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Abstract 1. Introduction

In this paper, we consider the problem of verifying thread-state Concurrent programs are notoriously hard to verify. Verification of
properties of multithreaded programs in which the number of ac- concurrent systems has been a very active area of research in the
tive threads cannot be statically bounded. Our approach is based orpast few years. There has been significant progress with testing and
decomposing the task into two modules, where one reasons aboubug finding techniques, but due to a huge number of possible sched-
data and the other reasons about control. The data module computesles (even with a fixed input), it is hard to provide useful coverage
thread-state invariants (e.g., linear constraints over global variablesguarantees. Standard model checking techniques provide coyerage
and local variables of one thread) using the thread interference in-but suffer from the state explosion problem. Static analysis tech-
formation computed by the control module. The control module niques [7, 14, 26, 27, 31, 32] have been successful in checking
computes a representation of thread interference, as an incremensimple generic properties such as race and deadlock freedom.
tally constructediata flow graphusing the data invariants provided There is a large class of concurrent programs that are designed
by the data module. These invariants are used to rule out patternsto be executed by an arbitrary number of clients (for example, de-
of thread interference that can not occur in a real program execu-vice drivers, concurrent data structure libraries, and file systems).
tion. The two modules are incorporated into a feedback loop, so This class of programs, commonly callpdrameterized concur-
that the abstractions of data and interference are iteratively coars-rent programs are more difficult to verify than concurrent pro-
ened as the algorithm progresses (that is, they become weaker) ungrams with a fixed number of threads. The verification problem for
til a fixed point is reached. Our approach is sound and terminat- parameterized systems has been studied extensively [2, 3, 6, 10, 12,
ing, and applicable to programs with infinite state (e.g., unbounded 13, 16, 20, 21, 23, 29, 30]; however, the focus has mostly been on
integers) and unboundedly many threads. The verification method verifying protocols These protocols (for example, Lamport’'s Bak-
presented in this paper has been implemented into a tool, calledery protocol [24] and Peterson’s mutual exclusion algorithm) are
DuET. We demonstrate the effectiveness of our technique by veri- oftensmallprograms, but the reasoning behind their correctness is
fying properties of a selection of Linux device drivers usinge, usually complicated (see Section 7 for a more detailed discussion),
and also compare DET with previous work on verification of pa-  specially when functional correctness is the goal (e.g. mutual ex-
rameterized Boolean program using the Boolean abstractions ofclusion). In contrast, we are interestedlamge programs such as
these drivers. device drivers and file systems, where the reasoning behind their
correctness is more straightforward. In these programs, undesired
inter-thread interference is usually prevented by simple synchro-
nization mechanisms, and the majority of the verification effort is
spent in reasoning about the sequential behaviour of each thread.
Moreover, we are interested in provipgogram assertionswvhich
is easier to handle than proving functional correctness of proto-
cols. Program assertions are Boolean combinations of program ex-
pressions that relate shared variables to local variables of a specific
General Terms  Verification, Algorithms, Reliability thread at a location in that thread. They are expressive enough to in-
clude interesting properties of concurrent programs such as the ab-
Keywords Concurrency, Abstract Interpretation, Compositional sence of null pointer dereferences or out of bounds array asess
Reasoning, Data Flow Graphs, Parameterized Programs, Threadje believe that this combination of programs and properties is a
Invariants good candidate for automated verification in the parameterized set-
ting, and is the target of the work presented in this paper.

We propose a static analysis technique that separates the verifi-
cation task into a data module and a control module. This separa-
tion achieves botlprecisionandscalability for proving assertions
correct in concurrent programs with unboundedly many threads.
The data module, using an abstract interpreter, computes data in-
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feedback loop to collaboratively compute a solution to the verifi- We implemented our approach in a tool called&x and eval-
cation problem. This strategy can be used to gen¢ha¢ad-state uated it on a set of 15 Linux device driversuBT can prove a
invariantsfor program locations, i.e. invariants that do not refer to total of 1312 (out of 1597) of array bounds and integer over/un-
the local variables of more than one thread. These invariants can bederflow assertions safe in 13 minutes. We also compared1D
used for proving the absence of program assertion failures. against two recent tools that deal with parameterized concurrent
One of the enabling ideas of our modular approach is to use a Boolean programs, namely Getafix [22], and the dynamic cutoff
data flow graph as a program representation for performing abstractdetection (DCD) algorithm of [19], which are both based on model
interpretation. In data flow graphs, only the flow of data is modeled; checking. We compared against DCD [19] and Getafix [22] on the
control constructs (which are irrelevant to a data analysis) are ab- set of benchmarks provided by the authors, which are Boolean ab-
stracted away. Data flow graphs offer a convenient way to representstractions (generated by the SatAbs [9] tool) of the aforementioned
the interference between threads: for example, if one thread writesLinux device drivers. DET has the clear advantage of being di-
to a global variable at some locatianwhich is subsequently read  rectly applicable to the drivers (as opposed to their Boolean ab-
by another thread at locatian thenw andwv are connected by a  stractions), but we performed these experiments to show that it does
data flow edge. Also, since each program location (regardless of outperform these tools even at the level of Boolean programs. Our
the number of threads in the system) is represented by one vertexexperiments shows thatUgT substantially outperforms Getafix,
in the data flow graph (i.e. there is no explicit representation for by proving 2505 (compared to 1382 for Getafix) Boolean programs
threads), it is possible to use them to analyze data in parameter-correct. DUET also outperforms DCD by proving 58 programs safe
ized systems. Computing data invariants over a data flow graph isin contrast to only 19 programs that DCD can prove safe.
mostly as straightforward as abstract interpretation for sequential
programs; the idea is that the structure of a data flow graph cap-1.1  Motivating example
tures the interference among threads, and therefore, one only need

to focus on how data flows through this structure Fn concurrent programs, threads communicate using many differen

methods. They may communicate through synchronization primi-
tives such as locks or wait/notify, which can be viewedcas-

trol type primitives that only affect the feasible control paths in a
thread, and not the data. Threads may also communicate via read-
behind our approach. ing from and writing to shared memory, which atatatype prim-

We start by assuming itives. In the presence of both patterns of communication among
no interference among| |Pata nvariant Interference threads, precise reasoning about the program often involves rea-
threads (as if threads| | Generation Deduction soning about botldata and control simultaneously. But, doing so

are running sequen- can be very expensive, specially for a programs with an unbounded
tially), and through ab- number of threads. In this paper, we present a scalable approach to
stract interpretation cony reason aboutlata and control in separate but collaborating mod-

