ControlFlowIntegers, SystemC, ProductLines, and
DeviceDrivers64.

Comparing with Existing Tools To the best of our knowledge,
the work of Sebastiani and Tomasi [56] is the only other SMT tech-
nique that addresses the problem of finding optimal assignments
for LRA objective functions. At a high level, the technique works
as follows:

A Sample a satisfiable disjunct ϕd from a given formula ϕ using
an SMT solver.

B Sinceϕd is a conjunction of atoms, the linear arithmetic atoms in
ϕd represent a convex polyhedron. So, use any linear program-
ming (LP) solver to find the optimal value of a given objective
function within the given disjunct.

C Check, using an SMT solver, whether the result is optimal for all
of ϕ. If not, go back to step A and sample a new disjunct. The
process is guaranteed to terminate since there are finitely many
disjuncts.

We have acquired a binary of the implementation described
in [56] from the authors. Their tool is called OPT-MATHSAT, as
it is built in the MATHSAT SMT solver [?]. There are two issues
threatening the validity of a direct comparison between SYMBA and
OPT-MATHSAT: (1) OPT-MATHSAT accepts a single objective
function, meaning that we have to call it multiple times per bench-
mark, each time with a different objective. Since we do not have
access to its source code, we cannot tell if multiple calls to OPT-
MATHSAT incur significant pre-processing overhead. (2) Our im-
plementation of SYMBA uses Z3 as its underlying SMT solver,
whereas OPT-MATHSAT uses MATHSAT.

In order to avoid these issues and establish a fairer comparison,
we have implemented two versions of the linear search (LS) algo-
rithm proposed in [56] and implemented in OPT-MATHSAT:

1. LS(OPT-Z3): By accessing the available Z3 source code [1],
we modified the linear arithmetic solver of Z3 to allow opti-
mization of LRA objectives in the satisfying assignments. A
DPLL(T) [25] solver like Z3 lazily finds propositionally satis-
fiable disjuncts (conjunctions of atoms) from a given formula
ϕ, and uses a (theory) T -solver to decide the satisfiability of
the atoms (in our case linear constraints) [23]. We instrumented
Z3’s linear arithmetic solver such that it does not terminate im-
mediately after the first satisfying assignment is found, but finds
an optimal satisfying assignment for a given objective function.
This was implemented using the standard incremental simplex
solving procedure under exact (rational) representation. We call
the modified tool OPT-Z3. LS(OPT-Z3) is an implementation
of LS in Z3 that uses OPT-Z3 as its LP solver. This is analo-
gous to the implementation described in [56], where a modified
version of MATHSAT’s linear arithmetic solver is used as the
LP solver.

2. LS(LP) uses an off-the-shelf LP solver as its convex optimiza-
tion engine. We have chosen two well-known open source LP
libraries: the GNU Linear Programming Kit (GLPK) [39] and
the Sequential Object-oriented Simplex (SOPLEX) [62] 4.

Both versions of LS use Z3 for sampling disjuncts and checking
optimality (i.e., steps A and C above), but different LP solvers
for finding optimal values (step B). Unlike OPT-MATHSAT, both
LS(OPT-Z3) and LS(LP) accept multiple objective functions, and
optimize them simultaneously. Specifically, in step B, they make
multiple calls to the LP solver to find an optimal value for each
objective function.

4 We used GLPK v4.51 custom-built. The solver implements the primal two-
phase simplex method based on floating point arithmetic. We used SOPLEX
v1.7.1, which uses floating point arithmetic.

SYMBA Configurations We use the following SYMBA configu-
rations:

1. SYMBA(X): SYMBA with different scheduling policies, where
X specifies the value of balance.

2. SYMBAONEOBJ: Same as SYMBA(100), but optimizes a single
objective at a time. That is, execution is restarted from scratch
for each objective function.

3. SYMBA(X)OPT-Z3: Same as SYMBA(X), but uses Z3 with the
modified linear arithmetic solver OPT-Z3 (we describe this in
more detail below).

Results: SYMBA vs. Other Techniques Fig. 5(a) shows the re-
sults of running SYMBA(100) vs. OPT-MATHSAT on the 1,065
SMT-LIB2 benchmarks with a timeout of 100 seconds per bench-
mark. Each point on the graph represents a benchmark. The axes
correspond to the CPU time (measured in seconds—log scale)
taken by SYMBA(100) (x-axis) and OPT-MATHSAT (y-axis). The
points above the diagonal represent problems where SYMBA is
faster. Points at the top right corner are cases where both OPT-
MATHSAT and SYMBA(100) cannot complete the benchmark
in the allotted 100 seconds5. OPT-MATHSAT has 13 timeouts
vs. 19 timeouts by SYMBA(100). Our results clearly show that
SYMBA(100) outperforms OPT-MATHSAT on our set of bench-
marks in most cases. The average and maximum speed up of
SYMBA(100) vs. OPT-MATHSAT are 2.2x and 10.4x, respectively.

