
Verification of Parameterized Concurrent Programs
By Modular Reasoning about Data and Control

Azadeh Farzan Zachary Kincaid
University of Toronto∗

azadeh,zkincaid@cs.toronto.edu

Abstract
In this paper, we consider the problem of verifying thread-state
properties of multithreaded programs in which the number of ac-
tive threads cannot be statically bounded. Our approach is based on
decomposing the task into two modules, where one reasons about
data and the other reasons about control. The data module computes
thread-state invariants (e.g., linear constraints over global variables
and local variables of one thread) using the thread interference in-
formation computed by the control module. The control module
computes a representation of thread interference, as an incremen-
tally constructeddata flow graph, using the data invariants provided
by the data module. These invariants are used to rule out patterns
of thread interference that can not occur in a real program execu-
tion. The two modules are incorporated into a feedback loop, so
that the abstractions of data and interference are iteratively coars-
ened as the algorithm progresses (that is, they become weaker) un-
til a fixed point is reached. Our approach is sound and terminat-
ing, and applicable to programs with infinite state (e.g., unbounded
integers) and unboundedly many threads. The verification method
presented in this paper has been implemented into a tool, called
DUET. We demonstrate the effectiveness of our technique by veri-
fying properties of a selection of Linux device drivers using DUET,
and also compare DUET with previous work on verification of pa-
rameterized Boolean program using the Boolean abstractions of
these drivers.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Assertion Checkers, Cor-
rectness Proofs; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Verifying and Reasoning about Programs—Invariants,
Assertions; D.3.1 [Programming Languages]: Formal Definitions
and Theory—Semantics; D.4.6 [Operating Systems]: Security and
Protection—Verification

General Terms Verification, Algorithms, Reliability

Keywords Concurrency, Abstract Interpretation, Compositional
Reasoning, Data Flow Graphs, Parameterized Programs, Thread
Invariants

∗ Both authors were partially supported by an National Science and Engi-
neering Research Council (NSERC) Discovery Grant for this work.

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

1. Introduction
Concurrent programs are notoriously hard to verify. Verification of
concurrent systems has been a very active area of research in the
past few years. There has been significant progress with testing and
bug finding techniques, but due to a huge number of possible sched-
ules (even with a fixed input), it is hard to provide useful coverage
guarantees. Standard model checking techniques provide coverage,
but suffer from the state explosion problem. Static analysis tech-
niques [7, 14, 26, 27, 31, 32] have been successful in checking
simple generic properties such as race and deadlock freedom.

There is a large class of concurrent programs that are designed
to be executed by an arbitrary number of clients (for example, de-
vice drivers, concurrent data structure libraries, and file systems).
This class of programs, commonly calledparameterized concur-
rent programs, are more difficult to verify than concurrent pro-
grams with a fixed number of threads. The verification problem for
parameterized systems has been studied extensively [2, 3, 6, 10, 12,
13, 16, 20, 21, 23, 29, 30]; however, the focus has mostly been on
verifying protocols. These protocols (for example, Lamport’s Bak-
ery protocol [24] and Peterson’s mutual exclusion algorithm) are
oftensmallprograms, but the reasoning behind their correctness is
usually complicated (see Section 7 for a more detailed discussion),
specially when functional correctness is the goal (e.g. mutual ex-
clusion). In contrast, we are interested inlarge programs such as
device drivers and file systems, where the reasoning behind their
correctness is more straightforward. In these programs, undesired
inter-thread interference is usually prevented by simple synchro-
nization mechanisms, and the majority of the verification effort is
spent in reasoning about the sequential behaviour of each thread.
Moreover, we are interested in provingprogram assertions, which
is easier to handle than proving functional correctness of proto-
cols. Program assertions are Boolean combinations of program ex-
pressions that relate shared variables to local variables of a specific
thread at a location in that thread. They are expressive enough to in-
clude interesting properties of concurrent programs such as the ab-
sence of null pointer dereferences or out of bounds array accesses.
We believe that this combination of programs and properties is a
good candidate for automated verification in the parameterized set-
ting, and is the target of the work presented in this paper.

We propose a static analysis technique that separates the verifi-
cation task into a data module and a control module. This separa-
tion achieves bothprecisionandscalability for proving assertions
correct in concurrent programs with unboundedly many threads.
The data module, using an abstract interpreter, computes data in-
variants for each program location. These invariants are guaranteed
to be consistent with the most recent information about inter-thread
interference, provided by the control module. The control module,
using a deduction system, determines the pattern of inter-thread in-
terference by using the most recent information from the data mod-
ule about data invariants. The two modules are combined into a

feedback loop to collaboratively compute a solution to the verifi-
cation problem. This strategy can be used to generatethread-state
invariantsfor program locations, i.e. invariants that do not refer to
the local variables of more than one thread. These invariants can be
used for proving the absence of program assertion failures.

One of the enabling ideas of our modular approach is to use a
data flow graph as a program representation for performing abstract
interpretation. In data flow graphs, only the flow of data is modeled;
control constructs (which are irrelevant to a data analysis) are ab-
stracted away. Data flow graphs offer a convenient way to represent
the interference between threads: for example, if one thread writes
to a global variable at some locationu which is subsequently read
by another thread at locationv, thenu andv are connected by a
data flow edge. Also, since each program location (regardless of
the number of threads in the system) is represented by one vertex
in the data flow graph (i.e. there is no explicit representation for
threads), it is possible to use them to analyze data in parameter-
ized systems. Computing data invariants over a data flow graph is
mostly as straightforward as abstract interpretation for sequential
programs; the idea is that the structure of a data flow graph cap-
tures the interference among threads, and therefore, one only needs
to focus on how data flows through this structure.

Generation

Data Invariants

Data Flow Edges

Data Invariant Interference

Deduction

The figure on the
right illustrates the idea
behind our approach.
We start by assuming
no interference among
threads (as if threads
are running sequen-
tially), and through ab-
stract interpretation com-
pute the first set of
data invariants(per program location). At this stage, the data flow
graph only contains data flow edges that correspond to the sequen-
tial executions of program threads. Then, the data invariants are
passed to a deduction system, which uses them to compute a new
set of data flow edges. The deduction system uses the data invari-
ants to reason about what patterns of inter-thread interference are
feasible, and adds the corresponding data flow edges, which capture
these new interference patterns, to the data flow graph. These new
data flow edges may result in computing weaker data invariants in
the next round. These weaker invariants may trigger the addition of
more data flow edges (coarseningthe data flow graph). This loop
continues until a fixed point is reached.

The analysis we use for computing data flow edges issemi-
compositional. Inter-thread data flow is a property that intuitively
involves two threads: one that writes to a global variable, and one
that reads from it. Ideally, one would like to reason about the exis-
tence of data flow edges by considering only two threads at a time.
However, it is not generally sound to reason using only two threads,
since a program path (e.g. from a write to a read) may involve many
threads synchronizing with each other. We overcome this problem
by using data invariants (from the data invariant generation mod-
ule) to soundly approximate the effects of other threads that may
contribute to a data flow path being realizable. An invariant associ-
ated with a program location corresponds to an overapproximation
of the values of the program variables when at least one thread is
at that location. Therefore, we may reason about data flow paths
that may require the participation of arbitrarily many threads while
considering only two threads at a time. We call our approachsemi-
compositional(in contrast to fully compositional) because our rea-
soning method over two threads is non-compositional (all pairs of
locations are considered), while every other thread in the system is
accounted for in a compositional manner.

We implemented our approach in a tool called DUET and eval-
uated it on a set of 15 Linux device drivers. DUET can prove a
total of 1312 (out of 1597) of array bounds and integer over/un-
derflow assertions safe in 13 minutes. We also compared DUET
against two recent tools that deal with parameterized concurrent
Boolean programs, namely Getafix [22], and the dynamic cutoff
detection (DCD) algorithm of [19], which are both based on model
checking. We compared against DCD [19] and Getafix [22] on the
set of benchmarks provided by the authors, which are Boolean ab-
stractions (generated by the SatAbs [9] tool) of the aforementioned
Linux device drivers. DUET has the clear advantage of being di-
rectly applicable to the drivers (as opposed to their Boolean ab-
stractions), but we performed these experiments to show that it does
outperform these tools even at the level of Boolean programs. Our
experiments shows that DUET substantially outperforms Getafix,
by proving 2505 (compared to 1382 for Getafix) Boolean programs
correct. DUET also outperforms DCD by proving 58 programs safe
in contrast to only 19 programs that DCD can prove safe.