The figure on the

. . . Data Invariants
rightillustrates the idea -

) Data Flow Edge: : . .
pute the first set of e oW e ules. In this section, we use an example that includes both modes

data invariants(per program location). At this stage, the data flow of communication among threads (through both data variables and
graph only contains data flow edges that correspond to the sequeniocks) to provide a high level understanding of our approach.
tial executions of program threads. Then, the data invariants are  Figure 1 illustrates a simplified concurrent producer-consumer
passed to a deduction system, which uses them to compute a nevexample. Let us assume that each statement is executed atomically,
set of data flow edges. The deduction system uses the data invari-and that initially no thread holds any locks, andunter is O.
ants to reason about what patterns of inter-thread interference areThe producer can produce items one-by-one or in batch mode, and
feasible, and adds the corresponding data flow edges, which captur&keeps track of the number of produced items waiting to be con-
these new interference patterns, to the data flow graph. These newsumed using the global variabt®unter. Two producers cannot
data flow edges may result in computing weaker data invariants in produce items simultaneously, but a consumer can run in parallel
the next round. These weaker invariants may trigger the addition of with a producer in batch mode. The consumer, if there are items to
more data flow edgexd@arseningthe data flow graph). This loop  process, consumes them one-by-one, by decrementingter.
continues until a fixed point is reached. The assertion aig states a correctness property for the consumer:
The analysis we use for computing data flow edgeseisi- the number of items waiting to be consumed must be non-negative.
compositional Inter-thread data flow is a property that intuitively At position u1o in the producer, the value afounter is always
involves two threads: one that writes to a global variable, and one zero, so the assignmentat, does not add any behaviour, but it
that reads from it. Ideally, one would like to reason about the exis- helps us demonstrate an interesting point.
tence of data flow edges by considering only two threads at atime.  This program demonstrates the use of both synchronization
However, it is not generally sound to reason using only two threads, primitives (locks in this case), and conditional statements to rule
since a program path (e.g. from a write to a read) may involve many out undesired interference from other threads. For example, if the
threads synchronizing with each other. We overcome this problem goal is to prove that the assertiomgtholds, then one must prove
by using data invariants (from the data invariant generation mod- that the zero value assigned ¢ounter at uio cannot reach the
ule) to soundly approximate the effects of other threads that may decrement ats, and consequently falsify the assertion. In other
contribute to a data flow path being realizable. An invariant associ- words, we need to rule out a pattern of thread interference in order
ated with a program location corresponds to an overapproximation to prove the desired invariantaf andvs. The interesting aspect of
of the values of the program variables when at least one thread isthis example is that the reverse is also true: since the locatigns
at that location. Therefore, we may reason about data flow pathsandwvs are not protected by a common lock, in order to rule out the
that may require the participation of arbitrarily many threads while undesired interference, one needs to rely on the fact that, #te
considering only two threads at a time. We call our appreaehi- value ofcounter is always strictly positive. In this scenario, if one
compositionalin contrast to fully compositional) because our rea- starts from a weak invariant at, one cannot rule out interference
soning method over two threads is hon-compositional (all pairs of from w0, and (reversely), if one starts by assuming the interference
locations are considered), while every other thread in the system isfrom w1 may occur, one cannot prove the data invariant needed to
accounted for in a compositional manner. rule out this interference.



Here, we explain how our algorithm operates on the program  int Producer(int batch) void Consumer ()

in Figure 1 at a high level. In Section 5 (in Example 5.1), we { {

will revisit this example and explain it in more detail. First, we u1' acquire(lock2) v lock(lockl)

assume thaProducer and Consumer are executed sequentially ~ %2: acquire(locki1) while(*) {

with no interaction, and compute a sequential data flow giaph if (0 { v unlock(lock1)
u3: assume (counter>0) V3! lock(lockl)

Next, a set of data invariants is generated frﬁ’rl‘h This analysis

determines that th€onsumer threads cannot reach locatios Z‘*j counter++ " i
and that inProducer threads, location, is unreachable. Using 5 unlock(lock1) 4: assume(counter>0)
unlock(lock?2) Vs. counter--

the previously computed data invariants, the interference deduction "¢

unit computes new data flows, and adds the appropriate edgésto " } ritun{l ! 561 asier;goug;;“r):o)
to get a data flow grapPzﬁ. For example, this analysis determines ug: zszzme(counter<=o) T } untockitoc

that the value o€ounter from u;2 may reach the beginning of the o unlock (lockl)

Producer andConsumer threads, and so adds the edges — va U10: counter = 0

and u12 — wus. The interference deduction unit uses the fact while(¥) {

that counter=0 is an invariant ato to infer that the value of Uit assume (batch>0)

counter from uio cannot flow tovs without passing through,, Uto: counter++

and therefore, doewtadd an edge from;, to vs. Data invariants Urs: batch—-—

are then generated for the data flow grdb;h which determines }

thatus anduvs are now reachable, and thadunter € [0, 00) at Uis assume (batch<=0)

u1. The subsequent interferencg anglysis computes new data flow,, .- unlock(1ock2)
edges, for examplgm = u, whl_ch is possible as the result of ;- return batch
u1's new (weaker) invariant. The invariants are still strong enough 3
to prove that there is no data flow from, to vs. These edges are }
added toPZﬁ to get a new data flow gramagﬁ. The data analysis runs
on P!, but does not produce weaker invariants, and consequently,
the subsequent interference analysis does not produce any new data
flow edges. The algorithm then terminates, having computed a set ) o L
of invariants that soundly approximate the dynamic behaviours of ~ We will assume thaGV, LV, andN x LV are pairwise disjoint
the program. These invariants are strong enough to prove that the(d Pair(n, z) € N x LVis conceptually thread’s copy of the local
assertion ats never fails. v_arlal_)lt_ea:) and _deflne the set of var_lablém = GVU I__V. For
The rest of this paper is organized as follows. In Section 2, simplicity, we Wlll_assum_e that all variables are qf type integer.
we define our program model. We define the data flow graphs in A global stateis a pairs = (sen sioc) consisting of a global
Section 3, and discuss how data invariants can be computed byenV!fonmentSenv € GEnv = _(GV UN x LV) — Z and an
abstract interpretation of data flow graphs; this constituteslaie assignment of a control location to each threagl : N — Loc.
portion of our analysis. We then discuss construction of the data A thread statés a mapping: € TEnv= Var — Z from variables
flow graphs in Section 4 where we explain how data invariants are © values. For a given thread € N and global state, thethread
used to infer new data flow edges. The complete algorithm as anState ofn in s, which we denote by[n], and which is defined by

Figure 1. Producer-Consumer Example.

iterative framework is presented in Section 5. Section 6 presents (@) if 2 c GV
our experiments, Section 7 discusses related work, and Section 8 [n)(z) = SemA T Le
concludes. sen((n,z)) otherwise

The functionL[-] : Loc — TEnvx TEnvassociates a tran-
) sition relation on thread states to every location. We call a pair
2. Notation and the program model a = (n,(v,v')) consisting of a threach € N and a control

We define a program to be a 4-tugfe= (H, GV, LV, £[-]), where flow edge (v,v") e/ QF an action If the targetv’ of the con-
H = (Loc, CF) is afinite control flow graph (CFG) whose vertices trol flow e_dge <v,v.> is understood from the context or irrele-
we calllocations GVis a finite set of global variableky is a finite vant, we simply write(n, v). We useA[a] to denote the (global
set of local variables, and[.] assigns to each control location a state) transition relation associated with the actiowhich is ob-
transition relation. For the rest of this section, we will formalize tained by lifting£[v] from thread states to global states as follows:
this program model and introduce notation to be used in the rest of (8:8") € Al(n, (v,v'))] <= (e, ') € L]v] such that
the paper. _ e s[n] = eands’[n] = ¢

We will identify threads with natural numbers, where the be- , ,
haviour of an individual thread is given by the control flow graph ~ ° sioe(1) = v @ndsige(n) = v
H = {Loc, CF) together with the semantic functiaf{-]. The ini- e vn' € N\ {n}. siec(n’) = sjoc(n’)
tial vertex of H, which is assumed to have no control flow prede- / ’ o ’
cessors, is denoted biyit,c. The behaviour of the prograi is * v €N\ {n}, Ve € V. send (', 7)) = send (7', 2)).
defined to be that of the infinite parallel composition of all threads Given a sequence of actionsand a subsetN C N, the
n € N. Since we are interested in thread invariants, we can restrict projection of p onto N, denotedp|n, is the subsequence of
ourselves to finite executions, in which only finitely many threads consisting of all actions whose thread identifiers belongvtoA
can participate. Thus, for proving thread invariants, our program trace o is a finite sequence of actions such that, when projected
model is equivalent to the parameterized model in wiitdk taken onto a single thread, corresponds to a path in the &H&ginning
to be the finite parallel composition of all threads up to séneN, at the initial locationinitioc. FOr a traces, the post states o
wherek is a parameter. We also note that we lose no generality in (denoteds®) is the set of final states of that execution. A trace
assuming that every thread € N executes the same code, since is feasibleif 7°* is nonempty. For a trace and a threach € N,
several code segments can be simply combined into one. we useendlodo, n) to denote the end location of the CFG path



o|¢ny. Note thatendloc has the property thats € o°, Vn € N,
sioc(n) = endlodo, n).