We now compare SYMBA against our multi-objective-function
implementation of the linear search algorithm employed by OPT-
MATHSAT. Fig. 5(b) compares the execution times of SYMBA(100)
vs. LS(OPT-Z3). The results clearly demonstrate the superior per-
formance of LS(OPT-Z3): most benchmarks are solved in less time
by LS(OPT-Z3), often by an order of magnitude. LS(OPT-Z3) has
7 timeouts.

To understand the reasons behind these performance differ-
ences, we took a closer look at the benchmarks where SYMBA(100)
is significantly slower than LS(OPT-Z3). We noticed two recur-
ring problems for SYMBA on these benchmarks: (1) the major-
ity of the time is spent in the UNBOUNDEDIMPL function, indi-
cating the expensive nature of UNBOUNDEDIMPL calls and inef-
fectiveness of our scheduling strategy when balance=100; (2) ap-
plications of GLOBALPUSH make very small expansions to the
under-approximation U , indicating that we prefer guided applica-
tions of GLOBALPUSH. To address point (1), we ensured that UN-
BOUNDEDIMPL does not take more than 40% of the execution time
by setting balance to 40. To address point (2), we considered ap-
plying GLOBALPUSH using OPT-Z3 (described above) instead of
Z3. That is, instead of GLOBALPUSH asking Z3 for a point that lies
outside the under-approximation U , we made GLOBALPUSH sup-
ply OPT-Z3 with one of the objective functions, and whenever the
Z3’s DPLL(T) solver finds a satisfiable disjunct with a point out-
side the under-approximation, it finds a satisfying assignment that
maximizes that objective function within that disjunct. This causes
the GLOBALPUSH rule to produce models that are farther away
from the current under-approximation, expediting convergence. We
call this configuration SYMBA(40)OPT-Z3.

Fig. 5(c) compares the execution times of SYMBA(40)OPT-Z3 vs.
LS(OPT-Z3). The results now show that SYMBA(40)OPT-Z3 out-
performs LS(OPT-Z3) on 81% of the benchmarks, with a 5.0x
maximum speedup and a 1.4x average speedup per benchmark.
Moreover, SYMBA(40)OPT-Z3 solves all 1,065 benchmarks without
timing out. We have also run the two other configurations of lin-

5 Since OPT-MATHSAT accepts a single objective at a time, we invoked
it multiple times per benchmark, giving it a timeout of 100 seconds per
objective. If the total time (for all objectives) taken for a benchmark is more
than 100 seconds, OPT-MATHSAT is considered to have timed out.

ear search, LS(GLPK) and LS(SOPLEX). They exhibit similar be-
haviour to LS(OPT-Z3), but are slightly slower. We cross-checked
all results produced by different tools (when they do not timeout)
and all of them match.

Results: SYMBA’s Configurations Table 2 summarizes the re-
sults of running all the aforementioned algorithms and configura-
tions on the same set of benchmarks with a timeout of 100 seconds
per benchmark. The results of running SYMBA(100) are summa-
rized in row 1 of Table 2. SYMBA(100) was able to solve 1,046
out of 1,065 benchmarks in 3,841 seconds. In the process, it made
∼395K SMT queries using 24,387 invocations of GLOBALPUSH
and 164,156 invocations of UNBOUNDEDIMPL.

Rows 2-3 capture the results of running SYMBA(X), where
X is 60 and 20, respectively. When X is 60 (time spent in UN-
BOUNDEDIMPL is restricted to 60% of the total time) the num-
ber of GLOBALPUSH calls goes up by about 400%. Time is spent
in making unguided discovery rather than big leap towards the
goal. This even affects UNBOUNDEDIMPL, the number of calls
slightly increases since more points are sampled. When X is 20,
it was only able to solve 766 benchmarks, for which the number
of calls to GLOBALPUSH goes above 130K while the number of
calls to UNBOUNDEDIMPL drops to ∼42K. Our experiments show
that 100 is the best value for balance when running SYMBA(X)6.
Conversely, when running SYMBA(X)OPT-Z3, we found that we
greatly benefit from a lower balance value (balance=40 gives us
best performance), since there the GLOBALPUSH rule can discover
unbounded objectives, alleviating the pressure on UNBOUNDED-
IMPL.