1.1 Motivating example

In concurrent programs, threads communicate using many different
methods. They may communicate through synchronization primi-
tives such as locks or wait/notify, which can be viewed ascon-
trol type primitives that only affect the feasible control paths in a
thread, and not the data. Threads may also communicate via read-
ing from and writing to shared memory, which aredata type prim-
itives. In the presence of both patterns of communication among
threads, precise reasoning about the program often involves rea-
soning about bothdata andcontrol simultaneously. But, doing so
can be very expensive, specially for a programs with an unbounded
number of threads. In this paper, we present a scalable approach to
reason aboutdata andcontrol in separate but collaborating mod-
ules. In this section, we use an example that includes both modes
of communication among threads (through both data variables and
locks) to provide a high level understanding of our approach.

Figure 1 illustrates a simplified concurrent producer-consumer
example. Let us assume that each statement is executed atomically,
and that initially no thread holds any locks, andcounter is 0.
The producer can produce items one-by-one or in batch mode, and
keeps track of the number of produced items waiting to be con-
sumed using the global variablecounter. Two producers cannot
produce items simultaneously, but a consumer can run in parallel
with a producer in batch mode. The consumer, if there are items to
process, consumes them one-by-one, by decrementingcounter.
The assertion atv6 states a correctness property for the consumer:
the number of items waiting to be consumed must be non-negative.
At position u10 in the producer, the value ofcounter is always
zero, so the assignment atu10 does not add any behaviour, but it
helps us demonstrate an interesting point.

This program demonstrates the use of both synchronization
primitives (locks in this case), and conditional statements to rule
out undesired interference from other threads. For example, if the
goal is to prove that the assertion atv6 holds, then one must prove
that the zero value assigned tocounter at u10 cannot reach the
decrement atv5, and consequently falsify the assertion. In other
words, we need to rule out a pattern of thread interference in order
to prove the desired invariant atv5 andv6. The interesting aspect of
this example is that the reverse is also true: since the locationsu10

andv5 are not protected by a common lock, in order to rule out the
undesired interference, one needs to rely on the fact that atv5, the
value ofcounter is always strictly positive. In this scenario, if one
starts from a weak invariant atv5, one cannot rule out interference
fromu10, and (reversely), if one starts by assuming the interference
from u10 may occur, one cannot prove the data invariant needed to
rule out this interference.

Here, we explain how our algorithm operates on the program
in Figure 1 at a high level. In Section 5 (in Example 5.1), we
will revisit this example and explain it in more detail. First, we
assume thatProducer and Consumer are executed sequentially
with no interaction, and compute a sequential data flow graphP ♯

1 .
Next, a set of data invariants is generated fromP ♯

1 . This analysis
determines that theConsumer threads cannot reach locationv5
and that inProducer threads, locationu4 is unreachable. Using
the previously computed data invariants, the interference deduction
unit computes new data flows, and adds the appropriate edges toP ♯

1

to get a data flow graphP ♯
2 . For example, this analysis determines

that the value ofcounter fromu12 may reach the beginning of the
Producer andConsumer threads, and so adds the edgesu12 → v4
and u12 → u3. The interference deduction unit uses the fact
that counter=0 is an invariant atu10 to infer that the value of
counter from u10 cannot flow tov5 without passing throughv4,
and therefore, doesnotadd an edge fromu10 to v5. Data invariants
are then generated for the data flow graphP ♯

2 , which determines
thatu4 andv5 are now reachable, and thatcounter ∈ [0,∞) at
u1. The subsequent interference analysis computes new data flow
edges, for exampleu4 → u1, which is possible as the result of
u1’s new (weaker) invariant. The invariants are still strong enough
to prove that there is no data flow fromu10 to v5. These edges are
added toP ♯

2 to get a new data flow graphP ♯
3 . The data analysis runs

onP ♯
3 , but does not produce weaker invariants, and consequently,

the subsequent interference analysis does not produce any new data
flow edges. The algorithm then terminates, having computed a set
of invariants that soundly approximate the dynamic behaviours of
the program. These invariants are strong enough to prove that the
assertion atv6 never fails.

The rest of this paper is organized as follows. In Section 2,
we define our program model. We define the data flow graphs in
Section 3, and discuss how data invariants can be computed by
abstract interpretation of data flow graphs; this constitutes thedata
portion of our analysis. We then discuss construction of the data
flow graphs in Section 4 where we explain how data invariants are
used to infer new data flow edges. The complete algorithm as an
iterative framework is presented in Section 5. Section 6 presents
our experiments, Section 7 discusses related work, and Section 8
concludes.

2. Notation and the program model
We define a program to be a 4-tupleP = 〈H,GV, LV,LJ·K〉, where
H = 〈Loc,CF〉 is a finite control flow graph (CFG) whose vertices
we calllocations, GV is a finite set of global variables,LV is a finite
set of local variables, andLJ·K assigns to each control location a
transition relation. For the rest of this section, we will formalize
this program model and introduce notation to be used in the rest of
the paper.

We will identify threads with natural numbers, where the be-
haviour of an individual thread is given by the control flow graph
H = 〈Loc,CF〉 together with the semantic functionLJ·K. The ini-
tial vertex ofH, which is assumed to have no control flow prede-
cessors, is denoted byinitloc. The behaviour of the programP is
defined to be that of the infinite parallel composition of all threads
n ∈ N. Since we are interested in thread invariants, we can restrict
ourselves to finite executions, in which only finitely many threads
can participate. Thus, for proving thread invariants, our program
model is equivalent to the parameterized model in whichP is taken
to be the finite parallel composition of all threads up to somek ∈ N,
wherek is a parameter. We also note that we lose no generality in
assuming that every threadn ∈ N executes the same code, since
several code segments can be simply combined into one.

u1:
u2:

u3:
u4:
u5:
u6:
u7:

u8:
u9:
u10:

u11:
u12:
u13:

u14:
u15:
u16:

int Producer(int batch)
{
acquire(lock2)
acquire(lock1)
if (*) {
assume(counter>0)
counter++
unlock(lock1)
unlock(lock2)
return 1

} else {
assume(counter<=0)
unlock(lock1)
counter = 0
while(*) {
assume(batch>0)
counter++
batch--

}
assume(batch<=0)
unlock(lock2)
return batch

}
}

v1:

v2:
v3:

v4:
v5:
v6:
v7:

void Consumer()
{
lock(lock1)
while(*) {
unlock(lock1)
lock(lock1)

}
assume(counter>0)
counter--
assert(counter>=0)
unlock(lock1)

}

Figure 1. Producer-Consumer Example.

We will assume thatGV, LV, andN × LV are pairwise disjoint
(a pair〈n, x〉 ∈ N×LV is conceptually threadn’s copy of the local
variablex) and define the set of variablesVar = GV ∪ LV. For
simplicity, we will assume that all variables are of type integer.

A global stateis a pairs = 〈senv, sloc〉 consisting of a global
environmentsenv ∈ GEnv = (GV ∪ N × LV) → Z and an
assignment of a control location to each threadsloc : N → Loc.
A thread stateis a mappinge ∈ TEnv= Var→ Z from variables
to values. For a given threadn ∈ N and global states, the thread
state ofn in s, which we denote bys[n], and which is defined by

s[n](x) =

{

senv(x) if x ∈ GV
senv(〈n, x〉) otherwise

The functionLJ·K : Loc → TEnv× TEnv associates a tran-
sition relation on thread states to every location. We call a pair
a = 〈n, 〈v, v′〉〉 consisting of a threadn ∈ N and a control
flow edge〈v, v′〉 ∈ CF an action. If the targetv′ of the con-
trol flow edge〈v, v′〉 is understood from the context or irrele-
vant, we simply write〈n, v〉. We useAJaK to denote the (global
state) transition relation associated with the actiona, which is ob-
tained by liftingLJvK from thread states to global states as follows:
〈s, s′〉 ∈ AJ〈n, 〈v, v′〉〉K ⇐⇒ ∃〈e, e′〉 ∈ LJvK such that

• s[n] = e ands′[n] = e′

• sloc(n) = v ands′loc(n) = v′

• ∀n′ ∈ N \ {n}. sloc(n
′) = s′loc(n

′)

• ∀n′ ∈ N \ {n}, ∀x ∈ LV. senv(〈n
′, x〉) = s′env(〈n

′, x〉).

Given a sequence of actionsρ and a subsetN ⊆ N, the
projection of ρ onto N , denotedρ|N , is the subsequence ofρ
consisting of all actions whose thread identifiers belong toN . A
trace σ is a finite sequence of actions such that, when projected
onto a single thread, corresponds to a path in the CFGH beginning
at the initial locationinitloc. For a traceσ, the post states ofσ
(denotedσ•) is the set of final states of that execution. A traceτ
is feasibleif τ• is nonempty. For a traceσ and a threadn ∈ N,
we useendloc(σ, n) to denote the end location of the CFG path

σ|{n}. Note thatendloc has the property that∀s ∈ σ•, ∀n ∈ N,
sloc(n) = endloc(σ, n).

A thread-state property is an assertionϕ with free variables in
Var. We will denote the set of such formulae byF(Var) (and more
generally,F(V)will denote first-order formulae with free variables
in V). For a thread statee, we writee |= ϕ to denote thate satisfies
ϕ.