A thread-state property is an assertipwith free variables in
Var. We will denote the set of such formulae By(Var) (and more
generally,7 (V') will denote first-order formulae with free variables
in V). For a thread staie we writee |= ¢ to denote that satisfies

To provide some intuition on our program model, we will de-
scribe how to represent locking. A lock is represented by a global
variablelock € GV. Let acqbe a location wheréock is to be ac-
quired, and letel be a location where it is to be released. Then we
can define

L[acq = {(e, e[lock + 1]) : e(lock) = 0}

L[rel] = {{e, e[lock < 0]) : e(lock) = 1}
Note that, given a feasible trace the fact thatr® is nonempty
implies that there is no point alongin which two threads hold the
same lock.

Our program model does not support conditional branching, but
this can be simulated with nondeterministic branching &sghme
actions, whereC[assume(c)] = {(e,e) : e = c}. Programs
that depend on the initial state satisfying some propertgan
be simulated by defining [initioc] asL]assume(p)]. Although
our algorithm (and our implementation) handles dynamic thread
creation, we omit it from this presentation for the sake of simplicity.

3. Data flow graphs

Data flow graphs (DFGSs) are a program representation that explic-
itly represents the flow of data in a program, rather than the flow of
control as in a control flow graph. Our analysis uses DFGs to com-
pute program invariants by interpreting each edge of the DFG as
a constraint and then computing an overapproximation of the least
solution to this constraint system via abstract interpretdtion.

A DFG for a programP is a directed graptP* = (Loc, DF),
whereDF C Loc x Var x Locis a set of directed edges labeled
by program variables, and where we assume ltloatcontains an
additional locationuninit (with no incoming or outgoing edges
in the control flow graph of?). We will useu —* v to denote the
triple (u, =, v) € Loc x Var x Loc.

We define the collecting semantics of a DFG = (Loc, DF)
to be the least solution to the following set of equations:

VAL (u, z) = {e(x) : e € OUT(u)}
IN(v) = ﬂ {e € TEnv: Ju =" v € DF.e(z) € VAL (u, )}

xEVar
TEnv if v =uninit
OUT() = {{e/ : Je € IN(v).{e,e’) € L[v]} otherwise

Consider the example in Figure 2. This figure depicts a program
with two code segments, each of which may be executed by ar-
bitrarily many threads. Variable is global, and variabléncr is
local. Each vertex (except the special vertexnit) has at least

~~
Global:c
Local:incr -
U1: incr = 1
U2: ¢ = ¢ + incr
Il
V1. incr = -1

v2. assert(c > 0)

c vg: assert(c>0)

Figure 2. A program and a data flow graph representing it.

indicate that a particular variable may get its value from the ini-
tial state. The fact that; —'* u, doesnot belong to this graph
indicates that the value ahcr atv; is not observable ats.

Intuitively, a DFG for a programP represents a trace if it
has “enough” edges to ensure that any thread state reached by
o belongs to INv) for somewv. The remainder of this section
formalizes this notion.

We will assume the existence of a functiomod : Loc —
P(Var) that maps every control location to the set of variables
modified at that location. We require thabdsatisfies the follow-
ing: for anyz € Var, if there exists somée,e’) € L[v] with
e(z) # €'(z), thenz € modwv). A notable feature of thenod
we use in practice is that a location of the fosgsume() is con-
sidered to be a modification of every variable occurringiThis
allows us to take advantage of information at conditional branches
that otherwise would not be possible in a data flow graph.

For a tracer, variablez, and thread:, we defindates{(o, =, n)
to be the location of the last action to write to the variablalong
o (or threadn’s copy of z, if = is local). More formally, if z
is a global variablelates(c, z,n) is the unique location such
thato = w(m,v)p (for somem € N) and where no action (of
any thread) along modifiesz if such av exists, anduninit
otherwise. Similarly, ifz is a local variablelates{o, z, n) is the
unique locatiorv such thatr = 7 (n, v)p and no action of thread
n alongp modifiesz if such av exists, andininit otherwise.

DEFINITION 3.1 (Witness).Letu, v be locationsg be a variable,
and o be a trace. We say that is a witnessfor the data flow
edgeu —7 w if there exists some thread € N such that
lates{o, z,n) = v and endlo€o, n) = v.

Conceptuallyg is a witness fo, —7 v if, on o, u sets a value
for = which is not changed until the end of the trace, where some
thread is ab. We are now ready to define a representation condition
for traces and program.

DEFINITION 3.2 (Representationp DFG P* = (Loc, DF) rep-
resentsa trace o iff for everyu,v € Loc andx € Var, if some
subtrace (not necessarily properj of o is a witness forn, —* v,

one incoming edge for each variable. Each of these incoming edgesthenu, —® v € DF. P* represents programP if it representsr

provides a value for a particular variable. For example, the edge
uz —° vy represents the constraint that any value dafter ex-
ecutingus is a possible value foe beforeexecutingv, (that is,
{e(c) : e € IN(v2)} C {e(c) : e € OUT(uz2)}). The two edges
fromuninit to initiec indicate that any value is possible fotcr
andc atinitioc, the location at which both threads begin execution.
The vertexinitioc Sets the initial condition of the program, acting
asassume(c = 0 A incr = 0). Thus, edges originating atitioc

1For a similar use of data-flow graphs, see for example [17].

for every feasible trace of P.

The relationship between the collecting semantics of a DFG and
the traces it represents is given by the following:

THEOREM3.3 (DFG Soundness).et o be a trace and leP* be
a DFG such thatP? representss. Then the collecting semantics
of P* overapproximates the set of thread states reachedr by
Formally, for all s € ¢°, for all n € N, we have thats[n] €

IN(Ss10¢(12)).



Proof sketch Let P* = (Loc, DF) be a DFG and letr be a trace
represented byP*. We proceed by induction on.

Base case: follows from the fact that for al] uninit —°
inite € DF (since P* represents) and the fact that for alk,
VAL (uninit, z) = Z.

Inductive step: suppose is a trace such thaP* represents,
letn € N, and letv = endlodo, n). We need to show tha{n| €
IN(sioc(n)). To prove this, it is sufficient to show thatr € Var,
Ju € Locsuch thatt — v € DF ands[n](x) € VAL (u, ).

Letz be a variable, and taketo belates{o, z, n). Thenu —°
v € DF becauser witnesses this data flow ang* represents
o. If w = uninit, we are done since VAluninit,z) = Z.
If w # uninit, it follows thatoc = 7w (m,u)p for some thread
m € N, tracen, and sequence of actionssuch thatz is not
modified alongp (by the definition oflates(o, z,n)). Moreover,
we must have that there is somé € 7* such that3s” with
(s',s"y € Al(m,u)] ands”[n](z) = s[n](z). By the induction
hypothesiss’[m] € IN(u), sos”[m] € OUT(u) ands[n](z) =
s"[n](z) = s"[m](z) € VAL (u, ). O

We also note that, unlike typical definitions of data flow graphs,
we require that each location has inputs for every variable, rather
than just the variables read by that location. This is a technical
convenience that simplifies the presentation of our algorithm.