SYMBAONEOBJ (see Row 4 of Table 2) was able to solve 1,045
problems in 6,867 seconds. SYMBAONEOBJ uses the same config-
uration as SYMBA(100) except that it finds solutions for multiple
objectives independently, without reusing models amongst differ-
ent objectives (as SYMBA does). Using SYMBAONEOBJ causes
the number of SMT queries to go up by 15% and the number of
GLOBALPUSH calls to increase by 300%. Optimizing multiple ob-
jective functions simultaneously ensures that all objectives benefit
from the sampled models and potentially avoids repeating expen-
sive SMT calls.

Summary The experiments compare our proposed SMT-based
symbolic optimization algorithm with existing techniques and
highlight the effectiveness of various implementation heuristics
and optimizations. We compared SYMBA with OPT-MATHSAT
as well as two LP based implementations of its algorithm on a
large set of benchmarks generated from program analysis tasks.
The results demonstrate the power of SYMBA’s approach. A con-
figuration that employs both efficient scheduling policy and convex
optimization outperforms them all and solves all the benchmarks.
Our experiments also demonstrate the importance of SYMBA’s
multi-objective-function capability.

5. Related Work
Our work intersects with different areas of research. In this section,
we compare SYMBA with (1) other optimization techniques in SAT
and SMT solvers; (2) optimization techniques employed within the
context of abstract interpretation [20]; (3) linear programming tech-
niques; and (4) classification techniques from the machine learning
community.

Optimization in SAT/SMT Within the SMT and SAT solving
arena, numerous forms of optimization have been proposed (e.g.,
MAX-SAT/SMT in Yices [?]). The closest to SYMBA is the re-
cent of work of Sebastiani and Tomasi [56]. Similar to SYMBA,

6 We omit SYMBA(40) and SYMBA(80) from the table as they exhibit
similar performance to SYMBA(60).

they propose an SMT-based solution for optimizing objective func-
tions in LRA, and to the best of our knowledge, this is the only
other work that addresses this problem. As explained in Sec. 4, this
approach works by sampling a satisfiable disjunct (convex polyhe-
dron) from a given formula using the SMT solver as a black box.
Then, using any LP solver, it finds the optimal value of an objec-
tive function in that disjunct. It then checks if the optimal value is
globally optimal (again, using the SMT solver); otherwise, more
disjuncts are sampled. Effectively, this approach lazily builds the
DNF of a formula until the disjunct with the optimal value of a
given objective function is found. Compared to [56], SYMBA does
not require an off-the-shelf LP solver (or access to a modified the-
ory solver within the SMT solver [56]) Instead, SYMBA offers a
simple and elegant optimization algorithm that can be easily imple-
mented on top of existing SMT solvers, without using any external
tools. Moreover, SYMBA can simultaneously optimize multiple ob-
jective functions. SYMBA also maintains an over-approximation of
the optimal solution, allowing us to prematurely terminate it and
still retrieve optimal values for a subset of the objective functions.
As we show in Sec. 4, the multi-objective-function feature can also
be implemented within the approach of [56]. Both SYMBA and [56]
can apply to formulas over mixed theories.

In [17], Cimatti et al. proposed a theory of costs for augmenting
an SMT solver with pseudo-boolean (PB) constraints [9]. At a
high level, their theory allows associating a cost with individual
Boolean constraints. The goal then is to find a satisfying assignment
that minimizes/maximizes the total cost. Thus, the theory of costs
enables encoding weighted MAX-SAT/SMT problems – in fact, the
two problems are equivalent. It is easy to see that SYMBA subsumes
the weighted MAX-SMT problem. For example, we can associate
with each Boolean constraint Bi a cost ci, and add a constraint
ite(Bi, ci = ki, ci = 0), where ki ∈ R. Then, our objective is to
minimize or maximize the sum of all costs c1 + . . .+ cn.

Another form of optimization in the SMT framework is that of
Nieuwenhuis and Oliveras [46]. Their optimization technique ex-
tends the traditional DPLL(T) algorithm for SMT solving with ex-
tra rules for strengthening the theory T midway during execution,
e.g., a theory solver for linear arithmetic might be strengthened to
find only assignments with values less than 10. This allows guiding
the solver towards satisfying assignments that maximize or mini-
mize certain objective functions. The authors show how to imple-
ment weighted MAX-SMT in their general framework. It is unclear
to us if their theory strengthening approach can be used to imple-
ment an optimization procedure for LRA objective functions (as in
this paper). Moreover, unlike SYMBA, their approach is not easily
implementable, as it requires deep modifications to an SMT solver.