To provide some intuition on our program model, we will de-
scribe how to represent locking. A lock is represented by a global
variablelock ∈ GV. Let acqbe a location wherelock is to be ac-
quired, and letrel be a location where it is to be released. Then we
can define

LJacqK = {〈e, e[lock ← 1]〉 : e(lock) = 0}

LJrelK = {〈e, e[lock ← 0]〉 : e(lock) = 1}

Note that, given a feasible traceτ , the fact thatτ• is nonempty
implies that there is no point alongτ in which two threads hold the
same lock.

Our program model does not support conditional branching, but
this can be simulated with nondeterministic branching andassume
actions, whereLJassume(c)K = {〈e, e〉 : e |= c}. Programs
that depend on the initial state satisfying some propertyϕ can
be simulated by definingLJinitlocK asLJassume(ϕ)K. Although
our algorithm (and our implementation) handles dynamic thread
creation, we omit it from this presentation for the sake of simplicity.

3. Data flow graphs
Data flow graphs (DFGs) are a program representation that explic-
itly represents the flow of data in a program, rather than the flow of
control as in a control flow graph. Our analysis uses DFGs to com-
pute program invariants by interpreting each edge of the DFG as
a constraint and then computing an overapproximation of the least
solution to this constraint system via abstract interpretation.1

A DFG for a programP is a directed graphP ♯ = 〈Loc,DF〉,
whereDF ⊆ Loc× Var× Loc is a set of directed edges labeled
by program variables, and where we assume thatLoc contains an
additional locationuninit (with no incoming or outgoing edges
in the control flow graph ofP). We will useu →x v to denote the
triple 〈u, x, v〉 ∈ Loc× Var× Loc.

We define the collecting semantics of a DFGP ♯ = 〈Loc,DF〉
to be the least solution to the following set of equations:

VAL (u, x) = {e(x) : e ∈ OUT(u)}

IN(v) =
⋂

x∈Var

{e ∈ TEnv: ∃u→x v ∈ DF.e(x) ∈ VAL (u, x)}

OUT(v) =

{

TEnv if v = uninit

{e′ : ∃e ∈ IN(v).〈e, e′〉 ∈ LJvK} otherwise

Consider the example in Figure 2. This figure depicts a program
with two code segments, each of which may be executed by ar-
bitrarily many threads. Variablec is global, and variableincr is
local. Each vertex (except the special vertexuninit) has at least
one incoming edge for each variable. Each of these incoming edges
provides a value for a particular variable. For example, the edge
u2 →

c v2 represents the constraint that any value forc after ex-
ecutingu2 is a possible value forc beforeexecutingv2 (that is,
{e(c) : e ∈ IN(v2)} ⊆ {e(c) : e ∈ OUT(u2)}). The two edges
from uninit to initloc indicate that any value is possible forincr
andc at initloc, the location at which both threads begin execution.
The vertexinitloc sets the initial condition of the program, acting
asassume(c = 0 ∧ incr = 0). Thus, edges originating atinitloc

1 For a similar use of data-flow graphs, see for example [17].

Global:c
Local:incr

u1:
u2:
//
v1:
v2:

incr = 1
c = c + incr

incr = -1
assert(c > 0)

uninit initloc

u1: incr=1

u2: c=c+incr

v1: incr=-1

v2: assert(c>0)

incr

c

incr
c

c

incr
c

c

incr c

c

c
incr

c

Figure 2. A program and a data flow graph representing it.

indicate that a particular variable may get its value from the ini-
tial state. The fact thatv1 →incr u2 doesnot belong to this graph
indicates that the value ofincr atv1 is not observable atu2.

Intuitively, a DFG for a programP represents a traceσ if it
has “enough” edges to ensure that any thread state reached by
σ belongs to IN(v) for somev. The remainder of this section
formalizes this notion.

We will assume the existence of a functionmod : Loc →
P(Var) that maps every control location to the set of variables
modified at that location. We require thatmodsatisfies the follow-
ing: for anyx ∈ Var, if there exists some〈e, e′〉 ∈ LJvK with
e(x) 6= e′(x), thenx ∈ mod(v). A notable feature of themod
we use in practice is that a location of the formassume(ϕ) is con-
sidered to be a modification of every variable occurring inϕ. This
allows us to take advantage of information at conditional branches
that otherwise would not be possible in a data flow graph.

For a traceσ, variablex, and threadn, we definelatest(σ, x, n)
to be the location of the last action to write to the variablex along
σ (or threadn’s copy of x, if x is local). More formally, ifx
is a global variable,latest(σ, x, n) is the unique locationv such
that σ = π〈m, v〉ρ (for somem ∈ N) and where no action (of
any thread) alongρ modifiesx if such av exists, anduninit
otherwise. Similarly, ifx is a local variable,latest(σ, x, n) is the
unique locationv such thatσ = π〈n, v〉ρ and no action of thread
n alongρ modifiesx if such av exists, anduninit otherwise.

DEFINITION 3.1 (Witness).Letu, v be locations,x be a variable,
and σ be a trace. We say thatσ is a witnessfor the data flow
edgeu →x v if there exists some threadn ∈ N such that
latest(σ, x, n) = u and endloc(σ, n) = v.

Conceptually,σ is a witness foru→x v if, on σ, u sets a value
for x which is not changed until the end of the trace, where some
thread is atv. We are now ready to define a representation condition
for traces and program.

DEFINITION 3.2 (Representation).A DFG P ♯ = 〈Loc,DF〉 rep-
resentsa traceσ iff for everyu, v ∈ Loc andx ∈ Var, if some
subtrace (not necessarily proper)σ′ of σ is a witness foru →x v,
thenu →x v ∈ DF. P ♯ representsa programP if it representsτ
for every feasible traceτ ofP .

The relationship between the collecting semantics of a DFG and
the traces it represents is given by the following:

THEOREM 3.3 (DFG Soundness).Let σ be a trace and letP ♯ be
a DFG such thatP ♯ representsσ. Then the collecting semantics
of P ♯ overapproximates the set of thread states reached byσ.
Formally, for all s ∈ σ•, for all n ∈ N, we have thats[n] ∈
IN(sloc(n)).

Proof sketch Let P ♯ = 〈Loc,DF〉 be a DFG and letσ be a trace
represented byP ♯. We proceed by induction onσ.

Base case: follows from the fact that for allx, uninit →x

initloc ∈ DF (sinceP ♯ representsǫ) and the fact that for allx,
VAL (uninit, x) = Z.

Inductive step: supposeσ is a trace such thatP ♯ representsσ,
let n ∈ N, and letv = endloc(σ, n). We need to show thats[n] ∈
IN(sloc(n)). To prove this, it is sufficient to show that∀x ∈ Var,
∃u ∈ Locsuch thatu→x v ∈ DF ands[n](x) ∈ VAL (u, x).

Let x be a variable, and takeu to belatest(σ, x, n). Thenu→x

v ∈ DF becauseσ witnesses this data flow andP ♯ represents
σ. If u = uninit, we are done since VAL(uninit, x) = Z.
If u 6= uninit, it follows that σ = π〈m,u〉ρ for some thread
m ∈ N, traceπ, and sequence of actionsρ such thatx is not
modified alongρ (by the definition oflatest(σ, x, n)). Moreover,
we must have that there is somes′ ∈ π• such that∃s′′ with
〈s′, s′′〉 ∈ AJ〈m,u〉K ands′′[n](x) = s[n](x). By the induction
hypothesis,s′[m] ∈ IN(u), sos′′[m] ∈ OUT(u) ands[n](x) =
s′′[n](x) = s′′[m](x) ∈ VAL (u, x). �

We also note that, unlike typical definitions of data flow graphs,
we require that each location has inputs for every variable, rather
than just the variables read by that location. This is a technical
convenience that simplifies the presentation of our algorithm.

3.1 Abstract interpretation of data flow graphs

In this section, we discuss how invariants are computed over a data
flow graph. For clarity of this presentation, we will assume a con-
crete representation of an abstract domain as a subset ofF(Var).
The semantics of program locations is given by an abstract tran-
sition relationLJ·K♯ : Loc → F(Var) → F(Var) that overap-
proximates the strongest postcondition (i.e.,〈e, e′〉 ∈ LJvK im-
plies e′ |= LJvK♯(e)). An annotation for a DFG P ♯ is a map
ι : Loc → F(Var) that assigns each locationv ∈ Loc a thread-
state formulaι(v). We define an inductiveness condition for anno-
tations that follows the structure of the collecting semantics, and
which holds when the annotation overapproximates the collecting
semantics of the DFG.