3.1 Abstract interpretation of data flow graphs

Note that in the collecting semantics, and therefore in inductive
annotations, the values of different variables cannot be correlated.
For example, ifv is a location,z andy are variables, and, e’ €
IN(v) are reachable thread states such #{af) = e(y) = 0
ande’(z) = €'(y) = 1, then there exists aa”’ € IN(v) in
which e”(z) = 0 # 1 = €”(y). This suggests that DFGs
are most appropriate for analyses basedomn-relationalabstract
domains, such as intervals, signs, or the even/odd domain, which
are also incapable of representing relationships between variables.
In Section 5.1, we will discuss a variation of DFGs which are more
appropriate for relational abstract domains.

4. Interference analysis

We now address the problem of how to compute a DFG that rep-
resents a program. We start by defining a subset of traces, called
feasible traces (wheregs a given annotation), and then develop an
interference analysis that computes the set of data flow edges that
are witnessed by-feasible traces. The definition offeasibility is

such that if. is a “weak enough” annotation, then every feasible
trace is.-feasible. With such an annotatienevery edge which is
witnessed by a feasible trace will also be witnessed hyfaasible
trace, and thus will be found by our interference analysis.

Our interference analysis relies on a finite domain of data invari-
ants, which is defined using finite set of observable condifios.
observable conditioiis a predicate: with free variables irGV. In
the remainder of this section, we assume a fixed finite set of ob-

In this section, we discuss how invariants are computed over a dataservable conditions, which we denote ByWe define the set of

flow graph. For clarity of this presentation, we will assume a con-
crete representation of an abstract domain as a subse(\&r).

The semantics of program locations is given by an abstract tran-
sition relationZ[-]* : Loc — F(Var) — F(Var) that overap-
proximates the strongest postcondition (i@,e’) € L[v] im-
pliese’ = L[v]*(e)). An annotationfor a DFG P* is a map

¢ : Loc — F(Var) that assigns each locatian€ Loc a thread-
state formula(v). We define an inductiveness condition for anno-
tations that follows the structure of the collecting semantics, and
which holds when the annotation overapproximates the collecting
semantics of the DFG.

DEFINITION 3.4. An annotation. is inductive for a data flow
graph{Loc, DF) if:

¢ /(uninit) = true
e Forall v € Loc,

LA

xeVar

V ZRFG))] = o)

u—ZveDF

where L[u]f(.(u))" denotes the formula obtained from the
formula£[u]*(:(v)) by existentially quantifying every variable
exceptr.

observable formulag”(GV) C F(GV) to be the set of formulae
 that can be expressed as a conjuncifone;, where for each,
p; € Cor—yp; €C.

An annotation : Loc — F(Var) (along with the set of observ-
able conditions?) determines ambstract annotation? : Loc —
F*(GV) that assigns to each locatiane Loc an observable for-
mula ¢ that is implied by:(u) and which is at least as strong as
any other observable formula with this property. Thus, going from
concrete to abstract (and usiago denote “is more precise than”),
we have INv) C «(v) C *(v) for any location.

The set of observable conditioGgletermines aenabling con-
dition enabled: Loc — F*(GV) where3e'.(e,e') € Av] =
(e,v) E enabledv) andenabledv) is at least as strong as any
other observable formula with this property.

We are now ready to state our definitionwefeasibility:

DEFINITION 4.1. Leto be a trace and be an annotation. Them
is .-feasibleif:
e o =¢,o0r
e o = o'(n,v), whereo’ is an (-feasible trace, and for all
m € N, /*(endloda’, m)) A enabledv) is satisfiable.

Note that the condition for extending affeasible patty by an
action (n, v) depends only on the annotations at the end locations

Standard techniques can be used to compute inductive anno-of each thread, rather than on the states®in

tations from a DFG (inductive annotations correspond to post-
fixpoint solutions in the terminology of abstract interpretation). For
example, in our implementation, we use a variation of the well-
known worklist algorithm. The following is a consequence of The-
orem 3.3 and the fact that inductive annotations overapproximate
the collecting semantics:

COROLLARY 3.5. Leto be atrace, letP* be a dataflow graph that
representsr (Definition 3.2), and let be an inductive annotation
for P* (Definition 3.4). Then for all states € ¢*, and all threads

n € N, s[n] = t(s0c(n)) (i.e., the thread state of threadin the
global states is overapproximated by the annotation at the location
of threadn).

EXAMPLE 4.2. Consider the tracec = (0, u1)(0, u2)(0, us)

of the program in Figure 1. This trace is not feasible, because
every state in((0,u1){(0,u2))® has counter = 0, so (0, us)

is not enabled. However, assuming th#t;) = counter >

0 A lockl = 1, t(u1) = counter > 0, andC = {counter >
0,lockl = 0,lock2 0} (which implies:*(u1) true,
t*(u1) = —(lockl = 0), and enablefiz) = counter > 0),
this trace is.-feasible. To illustrate how-feasibility depends on

¢, consider the infeasible trac@, u1)(0, u2)(1, v1). This trace is

2This finiteness condition is not strictly necessary, but rage a more
efficient analysis.
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INIT-COREACH
coreachable(u, v)

coreachable(initioc, initioc) coreachable(v, u)

MAY REACH-BASE

COREACHSTEP
coreachable(uo, v)

enabled(uo, i* (v)) (uo,u1) € CF

coreachable(uy,v)

MAY REACH-STEPR

coreachable(ug, v) x € mod(uo) enabled(uo, i* (v)) (uo,u1) € CF
mayReach(u, z,ug, v)
MAY REACH-STEPL
mayReach(uo, z,u1,v) z ¢ mod(u1) enabled(u1, Lﬁ(v)) (u1,u2) € CF
mayReach(uo, T, u2,v)
MAY REACH
x ¢ mod(vo) enabled(vo, ¥ (uy)) (vo,v1) € CF mayReacho(uo, T, u1,v)

mayReach(uo, z,u1,v0)

mayReach(uo, z, u1,v1)

ug ~" v

Figure 3. Interference analysis.

-feasible ife(us) = counter > 0 A lockl = 1, and:-infeasible
if 1(us) = t(us) = counter > 0 A lockl =1 A lock2 = 1.

By combining the definition of-feasibility with the definition
of a witness of a data flow edge, we arrive at the following:

DEFINITION 4.3. Leto be a trace, be an annotationy andv be
locations, andr be a variable. Thew is an.-feasible witness of
the data flom: —* v if o is -feasible and witnesses the data flow
u —% v (thatis,o simultaneously satisfies definitions 3.1 and 4.1).

A key property of our notion of-feasibility is that it is preserved
under projections; that is, for anyif o is an.-feasible trace, then
for any sets of thread¥ C N, o|y is also.-feasible. The following

It follows from Definition 3.1 that there exists some,n € N,
a tracer, and a sequence of actiopssuch thatc = 7w (n,u)p
such thatr € modu), « is not modified by any action along
andv = endlogo, m). Itis easy to check that|(,, .} withesses
u —% . |

4.1 Inferring data flow edges

Our algorithm for inferring data flow edges is stated declaratively
in Figure 3 as a set of deduction rules fofeasible witnesses.
For u,v € Locandxz € Var, we write u ~; v iff an -
feasible witness for the data flow —® v exists. These proof
rules are sound and complete for determining whether a witness for
an inter-thread data flow edge exists — intra-thread data flows can

lemma states a projection result that forms the basis of our semi-pe computed independently using a standard sequential reaching
compositional algorithm for interference analysis. It implies that, gefinitions analysis.

in order to compute the set of data flow edges that are witnessed by The rules use an input relati@mabledu, ¢) which holds iff
i~feasible traces, it is sufficient to consider only traces that involve , A enabledu) is satisfiable. Additionally, two auxiliary relations

two threads.