In more recent work [16], Chaganty et al. consider the problem
of finding most likely satisfying assignments in the presence of
probabilistic constraints. There, an SMT solver is used to handle
axioms, i.e., constraints with 0 or 1 probabilities, and a relational
solver (e.g., [47]) is used to handle other probabilistic constraints.
It is important to note that the relational solver can be replaced
by a weighted MAX-SMT solver (as noted in [16]). Thus, SYMBA
can be directly applicable to solving such problems. We leave this
interesting direction for future work.

Optimization in Abstract Interpretation Numerical abstract do-
mains have been an active subject of research due to their impor-
tance in different program analyses. As discussed earlier, an impor-
tant operation in such domains is the abstract transformer (post),
which can often be phrased as an optimization problem over formu-
las in LRA. As a result, optimization has been a subject of interest
within the program analysis community.

For example, Monniaux [43] proposed an algorithm for com-
puting best abstract transformers of Template Constraint Matrix
(TCM) domains [54] over loop-free code. As discussed in Sec. 4,

0.1 1 10 100

Time of SymbaIR(100) (s)

0.1

1

10

100

T
im

e
of

O
P
T
-M

a
t
h
S
A
T
(s
)

x

(a)

0.1 1 10 100

Time of SymbaIR(100) (s)

0.1

1

10

100

T
im

e
of

L
S
(O

p
t
-Z

3
)(
s)

x

(b)

0.1 1 10 100

Time of SymbaIR(40)Opt-Z3 (s)

0.1

1

10

100

T
im

e
of

L
S
(O

p
t
-Z

3
)
(s
)

x
4× x

(c)

Figure 5. Performance comparison between (a) SYMBA(100) vs. OPT-MATHSAT, (b) SYMBA(100) vs. LS(OPT-Z3), and (c)
SYMBA(40)OPT-Z3 vs LS(OPT-Z3).

CONFIGURATION TOTAL TIME(s) # SMT QUERIES # SOLVED # GLOBALPUSH # UNBOUNDEDIMPL
1 SYMBA(100) 3,841 394,579 1,046 24,387 164,156
2 SYMBA(60) 5,720 577,068 1,015 120,112 179,278
3 SYMBA(20) 2,716 231,906 766 132,051 42,227
4 SYMBAONEOBJ 6,867 445,181 1,045 83,421 162,796
5 SYMBA(40)OPT-Z3 1,087 84,814 1,065 7,007 51,898
6 OPT-MATHSAT 5,992 - 1,052 - -
7 LS(OPT-Z3) 1,521 20,829 a 1,058 - -
8 LS(GLPK) 3,098 20,854 1,063 - -
9 LS(SOPLEX) 2,791 20,920 1,065 - -

a We do not count calls to LP solver (including OPT-Z3) in step B.

Table 2. Overall results for different SYMBA and LS configurations, as well as OPT-MATHSAT, on the 1065 SMT-LIB2 benchmarks.

TCM domains are parameterized by a set of templates T , or ob-
jective functions. Loop-free program segments, along with a set of
initial states, can be encoded as a formula ϕ in LRA. Then, the
problem of computing the best abstract transformer becomes that
of computing optT (ϕ). This problem is known in the program anal-
ysis community as symbolic abstraction. The approach in [43] uses
quantifier elimination, which is admissible in LRA. In later work,
Monniaux and Gonnord [45] attack the problem from a different
angle, using an SMT solver to sample disjuncts ϕd of ϕ, and, using
off-the-shelf solvers, to find the optimal solution optT (ϕd) of each
disjunct. Surprisingly, this is done in the same manner as proposed
by Sebastiani and Tomassi [56] for LRA optimization in SMT (dis-
cussed above).

Recently, Thakur and Reps [60] proposed a generalization of
Stålmarck’s SAT solving method [57] to richer logics. The algo-
rithm attempts to prove a formula ϕ unsatisfiable by iteratively re-
fining an over-approximation of ϕ starting from true until arriving
at false. They showed how the algorithm can be instantiated with
abstract domains, such as polyhedra, and used to compute best ab-
stractions of formulas in LRA within the given abstract domain.
Thus, by instantiating their algorithm with a TCM domain, we can
compute optT (ϕ) for ϕ in LRA. Their approach is a general frame-
work for symbolic abstraction that is applicable to a wide range of
logics and abstract domains.

In contrast to these techniques, our goal with SYMBA is to
bring LRA optimization to an SMT setting, leveraging the power
and generality of SMT solvers, and making optimization directly
usable by researchers who are already familiar with, and actively
using, SMT solvers. Additionally, with SYMBA, we do not only

find the optimal value of a given objective function, but also the
satisfying assignment that results in such a value (found in the set
of models M). This is a crucial requirement when, e.g., searching
for optimal counterexample witnesses, where we need a trace of the
counterexample (i.e., an optimal satisfying assignment) and not the
optimal value of the given objective function.