DEFINITION 3.4. An annotationι is inductive for a data flow
graph〈Loc,DF〉 if:

• ι(uninit) = true
• For all v ∈ Loc,

[

∧

x∈Var

(

∨

u→xv∈DF

LJuK♯(ι(u))
x
)]

⇒ ι(v)

whereLJuK♯(ι(u))
x

denotes the formula obtained from the
formulaLJuK♯(ι(u)) by existentially quantifying every variable
exceptx.

Standard techniques can be used to compute inductive anno-
tations from a DFG (inductive annotations correspond to post-
fixpoint solutions in the terminology of abstract interpretation). For
example, in our implementation, we use a variation of the well-
known worklist algorithm. The following is a consequence of The-
orem 3.3 and the fact that inductive annotations overapproximate
the collecting semantics:

COROLLARY 3.5. Letσ be a trace, letP ♯ be a dataflow graph that
representsσ (Definition 3.2), and letι be an inductive annotation
for P ♯ (Definition 3.4). Then for all statess ∈ σ•, and all threads
n ∈ N, s[n] |= ι(sloc(n)) (i.e., the thread state of threadn in the
global states is overapproximated by the annotation at the location
of threadn).

Note that in the collecting semantics, and therefore in inductive
annotations, the values of different variables cannot be correlated.
For example, ifv is a location,x andy are variables, ande, e′ ∈
IN(v) are reachable thread states such thate(x) = e(y) = 0
and e′(x) = e′(y) = 1, then there exists ane′′ ∈ IN(v) in
which e′′(x) = 0 6= 1 = e′′(y). This suggests that DFGs
are most appropriate for analyses based onnon-relationalabstract
domains, such as intervals, signs, or the even/odd domain, which
are also incapable of representing relationships between variables.
In Section 5.1, we will discuss a variation of DFGs which are more
appropriate for relational abstract domains.

4. Interference analysis
We now address the problem of how to compute a DFG that rep-
resents a program. We start by defining a subset of traces, calledι-
feasible traces (whereι is a given annotation), and then develop an
interference analysis that computes the set of data flow edges that
are witnessed byι-feasible traces. The definition ofι-feasibility is
such that ifι is a “weak enough” annotation, then every feasible
trace isι-feasible. With such an annotationι, every edge which is
witnessed by a feasible trace will also be witnessed by anι-feasible
trace, and thus will be found by our interference analysis.

Our interference analysis relies on a finite domain of data invari-
ants, which is defined using finite set of observable conditions.2 An
observable conditionis a predicatec with free variables inGV. In
the remainder of this section, we assume a fixed finite set of ob-
servable conditions, which we denote byC. We define the set of
observable formulaeF♯(GV) ⊆ F(GV) to be the set of formulae
ϕ that can be expressed as a conjunction

∧

i ϕi, where for eachi,
ϕi ∈ C or¬ϕi ∈ C.

An annotationι : Loc→ F(Var) (along with the set of observ-
able conditionsC) determines anabstract annotationι♯ : Loc→
F♯(GV) that assigns to each locationu ∈ Loc an observable for-
mulaϕ that is implied byι(u) and which is at least as strong as
any other observable formula with this property. Thus, going from
concrete to abstract (and using⊆ to denote “is more precise than”),
we have IN(v) ⊆ ι(v) ⊆ ι♯(v) for any locationv.

The set of observable conditionsC determines anenabling con-
dition enabled: Loc → F♯(GV) where∃e′.〈e, e′〉 ∈ AJvK ⇒
〈e, v〉 |= enabled(v) andenabled(v) is at least as strong as any
other observable formula with this property.

We are now ready to state our definition ofι-feasibility:

DEFINITION 4.1. Letσ be a trace andι be an annotation. Thenσ
is ι-feasibleif:

• σ = ǫ, or
• σ = σ′〈n, v〉, whereσ′ is an ι-feasible trace, and for all
m ∈ N, ι♯(endloc(σ′,m)) ∧ enabled(v) is satisfiable.

Note that the condition for extending anι-feasible pathσ by an
action〈n, v〉 depends only on the annotations at the end locations
of each thread, rather than on the states inσ•.

EXAMPLE 4.2. Consider the traceσ = 〈0, u1〉〈0, u2〉〈0, u3〉
of the program in Figure 1. This trace is not feasible, because
every state in(〈0, u1〉〈0, u2〉)

• has counter = 0, so 〈0, u3〉
is not enabled. However, assuming thatι(u2) = counter ≥
0 ∧ lock1 = 1, ι(u1) = counter ≥ 0, andC = {counter >
0, lock1 = 0, lock2 = 0} (which impliesι♯(u1) = true,
ι♯(u1) = ¬(lock1 = 0), and enabled(u3) = counter > 0),
this trace isι-feasible. To illustrate howι-feasibility depends on
ι, consider the infeasible trace〈0, u1〉〈0, u2〉〈1, v1〉. This trace is

2 This finiteness condition is not strictly necessary, but makes for a more
efficient analysis.

INIT-COREACH

coreachable(initloc, initloc)

COREACH-SYM
coreachable(u, v)

coreachable(v, u)

COREACH-STEP

coreachable(u0, v) enabled(u0, ι
♯(v)) 〈u0, u1〉 ∈ CF

coreachable(u1, v)

MAY REACH-BASE

coreachable(u0, v) x ∈ mod(u0) enabled(u0, ι
♯(v)) 〈u0, u1〉 ∈ CF

mayReach(u, x, u0, v)

MAY REACH-STEPL
mayReach(u0, x, u1, v) x /∈ mod(u1) enabled(u1, ι

♯(v)) 〈u1, u2〉 ∈ CF

mayReach(u0, x, u2, v)

MAY REACH-STEPR
mayReach(u0, x, u1, v0) x /∈ mod(v0) enabled(v0, ι

♯(u1)) 〈v0, v1〉 ∈ CF

mayReach(u0, x, u1, v1)

MAY REACH
mayReach0(u0, x, u1, v)

u0
x v

Figure 3. Interference analysis.

ι-feasible ifι(u3) = counter ≥ 0 ∧ lock1 = 1, andι-infeasible
if ι(u3) = ι(u8) = counter ≥ 0 ∧ lock1 = 1 ∧ lock2 = 1.

By combining the definition ofι-feasibility with the definition
of a witness of a data flow edge, we arrive at the following:

DEFINITION 4.3. Letσ be a trace,ι be an annotation,u andv be
locations, andx be a variable. Thenσ is an ι-feasible witness of
the data flowu→x v if σ is ι-feasible and witnesses the data flow
u→x v (that is,σ simultaneously satisfies definitions 3.1 and 4.1).

A key property of our notion ofι-feasibility is that it is preserved
under projections; that is, for anyι, if σ is anι-feasible trace, then
for any sets of threadsN ⊆ N,σ|N is alsoι-feasible. The following
lemma states a projection result that forms the basis of our semi-
compositional algorithm for interference analysis. It implies that,
in order to compute the set of data flow edges that are witnessed by
ι-feasible traces, it is sufficient to consider only traces that involve
two threads.

LEMMA 4.4 (Projection).Let ι be an annotation,u, v be loca-
tions, andx be a variable. Letσ be anι-feasible witness for the
data flowu →x v. Then there existsm,n ∈ N such thatσ|{m,n}

is anι-feasible witness foru→x v.

Proof sketch We will first prove that for anyN ⊆ N and anyι-
feasible traceσ, σ|N is anι-feasible trace, by induction onσ.

The base case is obvious. For the inductive step, letσ〈n, v〉 be
an ι-feasible trace, and assume thatσ|N is ι-feasible. Ifn /∈ N ,
then σ〈n, v〉|N = σ|N , and the result is immediate from the
induction hypothesis.

If n ∈ N , thenσ〈n, v〉|N = σ|N 〈n, v〉. In this case, we need
to show that for allm ∈ N, ι♯(endloc(σ|N ,m)) ∧ enabled(v) is
satisfiable. Letm ∈ N and distinguish two cases:

• m ∈ N : thenendloc(σ|N ,m) = endloc(σ,m), and the fact
that ι♯(endloc(σ|N ,m)) ∧ enabled(v) is satisfiable follows
from the fact thatσ〈n, v〉 is ι-feasible.

• m /∈ N : thenendloc(σ|N , n) = initloc. Sinceσ is finite, only
finitely many threads execute actions inσ, so there exists a
threadi ∈ N that does not execute actions inσ. Sinceσ〈n, v〉
is ι-feasible,ι♯(endloc(σ, i)) ∧ enabled(v) is satisfiable. Since
endloc(σ, i) = initloc = endloc(σ|N ,m), we are done.

Now, we must prove that the property of being a witness is
preserved by projections. Letu, v be locations andx be a variable,
and letσ by a witness of the data flowu →x v. We assume
thatx is a global variable – the case of local variables is similar.