LEMMA 4.4 (Projection)Let . be an annotationu, v be loca-
tions, andz be a variable. Letr be an.-feasible witness for the
data flowu —* v. Then there existsr, n € N such thato| (., »}
is an.-feasible witness forn —* v.

Proof sketch We will first prove that for anyNV C N and any:-
feasible tracer, | is an:-feasible trace, by induction an

The base case is obvious. For the inductive stepg (gt v) be
an .-feasible trace, and assume thaty is :-feasible. Ifn ¢ N,
then o(n,v)|n = o|n~, and the result is immediate from the
induction hypothesis.

If n € N, theno(n,v)|n = o|n{n,v). In this case, we need
to show that for albn € N, *(endlodo|n, m)) A enabledv) is
satisfiable. Lein € N and distinguish two cases:

e m € N:thenendlodo|n,m) = endlodo, m), and the fact
that .*(endlodo|x, m)) A enabledv) is satisfiable follows
from the fact that (n, v) is t-feasible.

e m ¢ N:thenendlodo|n,n) = initiec. Sinceo is finite, only
finitely many threads execute actionsd so there exists a
thread: € N that does not execute actionsdanSinces (n, v)
is -feasible,.* (endlod s, 1)) A enabledv) is satisfiable. Since
endlodo, i) = initi,c = endlodo| N, m), we are done.

Now, we must prove that the property of being a witness is
preserved by projections. Lat v be locations and be a variable,
and leto by a witness of the data flomw —* v. We assume
thatz is a global variable — the case of local variables is similar.

are used:

e coreachable(u,v) holds iff there is some-feasible tracer
such that, = endlodo, 0) andv = endlodo, 1).

® mayReach(u, x,v,w) holds iff there is some-feasible trace
o such thatu = lates{o, z,0), v = endlodo,0) andu =
endlodo, 1).

Since the set of locations and the set of variables are finite,
coreachable, mayReach, and~-, all must be finite. As a result,
we may compute all members ef, in finite time by iteratively
applying these rules until no new members of any relation are de-
duced (i.e., until a fixed point is reached). Moreover, the fact that
these relations are all finite allows us to leverage efficient propo-
sitional techniques, for example representing relations by binary
decision diagrams.

LEMMA 4.5 (Interference analysis soundness & completeness).
Letu,v € Loc andz € Var. There exists an-feasible trace that
witnesses data flow the — v iff there exists a single-threaded
witness, or ifu ~~7 v belongs to the least fixpoint solution of the
system of interference rules in Figure 3.

Note that this lemma implies that, although we lose information
in our interference analysis by going from feasible traces-to
feasible traces, we dwot lose information by going from-thread
-feasible traces to 2-threadeasible traces.

The rules in Figure 3 are a simplified version of the ones we im-
plementin DUET. DUET handles some additional language features
(thread creation and atomic blocks) and has several optimizations
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1Ntioc true true true

us counter=0 | counter>0 | counter>0
m counter=0 | counter>0 | counter>0
us counter=0 | counter>0 | counter>0
U10 counter=0 | counter=0 | counter=0
U1 counter>0 | counter>0 | counter>0
V4 counter=0 | counter>0 | counter>0
Vs false counter>0 | counter>0
Ve false counter>0 | counter>0

Figure 4. CoARSENcomputation on the program in Figure 1.

to make it more efficient. However, all the essential ideas of the
analysis are present in the rules of Figure 3.

5. lterative coarsening

In Section 3, we gave a method for computing an annotation for
a data flow graph; in Section 4, we gave a method for comput-
ing data flow edges given an annotation. By incorporating both
components into a feedback loop, we obtain our main algorithm,
COARSEN (Algorithm 1). Given a parameterized multi-threaded
program, @ARSENcomputes a DFG that represents that program
as well as an annotation that is inductive for that DFG.

Given a progran?, COARSENbegins by computing a data flow
graph Pf with only intra-thread (sequential) data flow edges. It
then computes an inductive annotatianfor P} as discussed in
Section 3. This annotation is used as input to the interference
analysis of Section 4, which computes the setsefeasible data
flow edges and adds them R} to obtain a DFGP}. After adding

e FeasibleDataflows¥, .!) computes the relatior-, through a
bottom-up evaluation of the logic program given in Figure 3.

ExamPLE 5.1. Consider the program in Figure 1. Figure 4 depicts
how the DFG and annotation computed BYpARSEN evolve on
this program. For simplicity, we show only information that is rele-
vant to thecounter variable. In particular, the DFG contains only
vertices that modify or block ofounter and all thecounter-
labeled edges between them, and the annotation is restricted to re-
fer only to the variablecounter.

A special vertexX appears in the DFG to improve readability
by “factoring” edges; it does not represent a real DFG vertex. An
edgeu — X from some arbitrary vertex to X represents four
edges:u — initioc, u — ug, u — uz andu — v4. The vertex
initoc IS the initial location of the program where every thread
begins its execution, and which has and v, as its control flow
successors. Its action is to assume the condition of the initial state,
asin:

these edges, a new (possibly weaker) annotation is computed thatassume(counter = 0 A lockl = 0 A lock2 = 0 A batch > 0)

is inductive forPQ“. This process continues until a fixed point is
reached; that is, until we reach soeuch thatP} = P} . At

this point,P,g represents the prograi and.y is inductive forP?,
and therefore;, overapproximates the reachable thread staté3 of
by Theorem 3.3.

This algorithm makes use of several auxiliary functions, which
are defined below.

e SequentialDFGP) computes a sequential data flow graph for
P. This computation is a standard sequential reaching defini-
tions analysis. This graph contains all intra-thread data flow
edges, including all those for local variables, and all those orig-
inating fromuninit.

e ExtractCondP) computes a set of observable conditionsfor
by mining the program for locks and predicatesuch thatg
only uses global variables amdsume (¢) occurs inP.

e Invariants(Loc, DF)) computes an annotation that is inductive
for the DFG (Loc, DF) using a modification of the standard
worklist algorithm, as discussed in Section 3.

e AbstractAnnotation( C) computes an observable formutgo)
for every locationv that is implied by.(v) and is at least as
strong as any other observable formula with that property.

The solid edges in Figure 4 are added in the first round, the
dashed edges are added in the second round, and the dotted edges
are added in the third round. The columns labeled.o, and s
represent the annotation of the corresponding location in the first,
second, and third rounds. Note that there is no edge frathto
vs. This is very important for proving the assertion@at Since
the invariant atu; 0 always remaingounter=0, the interference
analysis can infer that there is no feasible path of the program
witnessing this edge. Any feasible path of the program that visits
u10 has to go through a counter increment;() or an assume
statementi,) before it can reachs, and since each of those paths
contains a location modifying counter in the segment fiord to
vs, they cannot be witnesses for a data flow edge filothto vs.