Linear Programming In the field of linear programming, the op-
timization problem over conjunctions and disjunctions of convex
polyhedra (as in our setting) has been known as Linear Disjunctive
Programming (LDP) [4]. Later, Linear Generalized Disjunctive
Programming (LGDP) [50] was proposed; there, Boolean variables
are used to explicitly model discrete decisions. LDP and LGDP are
equivalent to SYMBA when it is applied to formulas over LRA and
propositional variables. Most notable approaches for solving LGDP
problems carefully convert the problem to a Mixed Integer Linear
Programming (MILP) problem, e.g., [55], and use existing MILP
solvers to solve it. In comparison to such techniques, SYMBA can
handle formulas over arbitrary theories (in combination with LRA),
and can simultaneously optimize multiple objective functions. Ad-
ditionally, SYMBA uses infinite precision rational arithmetic em-
ployed by SMT solvers, whereas LGDP solvers tend to use floating
point arithmetic, potentially losing precision.

Classification and Machine Learning A fundamental problem
in machine learning is classification: given a set of positive and
negative examples, find a classifier that predicts whether a given
example is positive or negative. For example, using Support Vector
Machines (SVMs) [49], one can compute linear inequalities sepa-
rating positive and negative points in some spaceRn.

SYMBA can be viewed as a sophisticated classification algo-
rithm, where positive and negative examples are models of ϕ and
¬ϕ, respectively. The goal is to find the best classifier, represented
by a conjunction of linear inequalities (objective functions), that
does not misclassify any of the positive examples (i.e., is implied
by ϕ). SYMBA only samples positive examples (from ϕ) and keeps
weakening a classifier (the under-approximation U) until it encom-
passes all positive examples. As Reps et al. point out in [51], weak-
ening an under-approximation by sampling more points is analo-
gous to the approach of the simple learning algorithm Find-S [42].
Find-S gradually weakens a classifier, starting from false, by itera-
tively taking into account more and more positive examples.

6. Conclusions and Future Work
We proposed SYMBA, an efficient SMT-based optimization algo-
rithm for objective functions stated in the theory of linear real arith-
metic. SYMBA utilizes efficient SMT solvers as black boxes, mak-
ing it easy to implement without requiring modifications to existing
intricate SMT solver implementations, and enabling it to directly
benefit from future advances in SMT solving. We have evaluated
SYMBA on benchmarks drawn from abstract transformer compu-
tations for numerical abstract domains. Our thorough experimental
evaluation indicates the advantages of our approach over other pro-
posed techniques.

We see many avenues for future work. First, the most natural
next step is extending SYMBA to integer arithmetic objective func-
tions. We believe this can be done by augmenting SYMBA’s rules
with new ones that introduce Gomory cuts (cutting planes) [?] in
order to prune infeasible solutions. Another interesting direction is
handling non-linear objective functions, in order to model complex
cost functions. From an engineering perspective, we would also like
to study efficient parallel implementations of SYMBA’s rules.

References
[1] Z3 Source Code Repository. http://z3.codeplex.com/.

[2] A. Albarghouthi and K. L. McMillan. Beautiful Interpolants. In Proc.
of CAV’13, LNCS, 2013.

[3] A. Albarghouthi, A. Gurfinkel, and M. Chechik. UFO: A Framework
for Abstraction- and Interpolation-Based Software Verification. In
Proc. of CAV’12, 2012.

[4] E. Balas. Disjunctive programming: Properties of the convex hull of
feasible points. Discrete Applied Mathematics, 89(1–3):3 – 44, 1998.

[5] T. Ball and S. Rajamani. The SLAM Toolkit. In Proc. of CAV’01,
volume 2102 of LNCS, pages 260–264, 2001.

[6] C. Barrett and C. Tinelli. CVC3. In Proc. of CAV’07, volume 4590 of
LNCS, pages 298–302, July 2007.

[7] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version
2.0. Technical report, Department of Computer Science, The Univer-
sity of Iowa, 2010. Available at www.SMT-LIB.org.

[8] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability
modulo theories. In Handbook of Satisfiability, pages 825–885. 2009.

[9] P. Barth. A Davis-Putnam based enumeration algorithm for lin-
ear pseudo-Boolean optimization. Technical Report MPI-I-95-2-003,
Max-Planck-Institute für Informatik, 1995.

[10] D. Beyer. Competition On Software Verification - (SV-COMP). In
Proc. of TACAS’12, volume 7214 of LNCS, pages 504–524, 2012.
URL http://sv-comp.sosy-lab.org/.

[11] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani.
Software Model Checking via Large-Block Encoding. In Proc. of
FMCAD’09, pages 25–32, 2009.