It follows from Definition 3.1 that there exists somem,n ∈ N,
a traceπ, and a sequence of actionsρ such thatσ = π〈n, u〉ρ
such thatx ∈ mod(u), x is not modified by any action alongρ,
andv = endloc(σ,m). It is easy to check thatσ|{m,n} witnesses
u→x v. �

4.1 Inferring data flow edges

Our algorithm for inferring data flow edges is stated declaratively
in Figure 3 as a set of deduction rules forι-feasible witnesses.
For u, v ∈ Loc and x ∈ Var, we write u x

ι v iff an ι-
feasible witness for the data flowu →x v exists. These proof
rules are sound and complete for determining whether a witness for
an inter-thread data flow edge exists – intra-thread data flows can
be computed independently using a standard sequential reaching
definitions analysis.

The rules use an input relationenabled(u, ϕ) which holds iff
ϕ ∧ enabled(u) is satisfiable. Additionally, two auxiliary relations
are used:

• coreachable(u, v) holds iff there is someι-feasible traceσ
such thatu = endloc(σ, 0) andv = endloc(σ, 1).

• mayReach(u, x, v, w) holds iff there is someι-feasible trace
σ such thatu = latest(σ, x, 0), v = endloc(σ, 0) andu =
endloc(σ, 1).

Since the set of locations and the set of variables are finite,
coreachable, mayReach, and ι all must be finite. As a result,
we may compute all members of ι in finite time by iteratively
applying these rules until no new members of any relation are de-
duced (i.e., until a fixed point is reached). Moreover, the fact that
these relations are all finite allows us to leverage efficient propo-
sitional techniques, for example representing relations by binary
decision diagrams.

LEMMA 4.5 (Interference analysis soundness & completeness).
Let u, v ∈ Loc andx ∈ Var. There exists anι-feasible trace that
witnesses data flow theu →x v iff there exists a single-threaded
witness, or ifu x

ι v belongs to the least fixpoint solution of the
system of interference rules in Figure 3.

Note that this lemma implies that, although we lose information
in our interference analysis by going from feasible traces toι-
feasible traces, we donot lose information by going fromn-thread
ι-feasible traces to 2-threadι-feasible traces.

The rules in Figure 3 are a simplified version of the ones we im-
plement in DUET. DUET handles some additional language features
(thread creation and atomic blocks) and has several optimizations

X

u10: counter=0

initloc

u8 : assume(counter ≤ 0) v4: assume(counter > 0)

u3: assume(counter > 0)

u4: counter++

v5: counter--

v6: assert(counter ≥ 0)

u11: counter++

ι1 ι2 ι3

initloc true true true
u3 counter=0 counter≥0 counter≥0
u4 counter=0 counter≥0 counter≥0
u8 counter=0 counter≥0 counter≥0
u10 counter=0 counter=0 counter=0
u11 counter≥0 counter≥0 counter≥0
v4 counter=0 counter≥0 counter≥0
v5 false counter>0 counter>0
v6 false counter≥0 counter≥0

Figure 4. COARSENcomputation on the program in Figure 1.

to make it more efficient. However, all the essential ideas of the
analysis are present in the rules of Figure 3.

5. Iterative coarsening
In Section 3, we gave a method for computing an annotation for
a data flow graph; in Section 4, we gave a method for comput-
ing data flow edges given an annotation. By incorporating both
components into a feedback loop, we obtain our main algorithm,
COARSEN (Algorithm 1). Given a parameterized multi-threaded
program, COARSENcomputes a DFG that represents that program
as well as an annotation that is inductive for that DFG.

Given a programP , COARSENbegins by computing a data flow
graphP ♯

1 with only intra-thread (sequential) data flow edges. It
then computes an inductive annotationι1 for P ♯

1 as discussed in
Section 3. This annotationι1 is used as input to the interference
analysis of Section 4, which computes the set ofι1-feasible data
flow edges and adds them toP ♯

1 to obtain a DFGP ♯
2 . After adding

these edges, a new (possibly weaker) annotation is computed that
is inductive forP ♯

2 . This process continues until a fixed point is
reached; that is, until we reach somek such thatP ♯

k = P ♯
k+1

. At
this point,P ♯

k represents the programP andιk is inductive forP ♯
k ,

and thereforeιk overapproximates the reachable thread states ofP
by Theorem 3.3.

This algorithm makes use of several auxiliary functions, which
are defined below.

• SequentialDFG(P) computes a sequential data flow graph for
P . This computation is a standard sequential reaching defini-
tions analysis. This graph contains all intra-thread data flow
edges, including all those for local variables, and all those orig-
inating fromuninit.

• ExtractCond(P) computes a set of observable conditions forP
by mining the program for locks and predicatesq such thatq
only uses global variables andassume(q) occurs inP .

• Invariants(〈Loc,DF〉) computes an annotation that is inductive
for the DFG 〈Loc,DF〉 using a modification of the standard
worklist algorithm, as discussed in Section 3.

• AbstractAnnotation(ι, C) computes an observable formulaι♯(v)
for every locationv that is implied byι(v) and is at least as
strong as any other observable formula with that property.

• FeasibleDataflows(P, ι♯) computes the relation ι through a
bottom-up evaluation of the logic program given in Figure 3.

EXAMPLE 5.1. Consider the program in Figure 1. Figure 4 depicts
how the DFG and annotation computed byCOARSEN evolve on
this program. For simplicity, we show only information that is rele-
vant to thecounter variable. In particular, the DFG contains only
vertices that modify or block oncounter and all thecounter-
labeled edges between them, and the annotation is restricted to re-
fer only to the variablecounter.

A special vertexX appears in the DFG to improve readability
by “factoring” edges; it does not represent a real DFG vertex. An
edgeu → X from some arbitrary vertexu to X represents four
edges:u → initloc, u → u8, u → u3 andu → v4. The vertex
initloc is the initial location of the program where every thread
begins its execution, and which hasu1 and v1 as its control flow
successors. Its action is to assume the condition of the initial state,
as in:

assume(counter = 0 ∧ lock1 = 0 ∧ lock2 = 0 ∧ batch ≥ 0)

The solid edges in Figure 4 are added in the first round, the
dashed edges are added in the second round, and the dotted edges
are added in the third round. The columns labeledι1, ι2, and ι3
represent the annotation of the corresponding location in the first,
second, and third rounds. Note that there is no edge fromu10 to
v5. This is very important for proving the assertion atv6. Since
the invariant atu10 always remainscounter=0, the interference
analysis can infer that there is no feasible path of the program
witnessing this edge. Any feasible path of the program that visits
u10 has to go through a counter increment (u11) or an assume
statement (v4) before it can reachv5, and since each of those paths
contains a location modifying counter in the segment fromu10 to
v5, they cannot be witnesses for a data flow edge fromu10 to v5.

Finally, the correctness condition of Algorithm 1 is stated in the
following theorem:

THEOREM 5.2 (Soundness).For any programP , COARSENcom-
putes an annotationι and a DFGP ♯ such thatP ♯ represents
P , and for every reachable states of P and threadn, s[n] |=
ι(sloc(n)).

Proof sketch Let ι and P ♯ be the be the annotation and data
flow graph computed by COARSEN. The termination condition

Algorithm 1 COARSEN

Input: A programP = 〈〈Loc,CF〉,GV, LV,LJ·K〉
Output: A sound annotation forP
〈Loc,DF〉 ← SequentialDFG(P)
C ← ExtractCond(P)
DF′ ← ∅
repeat

DF← DF ∪ DF′

ι← Invariants(〈Loc,DF〉)
ι♯ ← AbstractAnnotation(ι, C)
DF′ ← FeasibleDataflows(P, ι♯)

until DF′ ⊆ DF
return ι

of COARSEN implies thatι is inductive forP ♯ and everyι-feasible
trace ofP is represented inP ♯. We first prove that every feasible
traceτ of P is ι-feasible by induction onτ .

The base case is trivial, sinceǫ is ι-feasible for anyι. For the
induction step, assume thatτ〈n, v〉 is a feasible trace andτ is ι-
feasible; we must prove thatτ〈n, v〉 is ι-feasible.

Sinceτ〈n, v〉 is feasible, there must exist somes ∈ τ• and
s′ ∈ State such that〈s, s′〉 ∈ AJ〈n, v〉K. By the definition of
enabled(v), we have thats |= enabled(v). We note that for a
formula ϕ with free variables inGV, the meaning ofs |= ϕ
is unambiguous sincesenv assigns a single value to each global
variablex ∈ GV; moreover, we note that ifϕ’s free variables are in
GV thens[n] |= ϕ iff s |= ϕ, sinces[n] ands agree on the values
of all global variables.

Letm ∈ N be an arbitrary thread. Sinceτ is ι-feasible,τ is rep-
resented by the DFG〈Loc,DF〉. Sinceι is inductive for〈Loc,DF〉
ands ∈ τ•, we have thats[m] |= ι(sloc(m)) by Corollary 3.5.
It follows from the definition ofι♯ thats |= ι♯(sloc(m)), and thus
s |= ι♯(sloc(m)) ∧ enabled(v). Since this holds for allm, τ〈n, v〉
is ι-feasible (noting thatsloc(m) = endloc(τ,m)).