Finally, the correctness condition of Algorithm 1 is stated in the
following theorem:

THEOREM5.2 (Soundness)or any programP, COARSENCOM-
putes an annotation and a DFG P* such thatP? represents
P, and for every reachable stateof P and threadn, s[n] E

t(s10c(n)).

Proof sketch Let . and P* be the be the annotation and data
flow graph computed by GARSEN The termination condition



edges is given by the following:

Algorithm 1 COARSEN VAL (u, X) = {¢’ : Je € OUT(u).Vz € X.e(z) = €'(z)}
Input: A programP = ((Loc, CF), GV, LV, L[])
Output: A sound annotation foP IN(v) = () {e € TEnv: 3u —~ v € DF.c € VAL (u, X)}
(Loc, DF) + SequentialDFGP) XeP
C + ExtractCondpP) )
DF « () OUT(v) = {TEnV if v =uninit
repeat {e’ : Je € IN(v).{e,€') € L[v]} otherwise

DF < DFUDF’
¢ + Invariants(Loc, DF))
i « AbstractAnnotation( C)

Using the collecting semantics as a guideline, it is straightfor-
ward to define inductive invariants for relational DFGs. The inter-
ference analysis of Section 4 must then be adapted to infer rela-

DFI < FeasibleDataflowst, .*) tional data flow edges. Towards this end, we redefifd to act on
UT” DF ¢ DF cells rather than variables as follows:
return .

modp(v) = {X € P: mod(v) N X # 0}

By re-instantiating the interference analysis in Figure 3 with
modp in place of mod, we obtain our algorithm for calculating
data flows in a relational DFG.

of CoARsENimplies that is inductive forP* and every-feasible Since nonrelational analyses and relational analyses operate on
trace of P is represented if*. We first prove that every feasible gjfferent data flow graphs, it is not generally true (as in the case of
tracer of P is (-feasible by induction om. sequential analyses) that a relational analysis is necessarily more
~ The base case is trivial, sinedis (-feasible for any.. For the accurate than a non-relational analysis. There is a positive side and
induction step, assume thatn, v) is a feasible trace and is .- a negative side to grouping variables when it comes to concurrent
feasible; we must prove thatn, v) is «-feasible. program analysis. On the positive side, grouping variables together
Sincer(n,v) is feasible, there must exist some€ 7° and makes it possible to infer relationships between variables, which

s’ € State such that(s,s’) € A[(n,v)]. By the definition of results in a more precise analysis. On the negative side, grouping
enabled(v), we have thats |= enabled(v). We note that for a  yariables together may create additional interference edges (result-
formula ¢ with free variables inGV, the meaning ofs = ¢ ing in a less precise analysis), asdz(v) is generally larger than

is unambiguous sinceen assigns a single value to each global ,54(v) (for v € Loc). For example, ifbatch and counter are
variablez € GV, moreover, we note that if's free variables arein - grouped together in the relational DFG construction for Figure 1,
GVthens(n] |= ¢ iff s |= ¢, sinces[n] ands agree on the values  then the interference analysis will infer tH®atch, counter}-

of all global variables. o _ _ labeled edgess — w13 andu,3 — vs. With these edges present,
Letm € N be an arbitrary thread. Sinedis c-feasibler is rep- the invariant thatounter > 0 atvs can no longer be proved, be-

resented by the DF@.oc, DF). Since. is inductive for(Loc, DF) cause the inductiveness condition for annotations implies that there

ands € 7°, we have thak[m] |= t(sic(m)) by Corollary 3.5. is no lower bound fokounter atws. In our experiments in Sec-

It follows from the definition ofi thats |= ¢*(sic(m)), and thus  tion 6, there are cases when interval analysis succeeds in proving a

s = 1} (se(m)) A enabled(v). Since this holds for alin, 7(n, v) property correct when octagon analysis fails, and vice versa.

is t-feasible (noting thatioc(m) = endlogr, m)). In Section 6.1, we briefly discuss the simple algorithm that we
Since every feasible trace is arfeasible trace, and eveny use to partition variables into semantically related sets. While sim-

feasible trace is represented BY, every feasible trace is repre-  ple, this algorithm performs fairly well on our benchmarks. How-

sented byP*, and soP is represented by*. Finally, lets be a ever, we believe that there is considerable room for improvement

reachable thread state and#et N be a thread. Then there exists  with a better variable grouping algorithm.
some feasible tracesuch thats € 7°. Sincer is .-feasible (by the

above argument), it follows that is represented by*. Finally, 6. Experiments
sincer is represented b* and. is inductive forP*, we have that Th h ted in thi is imol ted int 100l
s[n] = t(s106(n)) by Corollary 3.5. 0 e approach presented in this paper is implemented into a too

called DUET.® We used a benchmark suite of 15 Linux device
drivers to evaluate DET. Additionally, we ran IVET on the set
of Boolean programs generated by SatAbs [9] from these Linux
We have discussed only the use of non-relational (also known asdrivers to compare DET with two recent techniques on verifica-
independent attribute) abstract domains up to this point. Although tion of parameterized Boolean programs.
such domains are typically very efficient, the fact that they can- .
not encode relationships between variables limits their expressive6-1 Implementation
power. In our framework, it is possible to use relational domains, DuET is written in OCaml, and makes use of the CIL front-end for
such as octagons and polyhedra, by modifying the data flow graph.the C language [28] and the goto program front-end distributed with
Instead having data flow graph edges labeled with a single variable, CBMC [8]. Our abstract interpreter uses the APRON library [5]
we allowsetsof variables as labels, indicating that the value of ev-  for its numerical abstract domains. We use the BDD-based Datalog
ery variable in this set flows from the source to the target. Since a implementation bddbddb[33] to perform the interference analysis
value for each: € X flows along such an edge—~ v, relation- described in Section 4. Currently,UBT accepts three types of
ships between variables i can be maintained. inputs: (1) C programs usingthreaddibrary for thread operations,

A particularly simple instance of this idea is to create a partition (2) Boolean programs in the input languageBzfom[19] as an
IP of the set of variable¥ar into semantically related sets. Intu-  input, or (3) goto programs, as produced by the goto-cc C/C++
itively, we can think of each celX € PP as a record-typed variable,  frontend (part of the CRovER project [1].
with one field for each: € X. For a given partitior? of Var, the
collecting semantics for a relational DRGoc, DF) with P-labeled 3 For more information on this tool, sé&tp://duet.cs.toronto.edu

5.1 Relational abstract domains




. . . DUET: Interval Analysis || DUET: Octagon Analysis
Device Drivers #assertions safe | fime safe | fime [
i8xx_tco 90 75 1m51s 71 1m25s
ib700wdt 75 64 30s 64 20s
machzwd 87 73 39s 67 14m44s
mixcomwd 91 72 22s 74 25
pecwd 240 147 2m43s 145 23m48s
pcwd_pci 204 187 2m18s 188 2mb59s
sbc60xxwdt 91 77 28s 69 11m27s
sc520_wdt 85 71 28s 65 13m20s
sc1200wdt 77 66 34s 66 33s
smsc37b787_wdt 93 80 47s 80 47s
w83877f _wdt 92 78 29s 72 13m24s
w83977f _wdt 101 90 34s 82 34s
wdt 99 88 25s 86 25s
wdt977 88 77 27s 75 28s
wdt_pci 84 67 33s 66 5m33s

[ total [ 1597 [ 1312] 13m9s [ 1277] 90m2is |

Table 1. DUET's Performance on Parameterized Integer Programs, run on @@H2zIntel(R) Core 2(TM) machine with 4GB of RAM.