[12] G. M. Bierman, A. D. Gordon, C. Hritcu, and D. E. Langworthy.
Semantic Subtyping with an SMT Solver. J. Funct. Program., 22(1):
31–105, 2012.

[13] N. Bjorner, K. McMillan, and A. Rybalchenko. Program Verification
as Satisfiability Modulo Theories. In Proc. of SMT’12 workshop,
2012.

[14] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani.
The MathSAT 4 SMT Solver. In Proc. of CAV’08, pages 299–303,
2008.

[15] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems
Programs. In Proc. of OSDI’08, pages 209–224, 2008.

[16] A. Chaganty, A. Lal, A. Nori, and S. Rajamani. Combining Relational
Learning with SMT Solvers using CEGAR. In Proc. of CAV’13,
LNCS, 2013.

[17] A. Cimatti, A. Franzén, A. Griggio, R. Sebastiani, and C. Stenico. Sat-
isfiability modulo the theory of costs: Foundations and applications. In
Proc. of TACAS‘10, pages 99–113, 2010.

[18] E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-C
Programs. In Proc. of TACAS’04, volume 2988 of LNCS, pages 168–
176, March 2004.

[19] P. Cousot and R. Cousot. Static Determination of Dynamic Properties
of Programs. In Proc. of the Colloque sur la Programmation, 1976.

[20] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice
Model For Static Analysis of Programs by Construction or Approxi-
mation of Fixpoints. In Proc. of POPL’77, pages 238–252, 1977.

[21] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Proc.
of TACAS’08, LNCS, pages 337–340, 2008.

[22] R. DeLine and K. R. M. Leino. BoogiePL: A Typed Procedural
Language for Checking Object-oriented Programs. Technical report,
Microsoft Research, 2005.

[23] B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver
for DPLL(T). In CAV’06, pages 81–94, Berlin, Heidelberg, 2006.
Springer-Verlag.

[24] S. Falke, F. Merz, and C. Sinz. LLBMC: Improved Bounded Model
Checking of C Programs Using LLVM - (Competition Contribution).
In Proc. of TACAS’13, pages 623–626, 2013.

[25] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Dpll(t): Fast decision procedures. In Proc. of CAV’04, LNCS, pages
175–188, 2004.

[26] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated
Random Testing. In Proc. of PLDI’05, pages 213–223, 2005.

[27] P. Godefroid, A. Nori, S. Rajamani, and S. Tetali. Compositional
May-Must Program Analysis: Unleashing the Power of Alternation.
In Proc. of POPL’10, pages 43–56, 2010.

[28] P. Godefroid, M. Y. Levin, and D. A. Molnar. SAGE: Whitebox
Fuzzing for Security Testing. Commun. ACM, 55(3):40–44, 2012.

[29] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Syn-
thesizing Software Verifiers from Proof Rules. In Proc. of PLDI’12,
pages 405–416, 2012.

[30] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of Loop-
Free Programs. In Proc. of PLDI’11, pages 62–73, 2011.

[31] A. Gupta, C. Popeea, and A. Rybalchenko. Solving Recursion-Free
Horn Clauses over LI+UIF. In Proc. of APLAS’11, pages 188–203,
2011.

[32] A. Gurfinkel, S. Chaki, and S. Sapra. Efficient Predicate Abstraction
of Program Summaries. In Proc. of NFM’11, volume 6617 of LNCS,
pages 131–145, 2011.

[33] W. R. Harris, S. Sankaranarayanan, F. Ivancic, and A. Gupta. Pro-
gram Analysis via Satisfiability Modulo Path Programs. In Proc. of
POPL’10, pages 71–82, 2010.

[34] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction.
In Proc. of POPL’02, pages 58–70, 2002.

[35] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Ab-
stractions from Proofs. In Proc. of POPL’04, pages 232–244, 2004.

[36] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-Guided
Component-Based Program Synthesis. In Proc. of ICSE’10, pages
215–224, 2010.

http://z3.codeplex.com/
www.SMT-LIB.org
http://sv-comp.sosy-lab.org/

[37] A. S. Köksal, V. Kuncak, and P. Suter. Constraints as Control. In Proc.
of POPL’12, pages 151–164, 2012.

[38] K. R. M. Leino. Dafny: An Automatic Program Verifier for Functional
Correctness. In Proc. of LPAR’10, pages 348–370, 2010.

[39] A. Makhorin. The GNU Linear Programming Kit.
http://www.gnu.org/software/glpk/, 2000.

[40] H. Massalin. Superoptimizer: a Look at the Smallest Program.
SIGARCH Comput. Archit. News, 15(5):122–126, Oct. 1987.