Since every feasible trace is anι-feasible trace, and everyι-
feasible trace is represented byP ♯, every feasible trace is repre-
sented byP ♯, and soP is represented byP ♯. Finally, let s be a
reachable thread state and letn ∈ N be a thread. Then there exists
some feasible traceτ such thats ∈ τ•. Sinceτ is ι-feasible (by the
above argument), it follows thatτ is represented byP ♯. Finally,
sinceτ is represented byP ♯ andι is inductive forP ♯, we have that
s[n] |= ι(sloc(n)) by Corollary 3.5. �

5.1 Relational abstract domains

We have discussed only the use of non-relational (also known as
independent attribute) abstract domains up to this point. Although
such domains are typically very efficient, the fact that they can-
not encode relationships between variables limits their expressive
power. In our framework, it is possible to use relational domains,
such as octagons and polyhedra, by modifying the data flow graph.
Instead having data flow graph edges labeled with a single variable,
we allowsetsof variables as labels, indicating that the value of ev-
ery variable in this set flows from the source to the target. Since a
value for eachx ∈ X flows along such an edgeu→X v, relation-
ships between variables inX can be maintained.

A particularly simple instance of this idea is to create a partition
P of the set of variablesVar into semantically related sets. Intu-
itively, we can think of each cellX ∈ P as a record-typed variable,
with one field for eachx ∈ X. For a given partitionP of Var, the
collecting semantics for a relational DFG〈Loc,DF〉with P-labeled

edges is given by the following:

VAL (u,X) = {e′ : ∃e ∈ OUT(u).∀x ∈ X.e(x) = e′(x)}

IN(v) =
⋂

X∈P

{e ∈ TEnv: ∃u→X v ∈ DF.e ∈ VAL (u,X)}

OUT(v) =

{

TEnv if v = uninit

{e′ : ∃e ∈ IN(v).〈e, e′〉 ∈ LJvK} otherwise

Using the collecting semantics as a guideline, it is straightfor-
ward to define inductive invariants for relational DFGs. The inter-
ference analysis of Section 4 must then be adapted to infer rela-
tional data flow edges. Towards this end, we redefinemod to act on
cells rather than variables as follows:

modP(v) = {X ∈ P : mod(v) ∩X 6= ∅}

By re-instantiating the interference analysis in Figure 3 with
modP in place ofmod, we obtain our algorithm for calculating
data flows in a relational DFG.

Since nonrelational analyses and relational analyses operate on
different data flow graphs, it is not generally true (as in the case of
sequential analyses) that a relational analysis is necessarily more
accurate than a non-relational analysis. There is a positive side and
a negative side to grouping variables when it comes to concurrent
program analysis. On the positive side, grouping variables together
makes it possible to infer relationships between variables, which
results in a more precise analysis. On the negative side, grouping
variables together may create additional interference edges (result-
ing in a less precise analysis), asmodP(v) is generally larger than
mod(v) (for v ∈ Loc). For example, ifbatch andcounter are
grouped together in the relational DFG construction for Figure 1,
then the interference analysis will infer the{batch, counter}-
labeled edgesv5 → u13 andu13 → v5. With these edges present,
the invariant thatcounter ≥ 0 at v5 can no longer be proved, be-
cause the inductiveness condition for annotations implies that there
is no lower bound forcounter at v5. In our experiments in Sec-
tion 6, there are cases when interval analysis succeeds in proving a
property correct when octagon analysis fails, and vice versa.

In Section 6.1, we briefly discuss the simple algorithm that we
use to partition variables into semantically related sets. While sim-
ple, this algorithm performs fairly well on our benchmarks. How-
ever, we believe that there is considerable room for improvement
with a better variable grouping algorithm.

6. Experiments
The approach presented in this paper is implemented into a tool
called DUET.3 We used a benchmark suite of 15 Linux device
drivers to evaluate DUET. Additionally, we ran DUET on the set
of Boolean programs generated by SatAbs [9] from these Linux
drivers to compare DUET with two recent techniques on verifica-
tion of parameterized Boolean programs.

6.1 Implementation

DUET is written in OCaml, and makes use of the CIL front-end for
the C language [28] and the goto program front-end distributed with
CBMC [8]. Our abstract interpreter uses the APRON library [5]
for its numerical abstract domains. We use the BDD-based Datalog
implementation bddbddb[33] to perform the interference analysis
described in Section 4. Currently, DUET accepts three types of
inputs: (1) C programs usingpthreadslibrary for thread operations,
(2) Boolean programs in the input language ofBoom [19] as an
input, or (3) goto programs, as produced by the goto-cc C/C++
frontend (part of the CPROVER project [1].

3 For more information on this tool, seehttp://duet.cs.toronto.edu

Device Drivers #assertions DUET: Interval Analysis DUET: Octagon Analysis
safe time safe time

i8xx tco 90 75 1m51s 71 1m25s
ib700wdt 75 64 30s 64 20s
machzwd 87 73 39s 67 14m44s
mixcomwd 91 72 22s 74 25
pcwd 240 147 2m43s 145 23m48s
pcwd pci 204 187 2m18s 188 2m59s
sbc60xxwdt 91 77 28s 69 11m27s
sc520 wdt 85 71 28s 65 13m20s
sc1200wdt 77 66 34s 66 33s
smsc37b787 wdt 93 80 47s 80 47s
w83877f wdt 92 78 29s 72 13m24s
w83977f wdt 101 90 34s 82 34s
wdt 99 88 25s 86 25s
wdt977 88 77 27s 75 28s
wdt pci 84 67 33s 66 5m33s
total 1597 1312 13m9s 1277 90m21s

Table 1. DUET’s Performance on Parameterized Integer Programs, run on an 3.16GHz Intel(R) Core 2(TM) machine with 4GB of RAM.

Our implementation currently inlines all function calls and then
performs an intraprocedural analysis.

Alias Analysis. We use a type-based alias analysis to handle
pointers. For each variable whose address is not taken, we assign a
memory location which receives strong updates. For every type in
the program, we assign a memory location which receives weak up-
dates, and each access path of that type (other than variables whose
address is not taken) is considered to be a reference to that mem-
ory location. The interference analysis implemented in DUET oper-
ates on these memory locations rather than variables. This scheme
is sound under the assumption that pointer-typed expressions are
never cast. For the benchmark suite used in Section 6.2, aliasing
is not particularly important for proving array bounds and integer
overflow properties. Therefore, we expect the consequences of our
unsound and imprecise alias analysis to be negligible.

We use Algorithm 2 to partition variables into semantically
related sets for our implementation of octagon analysis. While
simple, it seems to be effective in practice when performing an
octagon analysis on Boolean abstractions of Linux device drivers.

Algorithm 2 Variable partitioning algorithm
Input: A set of program locationsLoc, a set of local variablesLV

and global variablesGV
Output: A partition ofVar

//P is a disjoint set data structure
P← {{x} : x ∈ Var}
for v ∈ Locdo

if v is an assignment statementthen
vs← mod(v) ∪ ref(v)
if |vs| = 2 ∧ (vs ⊆ LV∨ vs ⊆ GV) then

Merge the partitions of eachx ∈ vs
end if

else ifv = assume(p) then
if vars(v) ⊆ LV∨ vars(v) ⊆ GV then

Merge the partitions of eachx ∈ vars(v)
end if

end if
end for
return P

6.2 Evaluation

Below, we provide the results of experimenting with DUET on a
collection of Linux device drivers and on Boolean abstractions of
those drivers. Since a driver may have arbitrary many clients, it is
important to verify these drivers in a parameterized setting.

Parameterized Integer Programs. Table 1 presents the result of
running DUET on a collection of 15 Linux device drivers. These
drivers are all written in C, and include infinite data (such as
integer types). We know of no other tool that can verify numerical
properties of such large programs with arbitrarily many threads,4

and therefore we present the result of running DUET on these
integer benchmarks without comparison with other tools.

DDVerify and goto-cc are used to (automatically) process each
driver into a fully-inlined goto program annotated with assertions
checking array bounds and integer overflows/underflows. With an
interval analysis, DUET manages to prove most of the assertions
correct (1312 out of a total 1597), and does so in 13 minutes.
DUET’s performance using an octagon analysis is slightly worse,
proving 1277 assertions correct in 90 minutes.