Our implementation currently inlines all function calls and then 6.2 Evaluation

performs an intraprocedural analysis. Below, we provide the results of experimenting withuBr on a

Alias Analysis. We use a type-based alias analysis to handle coIIection of Linyx devicg drivers and on B.oolean abstrqctions qf
pointers. For each variable whose address is not taken, we assign 4105€ drivers. Since a driver may have arbitrary many clients, it is
memory location which receives strong updates. For every type in important to verify these drivers in a parameterized setting.

the program, we assign a memory location which receives weak up-
dates, and each access path of that type (other than variables whos
address is not taken) is considered to be a reference to that mem
ory location. The interference analysis implemented reD oper-

ates on these memory locations rather than variables. This schem
is sound under the assumption that pointer-typed expressions ar
never cast. For the benchmark suite used in Section 6.2, aliasing
is not particularly important for proving array bounds and integer
overflow properties. Therefore, we expect the consequencas of o
unsound and imprecise alias analysis to be negligible.

We use Algorithm 2 to partition variables into semantically
related sets for our implementation of octagon analysis. While
simple, it seems to be effective in practice when performing an
octagon analysis on Boolean abstractions of Linux device drivers.

Parameterized Integer Programs. Table 1 presents the result of
ﬁmning DUET on a collection of 15 Linux device drivers. These
drivers are all written in C, and include infinite data (such as
integer types). We know of no other tool that can verify numerical
:nroperties of such large programs with arbitrarily many thréads,
and therefore we present the result of runninged on these
integer benchmarks without comparison with other tools.

DDVerify and goto-cc are used to (automatically) process each
driver into a fully-inlined goto program annotated with assertions
checking array bounds and integer overflows/underflows. With an
interval analysis, DET manages to prove most of the assertions
correct (1312 out of a total 1597), and does so in 13 minutes.
DUET's performance using an octagon analysis is slightly worse,
proving 1277 assertions correct in 90 minutes.

Most false positives for DET appear to be caused by one of

Algorithm 2 Variable partitioning algorithm two reasons: imprecision in the abstract domain, and imprecision
Input: A set of program locationkoc, a set of local variablesV in how DUET handles the treatment of spinlocks in goto programs.
and global variable&V In particular, many drivers use traverse zero-terminated arraps as
Output: A partition of Var the snippet below:
gP(ls?{ilfJ?Lntessgg}ata structure for (i=0; array[il; i++) { ... }
for v € Locdo Since our abstraction of arrays has no special representation for
if v is an assignment statemehéen zero-terminated arrays, UET flags this as an array bound error
vs < modv) U ref(v) (since no upper bound farcan be inferred). Our handling of spin-
if [us| =2 A (vs CLVVws C GVY) then locks is imprecise because goto programs model them as pointers to
Merge the partitions of each € vs integers (which take value either 0 or 1, depending on whether the
end if lock is acquired), access to which is protected by atomic blocks.
else ifv = assume (p) then Due to our imprecise alias analysis, lock acquisitions can only
if vars(v) C LV V vars(v) C GVthen weaklyupdate this integer field, which means that two threads can
Merge the partitions of each € vars(v)
end if 41t is possible to run Boom on the integer benchmarks by firstaeting
end if Boolean programs with SatAbs. However, SatAbs is desigreskfuential
end for programs rather than concurrent ones, and the Boolean pnegrstracted
return P by the version of SatAbs that was available at the time we rarerperi-

ments produced poor results: the combined SatAbs+Boom puoeéoiok
2 days and did not prove any assertions correct.



. . LI DUET: Octagon Analysis|| DUET: Interval Analysis
Device Drivers #programs |—care [ unsafe] unknown | timeout || safe | unsa%‘e[ tlme)c/)ut safe [ unsafe] tlmgout
i8xx_tco 338 214 14 0 110 259 79 0 198 | 140 0
ib700wdt 181 109 13 0 59 124 56 1 91 90 0
machzwd 255 56 24 94 81 182 70 3 148 | 105 2
mixcomwd 178 103 24 0 51 117 59 2 81 95 2
pcwd 100 81 1 0 18 74 16 10 44 50 6
sbc60xxwdt 174 92 23 0 59 113 60 1 79 94 1
sc1200wdt 247 138 13 0 96 178 67 2 138 | 107 2
sc520_wdt 186 15 23 97 51 123 61 2 89 95 2
smsc37b787_wdt 340 154 13 0 173 272 65 3 151 | 187 2
w83877f_wdt 230 15 23 97 95 150 77 3 98 128 4
w83977f wdt 389 147 13 0 229 322 65 2 144 | 243 2
wdt 230 109 17 0 104 161 59 10 108 | 114 8
wdt977 351 139 13 0 199 282 67 2 132 | 218 1
wdt_pci 217 10 34 4 169 146 69 2 146 69 2

[ total [ 3416 [[1382] 248 | 292 | 1494 ][ 2503] 870 | 43 [ 1647] 1735 | 34 |

Table 2. Comparison with linear interfaces [22] for Parameterized Booleanr®nugy Average time per benchmark was 16.9s for LI and
3.4s for DUET. Benchmarks were run on an 3.16GHz Intel(R) Core 2(TM) machitie4GB of RAM.

acquire the same lock. Neither of these sources of imprecision is instances where assertions could not be proved®safetimeout
due to a fundamental limitation of the analysis technique proposed column for LI refers to instances where LI cannot finish checking
in this paper (or related to concurrency), and we expect that our the program under 4 rounds, or cannot find a counterexample un-
false positive rate to drop considerably with the core algorithm un- der 4 rounds and the adequacy checker times out while trying to
changed. prove the program safe. Thieneoutcolumn for DUET refers to all
the instances that leT cannot prove safe within the timeout limit.
The unknowncolumn for LI refers to the instances that no coun-

Parameterized Boolean Programs. Although Boolean programs terexample is found, and the adequacy checker finishes but fails to
are not the target of this work, we experimented with them for two Prove the program safe for arbitrary number of threads.

reasons: (1) two recent approaches [19, 22] for verificatiopasf In almost all benchmarks (other tharwd), DUET can prove
rameterizectoncurrent programs only accept Boolean programs as many more instances safe (and farvd, it is close: 74 vs. 81).
their input, and (2) there is no aliasing present in Boolean programs, DUET can prove many of thenknownandtimeoutinstances of LI
which limits the scope of implementation-related imprecision for a safe. The small table below presents a different view of the same

better evaluation of the core method. results (not distinguishing among individual drivers).
DUET does not require a predicate abstraction phase to handle 0

Linux device drivers, but to present a more fair comparison with safe T Unsafel fmeout T Unknown

the existing tools [19, 22], we also ranURT on the Boolean safe 1320 0 567 916

abstractions. We compareURT against two recent algorithms that 5 Unsafe T 60 547 55 538

handle parameterized Boolean programs: dynamic cutoff detection @) fimeout > T 0 0