[41] A. Miné. The Octagon Abstract Domain. J. Higher-Order and
Symbolic Computation, 19(1):31–100, 2006.

[42] T. M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York,
NY, USA, 1997.

[43] D. Monniaux. Automatic modular abstractions for linear constraints.
In Proc. of POPL’09, pages 140–151, 2009.

[44] D. Monniaux. Automatic Modular Abstractions for Template Numer-
ical Constraints. Logical Methods in Computer Science, 6(3), 2010.

[45] D. Monniaux and L. Gonnord. Using Bounded Model Checking to
Focus Fixpoint Iterations. In Proc. of SAS’11, LNCS, pages 369–385,
2011.

[46] R. Nieuwenhuis and A. Oliveras. On sat modulo theories and opti-
mization problems. In SAT, pages 156–169, 2006.

[47] F. Niu, C. Ré, A. Doan, and J. Shavlik. Tuffy: scaling up statistical
inference in markov logic networks using an rdbms. Proc. of VLDB, 4
(6):373–384, Mar. 2011.

[48] R. Piskac, T. Wies, and D. Zufferey. Automating separation logic using
smt. In CAV, 2013.

[49] J. C. Platt. Fast Training of Support Vector Machines Using Sequential
Minimal Optimization. In Advances in Kernel Methods, pages 185–
208. MIT Press, Cambridge, MA, USA, 1999. ISBN 0-262-19416-3.

[50] R. Raman and I. Grossmann. Modelling and computational techniques
for logic based integer programming. Computers and Chemical Engi-
neering, 18(7):563 – 578, 1994. ISSN 0098-1354.

[51] T. Reps, M. Sagiv, and G. Yorsh. Symbolic Implementation of the Best
Transformer. In Proc. of VMCAI’04, volume 2937 of LNCS, 2004.

[52] P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid Types. In Proc. of
PLDI’08, pages 159–169, 2008.

[53] A. Rybalchenko and V. Sofronie-Stokkermans. Constraint Solving for
Interpolation. J. Symb. Comput., 45(11):1212–1233, 2010.

[54] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalable Analysis
of Linear Systems using Mathematical Programming. In Proc. of
VMCAI’05, pages 25–41, 2005.

[55] N. W. Sawaya and I. E. Grossmann. A cutting plane method for solv-
ing linear generalized disjunctive programming problems. Computers
Ad Chemical Engineering, 29(9):1891 – 1913, 2005. ISSN 0098-1354.

[56] R. Sebastiani and S. Tomasi. Optimization in SMT with LA(Q) Cost
Functions. In Proc. of IJCAR‘12, pages 484–498, 2012.

[57] M. Sheeran and G. Ståmarck. A Tutorial on Stålmarck’s Proof Proce-
dure for Propositional Logic. Formal Methods in System Design, 16:
23–58, 2000.

[58] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. A.
Saraswat. Combinatorial Sketching for Finite Programs. In Proc. of
ASPLOS’06, pages 404–415, 2006.

[59] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang.
Secure distributed programming with value-dependent types. In Proc.
of ICFP’11, pages 266–278, 2011.

[60] A. V. Thakur and T. W. Reps. A Method for Symbolic Computation
of Abstract Operations. In Proc. of CAV’12, pages 174–192, 2012.

[61] A. V. Thakur, M. Elder, and T. W. Reps. Bilateral Algorithms for
Symbolic Abstraction. In Proc. of SAS’12, pages 111–128, 2012.

[62] R. Wunderling. Paralleler und Objekt-orientierter Simplex-
Algorithmus. PhD thesis, Technische Universität Berlin, 1996.

7. Appendix
Lemma 2. Given an L formula ϕc defining a convex polyhedron
(conjunction of linear constraints), if p |= ϕc, [p] ⊆ [p′], t(p) 6
t(p′) and @p′′ |= ϕc · t(p) 6 t(p′′) ∧ [p] ⊂ [p′′], then p′ |= ϕc.

Proof. Formula ϕc ∧ [p] can be written as a system of linear in-
equalities as follows:

A~x = ~b (1a)

C~x > ~d (1b)

By definition, p satisfies the system and Eq. 1a is a subset of [p]
according to the definition of boundary class. Because [p] ⊆ [p′],
p′ must satisfy Eq. 1a. Suppose p′ 2 ϕc. Then there exists some k
such that ~ck · ~p > dk and ~ck · ~p′ < dk

Note that ~ck · ~p 6= dk since ~ck · ~p′ 6= dk and [p] ⊆ [p′]. We now
show that there exists a point ~pk = α~p+(1−α)~p′ (0 < α < 1) in
the convex hull of p and p′ s.t. ~ck · ~pk = dk. Since t(p) 6 t(p′), it is
easy to show that t(p) 6 t(pk). Let ~ck·~p = dk+δ1, ~ck·~p′ = dk−δ2
(where δ1 > 0 and δ2 > 0), and α = δ2

δ1+δ2
. We have ~ck · ~pk = dk.