Most false positives for DUET appear to be caused by one of
two reasons: imprecision in the abstract domain, and imprecision
in how DUET handles the treatment of spinlocks in goto programs.
In particular, many drivers use traverse zero-terminated arrays asin
the snippet below:

for (i=0; array[i]; i++) { ... }

Since our abstraction of arrays has no special representation for
zero-terminated arrays, DUET flags this as an array bound error
(since no upper bound fori can be inferred). Our handling of spin-
locks is imprecise because goto programs model them as pointers to
integers (which take value either 0 or 1, depending on whether the
lock is acquired), access to which is protected by atomic blocks.
Due to our imprecise alias analysis, lock acquisitions can only
weaklyupdate this integer field, which means that two threads can

4 It is possible to run Boom on the integer benchmarks by first extracting
Boolean programs with SatAbs. However, SatAbs is designed for sequential
programs rather than concurrent ones, and the Boolean programs extracted
by the version of SatAbs that was available at the time we ran our experi-
ments produced poor results: the combined SatAbs+Boom procedure took
2 days and did not prove any assertions correct.

Device Drivers #programs LI DUET: Octagon Analysis DUET: Interval Analysis
safe unsafe unknown timeout safe unsafe timeout safe unsafe timeout

i8xx tco 338 214 14 0 110 259 79 0 198 140 0
ib700wdt 181 109 13 0 59 124 56 1 91 90 0
machzwd 255 56 24 94 81 182 70 3 148 105 2
mixcomwd 178 103 24 0 51 117 59 2 81 95 2
pcwd 100 81 1 0 18 74 16 10 44 50 6
sbc60xxwdt 174 92 23 0 59 113 60 1 79 94 1
sc1200wdt 247 138 13 0 96 178 67 2 138 107 2
sc520 wdt 186 15 23 97 51 123 61 2 89 95 2
smsc37b787 wdt 340 154 13 0 173 272 65 3 151 187 2
w83877f wdt 230 15 23 97 95 150 77 3 98 128 4
w83977f wdt 389 147 13 0 229 322 65 2 144 243 2
wdt 230 109 17 0 104 161 59 10 108 114 8
wdt977 351 139 13 0 199 282 67 2 132 218 1
wdt pci 217 10 34 4 169 146 69 2 146 69 2
total 3416 1382 248 292 1494 2503 870 43 1647 1735 34

Table 2. Comparison with linear interfaces [22] for Parameterized Boolean Programs. Average time per benchmark was 16.9s for LI and
3.4s for DUET. Benchmarks were run on an 3.16GHz Intel(R) Core 2(TM) machine with 4GB of RAM.

acquire the same lock. Neither of these sources of imprecision is
due to a fundamental limitation of the analysis technique proposed
in this paper (or related to concurrency), and we expect that our
false positive rate to drop considerably with the core algorithm un-
changed.

Parameterized Boolean Programs. Although Boolean programs
are not the target of this work, we experimented with them for two
reasons: (1) two recent approaches [19, 22] for verification ofpa-
rameterizedconcurrent programs only accept Boolean programs as
their input, and (2) there is no aliasing present in Boolean programs,
which limits the scope of implementation-related imprecision for a
better evaluation of the core method.

DUET does not require a predicate abstraction phase to handle
Linux device drivers, but to present a more fair comparison with
the existing tools [19, 22], we also ran DUET on the Boolean
abstractions. We compare DUET against two recent algorithms that
handle parameterized Boolean programs: dynamic cutoff detection
(DCD) from [19], as implemented in Boom, and linear interfaces
(LI) from [22], as implemented in Getafix. We compared these tools
against our own on the benchmarks used in the papers (as provided
by the authors). The programs were generated by SatAbs from a set
of Linux device drivers. The input formats of Boom and Getafix are
slightly different, so we report the results separately. Theib700wdt
andmixcomwd benchmarks were generated from the same device
drivers, but refer to a different set of Boolean programs in Tables2
and 3. Each LI benchmark consists of a server and a client thread
template, where the client template is replicated arbitrarily many
times. The client thread template is the device driver code, and the
server thread template simulates the OS interacting with the drivers.
In the DCD benchmarks, there is a single thread template that is
replicated. All benchmarks were run with a timeout of 5 minutes.

Table 2 presents the results of comparison with the LI algorithm
on the set of Boolean programs used in [22]. In the LI algorithm, the
system is tested under 4 rounds of scheduling to look for a counter
example, and if one is not found then an adequacy checker is exe-
cuted thatmaysucceed in proving the program safe for arbitrarily
many threads and rounds of scheduling. Thesafecolumns refer to
the number of instances that were proved safe (for each analysis).
Theunsafecolumn for LI refers to the instances for which LI found
a counterexample (a confirmed bug), while in DUET, it refers to the

instances where assertions could not be proved safe.5 The timeout
column for LI refers to instances where LI cannot finish checking
the program under 4 rounds, or cannot find a counterexample un-
der 4 rounds and the adequacy checker times out while trying to
prove the program safe. Thetimeoutcolumn for DUET refers to all
the instances that DUET cannot prove safe within the timeout limit.
The unknowncolumn for LI refers to the instances that no coun-
terexample is found, and the adequacy checker finishes but fails to
prove the program safe for arbitrary number of threads.

In almost all benchmarks (other thanpcwd), DUET can prove
many more instances safe (and forpcwd, it is close: 74 vs. 81).
DUET can prove many of theunknownandtimeoutinstances of LI
safe. The small table below presents a different view of the same
results (not distinguishing among individual drivers).

LI
safe unsafe timeout unknown

O
C

T safe 1320 0 267 916
unsafe 60 247 25 538
timeout 2 1 0 40

The above table compares the results of the octagon analysis
in DUET with LI. D UET can prove an additional 1183 (267+916)
programs correct compared to LI. There are 60 instances that DUET
reports aconfirmed false positive(a program that is known to
be safe, but DUET fails to prove safe). There are a total of 2503
(1320+267+916) programs that are proved safe by DUET, and 247
programs that are correctly declared unsafe, and therefore DUET
generates a total of 2750 correct answers. This puts the percentage
of incorrect answers out of the total number ofconfirmedcorrect
and incorrect answers for DUET at 2.1% (60/(2750+60)).

Table 3 presents the results of comparison with the DCD algo-
rithm on the set of Boolean programs used in [19]. In the DCD
algorithm, there is only one thread template which is increasingly
replicated until a counterexample or a cutoff point is found (a cut-
off point is a number of threadsn such every thread state that is
reachable withm ≥ n threads is also reachable withn threads).
For the subset of these benchmarks where DCD does not time out,
the cutoff is at most 3 threads. DUET’s interval and octagon analy-
sis substantially outperforms DCD in proving programs correct. In

5 Note that since our approach is not complete, failure to provean assertion
does not imply that the assertion is necessarily false.

Device Drivers #programs DCD DUET: Octagon Analysis DUET: Interval Analysis
safe unsafe timeout safe unsafe timeout safe unsafe timeout

ib700wdt 132 10 102 20 16 113 3 28 101 3
mixcomwd 138 9 108 21 16 118 4 27 107 4

Table 3. Comparison with dynamic cutoff detection (DCD) [19] for parameterizedBoolean programs. Average time per benchmark was
24.9s for DCD and 8.2s for DUET. Benchmarks were run on an 800MHz AMD Opteron(tm) machine with 32 GB of RAM.

particular, DUET can prove a total 58 programs correct (with inter-
val and octagon analysis combined) in contrast to 19 for DCD, and
there are no programs which DCD proves safe and which DUET
cannot.

7. Related Work
Verification and analysis of concurrent programs has been vastly
studied. Here, we focus on verification of parameterized concurrent
programs and systems which is more relevant to our work.

Extensive research has been done in the area verification of
parameterized protocols. These include (but are not limited to)
split invariants[10], regular model checking [6, 20], parameterized
model checking [12], network invariants [16, 21], and exploiting
symmetry [13] in the Murφ tool [16]. Counter abstraction[3, 30]
has been a useful technique in verifying replicated components, al-
though bounded. As discussed in Section 1, we believe that proving
functional correctness of a protocol is much more involved com-
pared to proving program assertions correct in program such as a
device driver (the focus of our work). For example, the correctness
of Lamport’s Bakery protocol [24] requires complex global invari-
ant with quantifiers. In contrast, we expect driver code to use signif-
icantly simpler invariants to enforce synchronization, such as a flag
being set or a lock being held. Moreover,globalprogram properties
(such as mutual exclusion) are part of the correctness of a protocol
(such as Bakery), whereas we focus on program assertions, which
are not expressive enough to relate the states of different threads to
each other.

To the best of our knowledge, the body of work on verifica-
tion of parameterized protocols (some of it mentioned above) does
not contain a single tool that can, for example, effectively verify
numerical properties of Linux device drivers with unboundedly
many threads. Recently, two new approaches [19, 22] have been
proposed for verification of parameterized Boolean programs that
target Boolean abstractions of Linux device drivers, and are more
closely related to our work. In [19], acutoff detectionalgorithm is
proposed to determine a bound on the number of threads needed to
explore all thread states. In [22], an under approximation method
based on limiting the number of scheduler rounds (as opposed to
context-switches) and the use oflinear interfacesto summarize in-
terference in a round is proposed. We compare against both these
algorithms in our experiments in Section 6. The most important
advantage of our framework is that we handle unbounded data do-
mains such as integers, whereas these other techniques are limited
to Boolean programs. Based on our experiments, it is a significant
advantage to be able to apply directly to integer programs, since
predicate abstraction does not make any considerations for threads
(a very recent work [11] takes a first step towards closing this gap
by making predicate abstractionsymmetry-aware).