(DCD) from [19], as implemented in Boom, and linear interfaces
(L1) from [22], as implemented in Getafix. We compared these tools  The above table compares the results of the octagon analysis
against our own on the benchmarks used in the papers (as providegn DueT with LI. DUET can prove an additional 1183 (267+916)
by the authors). The programs were generated by SatAbs from a seprograms correct compared to LI. There are 60 instances that D
of Linux device drivers. The input formats of Boom and Getafix are reports aconfirmed false positivéa program that is known to
slightly different, so we report the results separately. Tb®00wdt be safe, but DET fails to prove safe). There are a total of 2503
andmixcomwd benchmarks were generated from the same device (1320+267+916) programs that are proved safe bgD and 247
drivers, but refer to a different set of Boolean programs in Tables programs that are correctly declared unsafe, and thereforer D
and 3. Each LI benchmark consists of a server and a client threadgenerates a total of 2750 correct answers. This puts the percentage
template, where the client template is replicated arbitrarily many of incorrect answers out of the total numberaoifirmedcorrect
times. The client thread template is the device driver code, and the and incorrect answers forlT at 2.1% (60/(2750+60)).
server thread template simulates the OS interacting with the drivers.  Table 3 presents the results of comparison with the DCD algo-
In the DCD benchmarks, there is a single thread template that isrithm on the set of Boolean programs used in [19]. In the DCD
replicated. All benchmarks were run with a timeout of 5 minutes.  algorithm, there is only one thread template which is increasingly
Table 2 presents the results of comparison with the LI algorithm replicated until a counterexample or a cutoff point is found (a cut-
on the set of Boolean programs used in [22]. In the LI algorithm, the off point is a number of threads such every thread state that is
system is tested under 4 rounds of scheduling to look for a counter reachable withn > n threads is also reachable withthreads).
example, and if one is not found then an adequacy checker is exe-For the subset of these benchmarks where DCD does not time out,
cuted thatmaysucceed in proving the program safe for arbitrarily  the cutoff is at most 3 threads.UBT’s interval and octagon analy-

many threads and rounds of scheduling. Shéecolumns referto  sjs substantially outperforms DCD in proving programs correct. In
the number of instances that were proved safe (for each analysis).

Theunsafecolumn for LI refers to the instances for which LI found  5Note that since our approach is not complete, failure to paovassertion
a counterexample (a confirmed bug), while in®x, it refers to the does not imply that the assertion is necessarily false.




DCD DUET: Octagon Analysis|| DUET: Interval Analysis
safe | unsafe| timeout || safe | unsafe| timeout || safe [ unsafe] timeout
ib700wdt 132 10 102 20 16 113 3 28 101 3
mixcomwd 138 9 108 21 16 118 4 27 107 4

Device Drivers | #programs

Table 3. Comparison with dynamic cutoff detection (DCD) [19] for parameteriBedlean programs. Average time per benchmark was
24.9s for DCD and 8.2s for DeT. Benchmarks were run on an 800MHz AMD Opteron(tm) machine with BOERAM.

particular, DJUET can prove a total 58 programs correct (with inter-  structures, a property that is more complex than the type we con-
val and octagon analysis combined) in contrast to 19 for DCD, and sider in this paper. However, computation of abstract transformers
there are no programs which DCD proves safe and whiclED for quantified domains is potentially very expensive. Moreover, our

cannot. computation of thread interference using traces is potentially more
accurate than their method, which is state-based.
7. Related Work There are a few recent approaches in concurrent program veri-

fication [15, 18, 25] which assumefixednumber of threads (and
Verification and analysis of concurrent programs has been vastly therefore not applicable to parameterized programs and not directly
studied. Here, we focus on verification of parameterized concurrent comparable to our work), but are worth mentioning here. The work
programs and systems which is more relevant to our work. in [15] uses predicate abstraction to automatically generate envi-

Extensive research has been done in the area verification ofronment abstractions for threads in a rely-guarantee based proof
parameterized protocols. These include (but are not limited to) method. They attempt to find a modular proof (where the environ-
split invariants[10], regular model checking [6, 20], parameterized ment of every thread refers only to global variables) if one exists,
model checking [12], network invariants [16, 21], and exploiting and generate a non-modular one (local variables can occur every-
symmetry [13] in the Mug tool [16]. Counter abstractior§3, 30] where) otherwise. They can prove more sophisticated properties
has been a useful technique in verifying replicated components, al-(such as correctness of Bakery algorithm) thawed, but only for
though bounded. As discussed in Section 1, we believe that provinga small fixed number of threads (2-4); therefore, it is hard to draw
functional correctness of a protocol is much more involved com- any fair comparison between the two tools. The work in [18] is
pared to proving program assertions correct in program such as abased on abstract interpretation, where trefinethe transaction
device driver (the focus of our work). For example, the correstnes graphswhich model interference among threads, using abstract in-
of Lamport's Bakery protocol [24] requires complex global invari- terpretation. At a high level, our work is similar to the approach
ant with quantifiers. In contrast, we expect driver code to use signif- in [25]; however, there are significant differences (besides tte fac
icantly simpler invariants to enforce synchronization, such as a flag that our approach deals with parameterized programs). Our notion
being set or a lock being held. Moreovelpbal program properties  of interference is quite different, and our need to iterate our analy-
(such as mutual exclusion) are part of the correctness of a protocolsis until convergence is for a different reason. In particular, in,[25]
(such as Bakery), whereas we focus on program assertions, whichthe notion of interference istaticin the sense that the structure of
are not expressive enough to relate the states of different threads tahe dataflow equations do not change from one round to the next;
each other. only the abstract values involved change.

To the best of our knowledge, the body of work on verifica-
tion of parameterized protocols (some of it mentioned above) does
not contain a single tool that can, for example, effectively veri .
numerical propergtaies of Linux device driverps with unbognded]lz 8. Conclusion and future work
many threads. Recently, two new approaches [19, 22] have beenWe propose a solution to the problem of verifying thread invariants
proposed for verification of parameterized Boolean programs that for parameterized multithreaded programs. Our approach is based
target Boolean abstractions of Linux device drivers, and are more on an iterative framework consisting of a feedback loop between
closely related to our work. In [19], eutoff detectioralgorithm is two components: one that computes data invariants using a data
proposed to determine a bound on the number of threads needed tdlow graph representation of the program and another that uses the
explore all thread states. In [22], an under approximation method data invariants to infer new data flow edges and update the data flow
based on limiting the number of scheduler rounds (as opposed tograph. Our algorithm is sound and terminating, and is applicable
context-switches) and the uselivfear interface€o summarize in- to programs with infinite state (e.g., unbounded integers) and un-
terference in a round is proposed. We compare against both theséboundedly many threads. We have implemented our approach into
algorithms in our experiments in Section 6. The most important a tool, called ET, and applied it to a selection of Linux device
advantage of our framework is that we handle unbounded data do-drivers and a large suite of Boolean programs. Our experiments
mains such as integers, whereas these other techniques are limitedemonstrate the effectiveness of the approach in proving properties
to Boolean programs. Based on our experiments, it is a significant of parameterized concurrent programs in terms of both speed and
advantage to be able to apply directly to integer programs, since precision.
predicate abstraction does not make any considerations for threads Aliasing is a big obstacle for any program verification method,
(a very recent work [11] takes a first step towards closing this gap and more specifically for concurrency verification. In our frame-

by making predicate abstractisgmmetry-awape work, distinguishing two global variables as non-aliases can po-
In [4], an abstract domain construction was presented which can tentially have a huge impact on the patterns of interference among
represent invariants of the forwt.(t), wheret is a variable rep- threads, and make or break a proof of correctness. Also, naturally,

resenting a threag(¢) is an abstract value in some base domain. information about data invariants and thread interferences can re-
Since such an invariant is an assertion ataduthreads rather than  sult in a more precise alias analysis for concurrent programs. We
some fixed set, this technique is applicable to parameterized pro-believe that combining alias analysis inside the feedback loop in
grams. The authors apply their construction to a shape domain andour framework is an interesting research question for future work.
successfully verify linearizability for a number of concurrent data As discussed in Section 5.1, a more intelligent algorithm for com-



puting variable groups for relational analyses will also definitely [20] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shat@ymbolic
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