We know that [p] ⊂ [pk] because pk is in the convex hull of p and
p′ and {~ck · ~x = dk} /∈ [p] ∧ {~ck · ~x = dk} ∈ [pk].

Suppose pk 2 ϕc, i.e., there exists j s.t. ~cj · ~pk < dj , we
then repeat the above process. Each point pi found satisfies t(p) 6
t(pi) ∧ [p] ⊂ [pi]. We are guaranteed to find a point p′′ in the
convex hull s.t. it is also within ϕc, because in each step we
satisfy at least one more inequality. This contradicts the condition
@p′′ |= ϕc · t(p) 6 t(p′′) ∧ [p] ⊂ [p′′]. Therefore, p′ |= ϕc.

Proof of Thm. 1 (⇐) We prove this direction by contradiction.
First, let p1, p2 |= ϕ be two models satisfying the three conditions
of the theorem. Suppose there is a point p∗ |= ϕ s.t. t(p∗) is the
upper bound for t inϕ. We show that there is always a point p′2 |= ϕ
s.t. t(p′2) > t(p∗).

Pick a point p′2 s.t. ~p′2 = ~p2 + λ(~p2 − ~p1). It follows that
t(p′2) > t(p∗) when λ > (~p∗− ~p2)·~t

(~p2− ~p1)·~t
. The notation ~p denotes the

vector representation (p(x1), . . . , p(xn)) of the model p : Vars→
R, where Vars = {x1, . . . , xn}.

Let the formula ϕ′ define a convex polyhedron s.t. p2 |= ϕ′ and
ϕ′ ⇒ ϕ. Let ϕc ≡ ϕ′ ∧

∧
[p2]. We know the following:

1. ϕc defines a convex polyhedron (by its definition).

2. @p′′2 |= ϕc · t(p2) 6 t(p′′2) ∧ [p2] ⊂ [p′′2] (by condition 3 of the
theorem).

3. [p2] ⊆ [p′2] (since p′2 is in the affine set of p1 and p2).

4. t(p2) 6 t(p′2) (since λ > 0).

Following the result of Lemma 2, p′2 is in ϕc which is also in ϕ.
This contradicts the assumption that t(p∗) is the least upper bound
for t. Therefore, term t is unbounded in ϕ.

(⇒) Given that t is unbounded in ϕ, we look for two models
p1, p2 |= ϕ that satisfy the required conditions. Pick p1, p2 |= ϕ
s.t. [p1] = [p2], t(p2) > t(p1), and [p1] is the most restrictive
boundary class within which t is unbounded (i.e., t is unbounded in
ϕ∧

∧
[p1], and there does not exist a boundary class c ⊃ [p1] s.t. t is

unbounded in ϕ∧
∧
c). We know that such a class exists because t

is unbounded in ϕ (otherwise t is bounded in every boundary class
and ϕ is bounded). In other words, since (1) there are infinitely
many models of ϕ with increasing values of t and (2) finitely many
boundary classes, there has to be a boundary class [p1] s.t. t is
unbounded in ϕ ∧

∧
[p1] and there doesn’t exist a class c ⊃ [p1]

where t is unbounded in ϕ ∧
∧
c.

If there are no classes c ⊃ [p1], or for every c ⊃ [p1], ϕ∧
∧
c⇒

false, then p1 and p2 satisfy the three conditions of the theorem.

Otherwise, let m = maxp|=ϕ∧ψt(p), where ψ ≡
∨
c⊃[p1]

∧
c (i.e.,

all classes stronger than [p1]). We know that m is defined (i.e., not
∞) because of our assumption on the class [p1]. Ifm < t(p2), then
p1 and p2 satisfy the three conditions of the theorem. Otherwise,
since t is unbounded inϕ∧

∧
[p1], we can find two models p′1, p′2 |=

ϕ s.t. m < t(p′1) < t(p′2) and [p1] = [p′1] = [p′2]. As a result, p′1
and p′2 satisfy the three conditions in the theorem. �

	Introduction
	Symba by Example
	A 2-dimensional Example
	A 3-dimensional Example

	Symba: The Symbolic Optimization Algorithm
	Definitions
	Symba Formalized
	Soundness
	Termination

	Implementation and Evaluation
	Implementation
	Experimental Evaluation

	Related Work
	Conclusions and Future Work
	Appendix