In [4], an abstract domain construction was presented which can
represent invariants of the form∀t.ϕ(t), wheret is a variable rep-
resenting a threadϕ(t) is an abstract value in some base domain.
Since such an invariant is an assertion aboutall threads rather than
some fixed set, this technique is applicable to parameterized pro-
grams. The authors apply their construction to a shape domain and
successfully verify linearizability for a number of concurrent data

structures, a property that is more complex than the type we con-
sider in this paper. However, computation of abstract transformers
for quantified domains is potentially very expensive. Moreover, our
computation of thread interference using traces is potentially more
accurate than their method, which is state-based.

There are a few recent approaches in concurrent program veri-
fication [15, 18, 25] which assume afixednumber of threads (and
therefore not applicable to parameterized programs and not directly
comparable to our work), but are worth mentioning here. The work
in [15] uses predicate abstraction to automatically generate envi-
ronment abstractions for threads in a rely-guarantee based proof
method. They attempt to find a modular proof (where the environ-
ment of every thread refers only to global variables) if one exists,
and generate a non-modular one (local variables can occur every-
where) otherwise. They can prove more sophisticated properties
(such as correctness of Bakery algorithm) than DUET, but only for
a small fixed number of threads (2-4); therefore, it is hard to draw
any fair comparison between the two tools. The work in [18] is
based on abstract interpretation, where theyrefine the transaction
graphswhich model interference among threads, using abstract in-
terpretation. At a high level, our work is similar to the approach
in [25]; however, there are significant differences (besides the fact
that our approach deals with parameterized programs). Our notion
of interference is quite different, and our need to iterate our analy-
sis until convergence is for a different reason. In particular, in [25],
the notion of interference isstatic in the sense that the structure of
the dataflow equations do not change from one round to the next;
only the abstract values involved change.

8. Conclusion and future work
We propose a solution to the problem of verifying thread invariants
for parameterized multithreaded programs. Our approach is based
on an iterative framework consisting of a feedback loop between
two components: one that computes data invariants using a data
flow graph representation of the program and another that uses the
data invariants to infer new data flow edges and update the data flow
graph. Our algorithm is sound and terminating, and is applicable
to programs with infinite state (e.g., unbounded integers) and un-
boundedly many threads. We have implemented our approach into
a tool, called DUET, and applied it to a selection of Linux device
drivers and a large suite of Boolean programs. Our experiments
demonstrate the effectiveness of the approach in proving properties
of parameterized concurrent programs in terms of both speed and
precision.

Aliasing is a big obstacle for any program verification method,
and more specifically for concurrency verification. In our frame-
work, distinguishing two global variables as non-aliases can po-
tentially have a huge impact on the patterns of interference among
threads, and make or break a proof of correctness. Also, naturally,
information about data invariants and thread interferences can re-
sult in a more precise alias analysis for concurrent programs. We
believe that combining alias analysis inside the feedback loop in
our framework is an interesting research question for future work.
As discussed in Section 5.1, a more intelligent algorithm for com-

puting variable groups for relational analyses will also definitely
improve the precision and scalability of our analysis.

Acknowledgments
We wish to thank Andreas Podelski for his significant role in im-
proving the presentation of this paper. We would also like to thank
Patrick and Radhia Cousot for their comments on an earlier ver-
sion of this paper. Finally, we thank Alexander Kaiser and Gennaro
Parlato for providing the Boolean programs and for their help with
running Boom and Getafix.

References
[1] J. Alglave, D. Kroening, N. He, A. Ranjan, N. Seghir, and

M. Tautschnig. CPROVER project, Nov. 2011. URL
http://www.cprover.org/.

[2] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. D. Zuck. Parameterized
verification with automatically computed inductive assertions. InCAV,
pages 221–234, 2001.

[3] G. Basler, M. Mazzucchi, T. Wahl, and D. Kroening. Symbolic counter
abstraction for concurrent software. InCAV, pages 64–78, 2009.

[4] J. Berdine, T. Lev-Ami, R. Manevich, G. Ramalingam, and M. Sagiv.
Thread quantification for concurrent shape analysis. InCAV, volume
5123 ofLNCS, pages 399–413. 2008.

[5] J. Bertrand and A. Mińe. Apron: A library of numerical abstract
domains for static analysis. InCAV, pages 661–667, 2009.

[6] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model
checking. InCAV, pages 403–418, 2000.

[7] J. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, andM. Sridha-
ran. Efficient and precise datarace detection for multithreaded object-
oriented programs.SIGPLAN Not., 37:258–269, 2002.

[8] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In K. Jensen and A. Podelski, editors,Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2004), volume
2988 ofLecture Notes in Computer Science, pages 168–176. Springer,
2004. ISBN 3-540-21299-X.

[9] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Satabs: Sat-
based predicate abstraction for ansi-c. InTACAS, pages 570–574,
2005.

[10] A. Cohen and K. S. Namjoshi. Local proofs for linear-time properties
of concurrent programs. InCAV, pages 149–161, 2008.

[11] A. F. Donaldson, A. Kaiser, D. Kroening, and T. Wahl. Symmetry-
aware predicate abstraction for shared-variable concurrent programs.
In CAV, pages 356–371, 2011.

[12] E. A. Emerson and V. Kahlon. Model checking large-scale and pa-
rameterized resource allocation systems. InTACAS, pages 251–265,
2002.

[13] E. A. Emerson and A. P. Sistla. Symmetry and model checking.Form.
Methods Syst. Des., 9:105–131, 1996.

[14] D. Engler and K. Ashcraft. Racerx: effective, static detection of race
conditions and deadlocks.SIGOPS Oper. Syst. Rev., 37:237–252,
2003.

[15] A. Gupta, C. Popeea, and A. Rybalchenko. Predicate abstraction and
refinement for verifying multi-threaded programs. InPOPL, pages
331–344, 2011.

[16] C. N. Ip and D. L. Dill. Verifying systems with replicatedcomponents
in murφ;, 1997.

[17] R. Johnson and K. Pingali. Dependence-based program analysis. In
PLDI, pages 78–89, 1993.

[18] V. Kahlon, S. Sankaranarayanan, and A. Gupta. Semantic reduction
of thread interleavings in concurrent programs. InTACAS, pages 124–
138, 2009.

[19] A. Kaiser, D. Kroening, and T. Wahl. Dynamic cutoff detection in
parameterized concurrent programs. InCAV, pages 645–659. 2010.

[20] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar.Symbolic
model checking with rich assertional languages. InCAV, pages 424–
435, 1997.

[21] Y. Kesten, A. Pnueli, E. Shahar, and L. D. Zuck. Network invariants
in action. InCONCUR, pages 101–115, 2002.

[22] S. La Torre, P. Madhusudan, and G. Parlato. Model-checking param-
eterized concurrent programs using linear interfaces. InCAV, pages
629–644. 2010.

[23] S. K. Lahiri and R. E. Bryant. Predicate abstraction with indexed
predicates.ACM Trans. Comput. Logic, 9, 2007.

[24] L. Lamport. A new solution of dijkstra’s concurrent programming
problem.Commun. ACM, 17(8):453–455, 1974.

[25] A. Miné. Static analysis of run-time errors in embedded critical
parallel c programs. InESOP, pages 398–418, Berlin, Heidelberg,
2011. Springer-Verlag. ISBN 978-3-642-19717-8.

[26] M. Naik and A. Aiken. Conditional must not aliasing for static race
detection.SIGPLAN Not., 42:327–338, 2007.

[27] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for
Java.SIGPLAN Not., 41:308–319, 2006.

[28] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil: Intermedi-
ate language and tools for analysis and transformation of c programs.
In CC, pages 213–228, 2002.

[29] A. Pnueli, S. Ruah, and L. D. Zuck. Automatic deductive verification
with invisible invariants. InTACAS, pages 82–97, 2001.

[30] A. Pnueli, J. Xu, and L. D. Zuck. Liveness with(0, 1,∞)-counter
abstraction. InCAV, pages 107–122, 2002. ISBN 3-540-43997-8.

[31] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith: context-sensitive
correlation analysis for race detection.SIGPLAN Not., 41:320–331,
2006.

[32] N. Sterling. Warlock - a static data race analysis tool.In USENIX
Winter, pages 97–106, 1993.

[33] J. Whaley and M. S. Lam. Cloning-based context-sensitivepointer
alias analysis using binary decision diagrams.SIGPLAN Not., 39:131–
144, June 2004. ISSN 0362-1340.

